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Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools

for industrial process design, control, and safety. However, the generation of precise and

regulation-compliant diagrams remains a signi�cant challenge, particularly in scaling

breakthroughs from material discovery to industrial production in an era of automation and

digitalization. This paper introduces an autonomous agentic framework to address these challenges

through a two-stage approach involving knowledge acquisition and generation. The framework

integrates specialized sub-agents for retrieving and synthesizing multimodal data from publicly

available online sources and constructs ontological knowledge graphs using a Graph Retrieval-

Augmented Generation (Graph RAG) paradigm. These capabilities enable the automation of diagram

generation and open-domain question answering (ODQA) tasks with high contextual accuracy.

Extensive empirical experiments demonstrate the framework’s ability to deliver regulation-

compliant diagrams with minimal expert intervention, highlighting its practical utility for industrial

applications.
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Introduction

PFDs (Process Flow Diagrams) and PIDs (Process and Instrumentation Diagrams) serve as the

architectural blueprints for modern industrial operations (see Figures 1, and 2). They form the

foundation of manufacturing by providing essential visualizations and operational details for process

design and control, enabling e�cient production, optimized industrial operations, and streamlined

maintenance. These engineering tools underpin industrial design and operational control systems and

are used in industries such as oil and gas, electronics manufacturing, pharmaceuticals, mining,

mineral processing, and automotive and aerospace. PFDs o�er a simpli�ed macro-level overview of

the entire process, illustrating material �ows, energy balances, and equipment layouts, which

facilitate initial design and optimization. In contrast, PIDs build upon PFDs and provide a micro-level

perspective by detailing instrumentation and control schemes, which are essential for regulatory

compliance, quality control, and safety in plant operation. In short, PFDs provide the context, while

PIDs provide the speci�cs, making both indispensable throughout the entire lifecycle of a process

plant, from initial design to decommissioning. As industries increasingly embrace automation and

digitalization, the demand for accurate and e�cient PFDs and PIDs continues to grow, highlighting

their critical role in ensuring e�cient, and compliant operations across various industrial sectors.

Recent breakthroughs in generative AI are revolutionizing materials science and engineering[1][2][3]

[4], enabling autonomous material discovery and replacing expensive, time-consuming trial-and-

error experimentation. However, these advancements often struggle to transition from computer

simulations and lab experiments to large-scale industrial production. Scaling autonomous material

discoveries to large-scale industrial production demands e�ective process design and control. PFDs

and PIDs are crucial tools—providing high-level process overviews (material and energy balances)

and detailed instrumentation/control strategies (consistent quality and safety) respectively—

fundamental to the design, operation, and optimization of these processes. Automating their

generation enables scalable solutions, transforming theoretical advances into economically viable

industrial applications and accelerating the transition from research to real-world deployment, with

transformative impacts across numerous industries. In this work, we present a two-stage method for

creating PFDs and PIDs, particularly for the large-scale synthesis of novel chemicals. It involves a

sequential and complementary knowledge acquisition phase, followed by a knowledge processing and

generation phase. The knowledge acquisition phase populates the knowledge base (providing a

foundation) used in the subsequent generation phase. Speci�cally: (a) Agentic web navigation[5][6][7],
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utilizing search engines and targeted queries, serves as a valuable, albeit incomplete, resource for

accessing publicly available knowledge on PFDs and PIDs for well-known chemical processes.

However, proprietary information regarding optimized process designs and highly speci�c control

schemes is rarely publicly available, and the available information often represents simpli�ed

versions of real-world processes. (b) The knowledge processing and generation phase employs

Retrieval-Augmented Generation (RAG)[8], leveraging pretrained large language models (LLMs) as

computational engines to create high-quality, regulatory-compliant PFDs and PIDs for the large-

scale synthesis of scarce or nonexistent chemicals. It leverages both external structured knowledge

(from the acquisition phase) and the in-context learning capabilities of LLMs to automate PFD and

PID generation. Furthermore, we address traditional open-domain question-answering (ODQA) tasks

by providing precise textual answers to natural language questions (including factual, procedural,

interpretive, and inferential questions) about PFD and PID generation. The multi-agent framework for

autonomous web navigation centers around a meta-agent that coordinates specialized sub-agents

(image, scholar, patent, wiki, and web insights agents) to gather comprehensive information about

chemical process PFDs and PIDs. Each sub-agent uses SerpAPI to perform web searches within its

speci�c domain and leverages language models to process and synthesize the retrieved information.

The framework also includes a feedback loop that incorporates human experts and AI judges for

quality control through self-re�ection. (2) A Graph RAG framework organizes the generated

knowledge into an ontological knowledge graph for improved information retrieval and question

answering, enabling the automatic generation of PFDs and PIDs. Figures 3 and 4 illustrate the two-

step framework: autonomous agentic web navigation for high-�delity data retrieval and synthesis,

and a Graph RAG approach structuring this knowledge via ontological knowledge graphs to

automatically generate PFDs and PIDs and facilitate complex ODQA tasks.
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Figure 1. The �gure shows the PFD for the production of lithium hydroxide (LiOH) from lithium

minerals[9]. Lithium hydroxide is primarily used in lithium-ion battery production and high-purity

chemical processes critical to semiconductor and electronics manufacturing, with a global market valued

at $10 billion in 2024 and projected to grow signi�cantly.
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Figure 2. The �gure shows the PID for the operation, maintenance, and troubleshooting of the

atmospheric distillation unit[10], which separates crude oil into gasoline, naphtha, diesel, and gas oil—

essential for fuel production. The global re�ning market was valued at approximately $2 trillion in 2024,

with projections to grow further.
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Figure 3. We present a two-step approach to extract, aggregate, and structure knowledge for PFD and PID

generation. In the �rst step, the autonomous agentic web navigation framework retrieves and synthesizes

information from multiple online sources, enabling knowledge generation through chemical-speci�c web

data aggregation. The second step involves two sub-steps: (a) extracting entity-relationship triples from

the generated knowledge and populating an ontological knowledge graph, and (b) utilizing a Graph RAG

framework to enable structured knowledge graph traversal and retrieval for complex ODQA tasks.
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Figure 4. The LLM-based multi-agent framework for knowledge generation retrieves and synthesizes

information from diverse online sources on PFDs and PIDs for well-known chemicals in large-scale

industrial synthesis. A meta-agent orchestrates specialized sub-agents that retrieve and analyze data

sources such as images, scholarly articles, patents, and Wikipedia. Each sub-agent, dedicated to a speci�c

retrieval task, uses tools like SerpAPI for accessing search results and LLMs (e.g., OpenAI GPT-4o) for

synthesizing information. An iterative feedback mechanism involving human experts and advanced Gold

language models ensures the accuracy and quality of the generated knowledge. This structured, feedback-

driven approach optimizes knowledge generation in specialized domains like chemical process design and

control. Ultimately, the framework constructs an ontological knowledge graph within the Graph RAG

framework, enhancing context-aware retrieval for both complex ODQA tasks related to chemical process

diagrams and the autogeneration of PFDs and PIDs for novel chemicals.

Agentic Web Navigation Framework

We present a multi-agent framework for autonomous web navigation, optimized for knowledge

creation. This framework enables independent web browsing, relevant information gathering, and

insight synthesis related to PFDs and PIDs in chemical processes using online resources. It includes a

meta-agent (or top-level agent) that orchestrates various specialized sub-agents. The meta-agent

initiates the process by autonomously formulating queries to generate comprehensive knowledge

about each chemical’s PFDs and PIDs. By utilizing specialized sub-agents, each an expert in speci�c
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web-based information retrieval tasks, the meta-agent gathers and integrates detailed information

from multiple sources. Each sub-agent uses SerpAPI to perform web searches and retrieve relevant

information (e.g., images, scholarly articles, patents, Wikipedia, and web insights), which is then

processed and synthesized by language models acting as computational engines to generate

contextually relevant responses.

The image sub-agent uses SerpAPI to extract and parse Google search results for relevant images of

diagrams or �owcharts from publicly available sources. It then leverages LLMs to analyze the images

and generate clear, concise, and contextually relevant responses. The scholar sub-agent uses SerpAPI

to retrieve peer-reviewed scienti�c articles from Google Scholar. It then leverages LLMs to analyze,

summarize, and synthesize the content, providing insightful responses to user queries. The patent

sub-agent uses SerpAPI to retrieve patents and, with the help of LLMs, analyzes key sections to

generate a concise overview, o�ering accurate and clear responses. The wiki sub-agent uses SerpAPI

to retrieve relevant Wikipedia articles and then leverages LLMs to synthesize the information into a

clear, concise overview, highlighting key facts and context to answer speci�c queries. The web

insights sub-agent uses SerpAPI to gather insights from blogs, forums, and other relevant websites. It

then leverages LLMs to analyze the content and provide accurate, concise responses by synthesizing

data from retrieved sources and contextual knowledge.

In short, to minimize redundant retrieval, each sub-agent is con�gured to handle unique data sources

or content types, dynamically adapting its retrieval queries to ensure e�ciency. The meta-agent

decomposes the overall task   into subtasks  , such as retrieving images, searching for

scholarly articles, exploring patents, gathering Wikipedia knowledge, and collecting general web data.

This approach enables the meta-agent to prioritize subtasks by relevance, allowing sub-agents to

work in parallel and speeding up retrieval. For each subtask  , the meta-agent selects a sub-agent 

 by maximizing the cosine similarity between the text embeddings of the subtask query   and the

documented capabilities   of each sub-agent. This similarity is de�ned as:

where    and    are the vector representations of the subtask query and the documented

capabilities. The selection process is formalized as:

Q { , , … , }q1 q2 qn

qi

tj qi

dj

sim(v( ), v( )) =qi dj
v( ) ⋅ v( )qi dj

∥v( )∥∥v( )∥qi dj

v( )qi v( )dj

SelectAgent( ) = arg sim(v( ), v( ))qi max
tj

qi dj
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where    is the sub-agent, and    describes the agent’s relevance to the task. The documented

capabilities of sub-agents   include speci�c skills, such as retrieving images or conducting literature

searches. This documentation outlines their data sources—platforms like Google Images, Google

Scholar, and patent databases (e.g., USPTO and EPO)—enabling the meta-agent to select the most

relevant sub-agent for each subtask and optimize information retrieval.

Dependencies between subtasks are managed through a Directed Acyclic Graph (DAG)  ,

where nodes    represent subtasks  , and edges    indicate dependencies    between them. This

structure ensures the correct order of subtasks: if subtask   depends on  , then   must be completed

before    can begin. Independent subtasks can be executed simultaneously, enhancing overall

e�ciency. After the meta-agent identi�es the most suitable expert sub-agent for each subtask, it

invokes the sub-agent with parameters:   (Instructions),   (Context), and   (Speci�c Query). This

invocation is represented as:

Each sub-agent synthesizes information, identi�es patterns, and extracts key insights from multiple

sources. For the image sub-agent, a set of images    is retrieved, and their

embeddings    are computed using the CLIP model[11]. The cosine

similarity between each image embedding and the query embedding   is calculated as follows:

A selected subset   is presented to the multimodal LLM, which interprets the visual information

and generates a coherent summary   relevant to the context of PFDs and PIDs based on the query  .

Similarly, the scholar sub-agent processes scienti�c articles  , embedding them

as  , and calculates the cosine similarity with the query embedding 

 to identify relevant articles. A selected subset is then input into the LLM to generate output  .

For Wikipedia knowledge retrieval, speci�c web pages    are embedded as 

, and relevant articles are identi�ed through cosine similarity and

input into the LLM to produce output  . For patent retrieval, speci�c patents 

  are embedded as  , and relevant patents are

identi�ed using cosine similarity with the query embedding  . A selected subset is input into the

LLM to generate a coherent output  . Lastly, the general web data gathering sub-agent processes

tj dj

dj

G = (V, E)

V qi E eij

qi qj qj

qi

p1 p2 p3

( , , )tj p1 p2 p3

I = { , , … , }i1 i2 ik

v(I) = {v( ), v( ), … , v( )}i1 i2 ik

v( )qi

sim(v(I), v( )) =qi
v(I) ⋅ v( )qi

|v(I)||v( )|qi

⊂ IIJ

DI qi

A = { , , … , }a1 a2 am

v(A) = {v( ), v( ), … , v( )}a1 a2 am

v( )qi DA

W = { , , … , }w1 w2 wp

v(W) = {v( ), v( ), … , v( )}w1 w2 wp
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P = { , , … , }p1 p2 pr v(P ) = {v( ), v( ), … , v( )}p1 p2 pr

v( )qi
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insights  , such as blog posts and reports on PFDs and PIDs, embedding them as 

. Relevant insights are selected for the LLM to generate a summarized

output  . The meta-agent aggregates these outputs into a coherent response  :

This structured work�ow enhances the e�ciency and e�ectiveness of information retrieval and

knowledge acquisition by detailing task delegation, execution, and aggregation. To ensure the

accuracy and relevance of the generated content, the framework implements an iterative feedback

loop in which human experts, a gold-standard language model (Gold-LLM-as-a-Judge), and a reward

model (Reward-Model-as-Judge) provide feedback  . This re�ective feedback process enables the

meta-agent to evaluate its performance and re�ne its outputs, fostering continuous improvement.

The iterative process continues until the output meets speci�ed quality standards or until a maximum

number of iterations   is reached, represented as:

The goal is to produce an optimal output   that maximizes  . Here,   represents the

meta-agent’s associated language model parameters, which encapsulate its pre-trained knowledge

and enable e�ective information processing.   is the pool of specialized sub-agents

available for task execution, and   represents the set of documented capabilities of

all sub-agents. The autonomous knowledge generation process is described in Algorithm  1, which

outlines the framework for agent-based web navigation. An ontological knowledge graph is

constructed based on the generated knowledge to organize and retrieve relevant information within

the Graph RAG framework. This construction facilitates the generation of more accurate, context-

aware, and e�cient responses. These capabilities are particularly valuable in complex and specialized

domains, such as the generation of PFDs and PIDs for chemical processes ODQA tasks.

Graph Retrieval-Augmented Generation

Graph RAG surpasses traditional RAG by leveraging knowledge graphs to overcome the limitations of

traditional RAG in handling complex queries. While traditional RAG excels at retrieving simple,

isolated facts, it often struggles to synthesize information across multiple sources for complex multi-

hop reasoning tasks. Graph RAG, on the other hand, utilizes the structured relationships within

knowledge graphs to traverse and reason e�ectively, providing deeper insights and more

G = { , , … , }g1 g2 gq

v(G) = {v( ), v( ), … , v( )}g1 g2 gq

DG A

A = ( , , , , )MetaAgentLLM DI DA DP DW DG

Fi

Nmax

= (Q, , )Ai+1 MetaAgentLLM Ai Fi

A∗ P (A ∣ Q,T ,D, θ) θ

T = { , , … , }t1 t2 tn

D = { , , … , }d1 d2 dn
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comprehensive responses. The process begins by constructing unimodal (text-only) knowledge

graphs (KGs) through parsing unstructured documents, extracting relevant information, and

structuring it into triples (subject-predicate-object). To facilitate this extraction and structuring, the

documents are divided into manageable chunks using a sliding window technique. Let each document

in a set of   documents be denoted as  , where   represents the document index.

Each document   is divided into chunks based on a token window size. Each chunk is denoted as 

, where    denotes the chunk index within document  , and    is the

number of chunks in that document, as de�ned below:

Here,   represents the  -th chunk in document  . The window size   (in tokens) and the stride 

  (the step size between consecutive chunks, also in tokens) are applied consistently across all

documents. Choosing an optimal window size    and stride    requires balancing granularity with

context retention. A smaller window with a smaller stride (resulting in higher overlap) may capture

more detailed information but increase the computational cost of processing by language models. In

contrast, a larger window size with a larger stride may better preserve context but dilute speci�c

details. Although the sliding window technique helps maintain context, critical information near

chunk boundaries may still be fragmented, impacting coherence and completeness, which can reduce

retrieval e�ectiveness. To address the limitations, we propose a hybrid approach that combines the

sliding window technique with a content-aware method[12]. In this approach, a language model

generates a contextual description for each chunk  , denoted  , which provides a concise

summary linking the chunk to the document’s broader content, thereby enhancing retrieval relevance.

We then prepend this context to the original chunk before encoding:

where    denotes the concatenation operator. This approach embeds additional context, retains

essential information, and improves retrieval accuracy. After enriching the chunks with context, they

are used to construct the knowledge graph. To construct a knowledge graph  , it is essential

to extract and represent entities and their relationships in a structured format. The set of entities 

 serves as the nodes, while the relationships between entities, represented as  , form the directed

edges. This structured representation enables the encoding of semantic information, providing a

robust framework for advanced reasoning and retrieval tasks. We extract both entities and

M D(m) m = 1, 2, … ,M

D(m)

C
(m)
i i = 1, 2, … ,N (m) D(m) N (m)

= [(i − 1) ⋅ s : (i − 1) ⋅ s + w]C
(m)
i D(m)

C
(m)
i i D(m) w

s

w s

C
(m)
i ctx(m)

i

= ⊕C
′(m)
i ctx(m)

i C
(m)
i

⊕

G = (V, E)

V E
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relationships using language models. The process begins with Named Entity Recognition (NER) to

identify and extract entities within each chunk, resulting in a set of entities denoted as:

where    represents the  -th entity extracted from the  -th chunk    of document  , and 

  is the total number of entities in this chunk. Next, Relation Extraction (RE) identi�es

relationships between pairs of entities within the same chunk. These relationships are represented as:

Here, each triple   denotes a relation   between the entities   and  . To

improve search accuracy, we merge duplicate entities by identifying and combining those that

represent the same concepts but appear di�erently in the data. Each entity    is represented by a

vector embedding  , generated using OpenAI’s text-embedding-3-small model, which captures

the entity’s semantic meaning. The semantic similarity between two entities    and    is

calculated using cosine similarity:

If the similarity exceeds a threshold  , the entities are considered semantically similar. For further

re�nement, we use the Levenshtein distance to compute a string similarity ratio:

where   denotes the Levenshtein distance between the two entity strings. An entity pair is deemed a

duplicate and merged if both the semantic similarity    and the string

similarity   satisfy prede�ned thresholds. We apply the hierarchical Leiden

algorithm to detect communities    at multiple levels of granularity, maximizing the modularity 

 of the knowledge graph. Modularity   quanti�es the quality of the community structure by

measuring the density of connections within communities compared to those between communities,

with higher values indicating denser internal connections and sparser external connections. It is

de�ned as:

= { : j = 1, 2, … , }E
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i e
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Here,   represents the adjacency matrix, indicating the presence of an edge between nodes   and  ; 

  and    are the degrees of nodes    and  ;    is the total number of edges in the graph, used to

normalize the adjacency matrix to re�ect the expected density of connections in a random graph

(where node degrees are preserved, but speci�c connections are randomized); and    is the

Kronecker delta function, equal to 1 if nodes   and   belong to the same community and 0 otherwise.

The hierarchical Leiden algorithm partitions the graph into    communities,  , by

maximizing  , revealing a strong community structure. The process involves three steps: (1) the

local moving phase, where nodes are shifted between communities to maximize modularity; (2) the

aggregation phase, where detected communities are merged into super-nodes; and (3) repetition of

these phases until no further improvement in modularity is possible. Each community 

  consists of its nodes    and edges  . The algorithm facilitates focused retrieval in

knowledge graphs by detecting communities and re�ning them to align with query-speci�c

subgraphs. For complex multi-hop reasoning tasks, relevant information often spans multiple

communities. To address this, our approach prioritizes the top-   communities  ,

ranked based on the cosine similarity between the user query   and summaries of relationship paths

within each community. Each community    is summarized using a language model that condenses

relationship paths  :

where   is the summary, and   represents the likelihood of   given  , encompassing both

direct and multi-hop relationships. These summaries are converted into vector embeddings 

  using a text-embedding model, enabling e�cient similarity computation with the embedded

query  :

The top-  communities with the highest similarity scores are selected, ensuring that a diverse and

relevant set of subgraphs is aggregated. These selected communities are then combined into a query-

speci�c subgraph  , de�ned as:

Aij i j

ki kj i j m

δ( , )ci cj

i j

L { , … , }C1 CL

QMod

= ( , )Ci VCi ECi VCi ECi

K { , , … , }C1 C2 CK

Q
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= LLM( ) = arg P (S ∣ )Si Ri max
S
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Si P (S ∣ )Ri S Ri
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d(Q, ) =Ci
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This subgraph retains critical nodes    and edges    from the top-   communities, capturing the

essential connections and semantic relationships needed to address the query. Paths 

, where    are entities and    are relationships, are extracted from  . These

paths encode semantic dependencies vital for reasoning. A language model generates the answer   by

integrating the query   and paths  :

where    denotes the probability of    given    and  , ensuring that the response is

contextually accurate and aligned with the query’s intent. The construction and utilization of a

knowledge graph for the ODQA task are detailed in Algorithm 2.

Experiments

Datasets

We constructed a comprehensive dataset of over 1,070 chemicals with signi�cant applications across

diverse industries, including electronics manufacturing, oil and gas, pharmaceuticals, renewable

energy, chemical production, mining, water treatment, and food and beverage. This dataset,

meticulously curated from the product catalogs of leading chemical manufacturers like BASF, Dow

Chemicals, and DuPont, ensures reliability and consistency by grounding the data in credible sources,

thereby minimizing ambiguities and inaccuracies associated with unstructured, free-form inputs. It

comprises two subsets: a primary subset of 1,020 chemicals used for autonomous web navigation,

domain-speci�c data retrieval, and generating PFDs and PIDs to construct ontological knowledge

graphs as foundational databases; and a secondary evaluation subset of 50 chemicals to rigorously

assess the framework’s robustness and generalizability in auto-generating PFDs and PIDs.

Additionally, we developed a custom ODQA dataset of 6,000 QA pairs focused on process diagrams of

the primary subset, with questions systematically generated using prede�ned templates and answers

produced by benchmark LLMs like GPT-4o. Covering categories such as fact-based, logical,

comparative, causal, operational, multi-hop, and procedural questions, each QA pair underwent

meticulous validation before inclusion, enabling the evaluation of the framework’s accuracy,

contextual relevance, and capability to address diverse technical queries.

VQ EQ K

P = ( , , , … , )e1 r1 e2 ek ei ri GQ

A

Q P

A = LLM(Q,P ) = arg P (A ∣ Q,P )max
A

P (A ∣ Q,P ) A Q P
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Experimental Settings

In our work, we utilized SmolLM2-360M-Instruct [Allal et al., 2024], a pre-trained and �ne-tuned

model, as the computational engine to compare the performance of Graph RAG with a pre-trained

LLM (leveraging ontological knowledge graphs constructed from PFD and PID descriptions of the

primary subset of chemicals) and a �ne-tuned LLM without Graph RAG (instruct-tuned using the

same knowledge base). This comparison aimed to evaluate the impact of Graph RAG on pre-trained

model performance. Graph RAG with a pre-trained LLM incurs higher computational costs due to

graph construction and retrieval, resulting in slower overall inference times because of graph

traversal. However, the pre-trained LLM processes retrieved context e�ciently. It excels in dynamic

knowledge updates and multi-hop reasoning. In contrast, a �ne-tuned LLM without Graph RAG o�ers

faster inference by embedding retrieval within the model but requires costly �ne-tuning and is less

�exible for adapting to new data without re-�ne-tuning. The �ne-tuned LLM’s inference time is

slightly higher due to its larger, task-speci�c parameterization. We also utilized OpenAI’s text-

embedding-3-small model for text encoding tasks and CLIP embeddings for multimodal processing,

enabling the encoding of visual data. The framework integrated the Graph RAG approach with Neo4j to

facilitate structured knowledge retrieval. To �ne-tune SmolLM2-360M-Instruct, we generated an

instruction-following dataset for the task of producing descriptions of PFDs and PIDs for the primary

subset of chemicals. The dataset was structured with instruction prompts and corresponding target

outputs and was used for supervised �ne-tuning to optimize the model’s task-speci�c performance.

Note: For Graph RAG with pre-trained LLMs, the same knowledge—PFD and PID descriptions of the

primary subset of chemicals—was used for constructing the knowledge graph and did not involve

�ne-tuning the LLM itself. The �ne-tuning process employed advanced techniques such as gradient

accumulation and Low-Rank Adaptation (LoRA) for e�cient training. Key hyperparameters included

a learning rate of  , a batch size of 8 per device, 3 training epochs, and 4 gradient accumulation

steps, simulating an e�ective batch size of 32 (8 × 4). This con�guration allowed the model to perform

updates as if it had processed 32 samples in one step, even though only 8 samples were loaded into

memory at a time. LoRA reduced trainable parameters by updating low-rank matrices (e.g., rank 

, scaling factor  ) and applied dropout (e.g., 0.1) to updates for regularization. LoRA �ne-

tuned only speci�c layers, such as attention weights, while typically freezing biases, and integrated

seamlessly with gradient accumulation. Low-rank matrices were initialized randomly to ensure

e�cient convergence, while regularization prevented over�tting. We employed LoRA with mixed

5 × 10−5

r = 4 α = 16
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precision (FP16), further optimizing memory usage and training speed. Rigorous evaluation

strategies, such as per-epoch validation using metrics like loss (e.g., cross-entropy), ensured scalable

and e�ective �ne-tuning tailored to speci�c tasks. All experiments were conducted using NVIDIA

Tesla T4 GPUs for e�cient computation, and the framework was implemented in Python with

PyTorch and Unsloth.

Experimental Studies

The framework’s performance was evaluated across multiple tasks: (a) comparing auto-generated

PFDs and PIDs for chemicals in the secondary evaluation subset to ground-truth data; (b) evaluating

its ability to answer diverse queries from the ODQA dataset, including logical, causal, procedural, and

multi-hop reasoning questions; (c) analyzing the impact of structured retrieval on multi-hop

reasoning and contextual accuracy by comparing Graph RAG combined with a pre-trained LLM to a

�ne-tuned LLM without Graph RAG, used as a baseline; and (d) demonstrating Graph RAG’s

superiority over traditional RAG in handling complex queries and generating accurate, context-aware

responses.

Results

In this section, we present the experimental results on knowledge generation. Additional

experimental results are discussed in the appendix. Figure 5 illustrates the evaluation metrics for the

autonomous agentic web navigation framework, which is designed to automate and optimize the

processes of gathering and synthesizing information for PFDs and PIDs for the primary subset of

chemicals from publicly available online sources. The framework’s outputs were evaluated using the

NVIDIA Nemotron-4-340B-Reward model across metrics such as helpfulness, correctness,

coherence, complexity, and verbosity. Each attribute was evaluated on a four-point Likert scale

(continuous), with 0 indicating the lowest quality and 4 indicating the highest. The results highlight

the quality of the generated knowledge, particularly its coherence and accuracy. We computed text

embeddings of chemical PFDs and PIDs generated by the agentic web navigation framework using the

OpenAI text-embedding-3-small model, followed by clustering to identify the optimal number of

groups. These clusters were then visualized using t-SNE and PCA plots.
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Figure 5. The �gure presents the evaluation results of the agentic web navigation framework in generating

PFD and PID knowledge for chemical processes, benchmarked using NVIDIA Nemotron-4-340B-Reward

model and scored on a scale from 0 to 4, where 0 represents the lowest and 4 the highest performance.
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Figure 6. The �gure shows the PCA projection and t-SNE visualization of text-level
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embeddings for PFDs and PIDs.

The t-SNE visualization (see Figure 6(a)) revealed distinct groupings, highlighting non-linear

separations, while the PCA plot (see Figure 6(b)) displayed the variance structure with less

pronounced clustering. PFDs and PIDs within a cluster share common characteristics, suggesting

similar industrial designs, while those in di�erent clusters exhibit distinct characteristics, re�ecting

diverse design strategies. This clustering analysis provides valuable insights for process optimization,

design, and risk assessment. Figure 7 presents a box-and-whisker plot comparing the embedding

similarities of knowledge generated by the agentic web navigation framework with two proprietary

LLMs (GPT-4o and Anthropic-Haiku) for PFDs and PIDs of chemical processes. The plot suggests that

the generated knowledge has a closer semantic relationship to text from GPT-4o compared to

Anthropic-Haiku. However, outliers for both models indicate instances of weak similarity, suggesting

di�ering strategies or biases in knowledge generation, particularly given the variability of available

web information. Figures 8(a) and 8(b) display histograms comparing the similarity of knowledge

generated by GPT-4o and Anthropic-Haiku to web knowledge. These plots reveal the frequency of

various similarity scores, providing insights into the models’ semantic alignment with web-sourced

information. The distinct patterns in these distributions highlight variations in the models’ alignment

with web knowledge, with GPT-4o appearing more closely aligned compared to Anthropic-Haiku.
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Figure 7. The �gure shows a box-and-whisker plot comparing the semantic closeness of

knowledge generated by the web navigation framework, GPT-4o, and Anthropic-Haiku for

PFDs and PIDs of chemical processes.

Conclusion

In conclusion, this paper introduces an autonomous agentic web navigation framework that

integrates GraphRAG to overcome challenges in generating regulation-compliant PFDs and PIDs for

industrial processes. The framework demonstrates its capability to e�ciently synthesize multimodal

data from publicly available online sources, construct ontological knowledge graphs, and address

ODQA tasks with high contextual accuracy. These advancements underscore the potential of AI-driven

automation to streamline process design and accelerate the industrial application of emerging

material innovations. Future work will focus on incorporating �rst-principles-based simulation tools

to enhance the framework’s precision and reliability, further bridging the gap between computational

insights and industrial-scale implementation.
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Technical Appendix

Figure 8. The �gure shows histograms of similarity scores comparing GPT-4o and

Anthropic-Haiku-generated knowledge with web knowledge.

Additional Experiments

We evaluate the impact of Graph RAG integrated with a pre-trained LLM (without �ne-tuning, W/o

FT) on generating PFDs and PIDs for the secondary evaluation subset of chemicals. Figure 9(a)
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presents the evaluation metrics for this setup. To establish a baseline, we assess proprietary, closed-

source models such as GPT-4o and Google Gemini-1.5 Pro by directly evaluating their performance on

unseen chemicals from the secondary evaluation subset without applying Graph RAG. The metrics—

Helpfulness, Correctness, Coherence, Complexity, and Verbosity—are computed using the NVIDIA

Nemotron-4-340B-Reward model, which evaluates responses based on usefulness, factual accuracy,

clarity, intellectual depth, and appropriate detail. Scores are provided on a scale from 0 (lowest

performance) to 4 (highest performance). Proprietary models like GPT-4o and Google Gemini-1.5 Pro

consistently achieve higher scores across all metrics, demonstrating their advanced capabilities. In

contrast, Graph RAG integrated with smaller models, such as SmolLM2-360M (W/o FT), scores

relatively lower but still delivers acceptable performance in resource-constrained scenarios. These

�ndings highlight that while state-of-the-art models set a high benchmark across all evaluation

dimensions, smaller-scale models coupled with Graph RAG present a cost-e�cient and practical

alternative for many applications. We also compare Graph RAG with a pre-trained LLM (without �ne-

tuning) and �ne-tuned LLMs (without Graph RAG) to evaluate the impact of structured retrieval on

multi-hop reasoning and contextual retrieval for generating PFDs and PIDs in the secondary

evaluation subset of chemicals. Figure 9(b) illustrates the performance of various Graph RAG

con�gurations with pre-trained LLMs in comparison to �ne-tuned LLMs (without Graph RAG). These

con�gurations are assessed using evaluation metrics—Helpfulness, Correctness, Coherence,

Complexity, and Verbosity—scored on a scale of 0 (lowest) to 4 (highest). The scores are determined

by the NVIDIA Nemotron-4-340B-Reward model, which evaluates the quality of the generated text.

Notably, �ne-tuned models such as SmolLM2-360M, SmolLM2-1.7B, and Qwen2.5-1.5B achieve

higher scores across all metrics compared to their pre-trained counterparts with Graph RAG,

demonstrating the bene�ts of �ne-tuning for tasks requiring multi-hop reasoning and contextual

understanding. However, pre-trained models integrated with Graph RAG also exhibit competitive

performance, underscoring their potential as cost-e�ective solutions for resource-constrained

applications. Figure 12 compares the performance of Graph RAG with various pre-trained language

models (W/o FT) and �ne-tuned LLMs (without Graph RAG) on ODQA tasks using BLEU, ROUGE-N,

and ROUGE-L metrics. The results indicate that �ne-tuning and increased model size signi�cantly

enhance performance, with �ne-tuned models (without Graph RAG) consistently outperforming their

pre-trained counterparts integrated with Graph RAG. Notably, Graph RAG integrated with pre-trained

models achieves performance levels close to those of the best-performing �ne-tuned large models,

demonstrating its ability to e�ciently improve semantic and contextual alignment. This analysis
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underscores the importance of �ne-tuning, model scaling, and the integration of Graph RAG in

enhancing accuracy and coherence in complex language understanding tasks. In addition, Figure 13

presents evaluation metrics—Helpfulness, Correctness, Coherence, Complexity, and Verbosity—

scored by the Nemotron-4-340B-Reward model across di�erent con�gurations, showing that �ne-

tuned models (without Graph RAG) consistently outperform their pre-trained counterparts integrated

with Graph RAG (W/o FT). Figure 14 demonstrates that Graph RAG with pre-trained LLMs (W/o FT)

achieves signi�cant improvements over traditional RAG with pre-trained LLMs (W/o FT) by

leveraging structured knowledge graphs to enhance reasoning and understanding for the PFD and PID

generation tasks of unknown chemicals.

Figure 9(a). The �gure illustrates the performance comparison between Graph RAG with pre-

trained LLMs (W/o FT) and advanced closed-source LLMs (without Graph RAG) across various

evaluation metrics.
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Figure 9(b). The �gure shows the impact of Graph RAG with pre-trained LLMs (without �ne-

tuning) compared to �ne-tuned LLMs (without Graph RAG).

Figure 9. The �gures compare �ne-tuned LLMs without Graph RAG to Graph RAG with pre-trained LLMs

(without �ne- tuning), evaluated across metrics such as helpfulness, correctness, coherence, complexity, and

verbosity, scored on a scale from 0 to 4, similar to a Likert-style evaluation.
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Figure 10(a). t-SNE plot: Visualization of PFD and PID data embeddings, showing non-linear

clustering based on shared semantic features.
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Figure 10(b). PCA plot: Principal component analysis of PFD and PID data embeddings,

highlighting variance distribution and linear patterns.

Figure 10. The �gure shows the t-SNE and PCA visual- izations of Anthropic Haiku-generated PFD and PID

data embeddings, highlighting non-linear clustering and variance distribution.

Figures 10a-10b present visualizations of chemical process data embeddings (PFDs and PIDs

generated by Anthropic Haiku on the primary dataset) using two distinct dimensionality reduction

techniques. The t-SNE plot (Figure 10a) captures non-linear relationships within the embeddings,

revealing distinct clusters that highlight semantic groupings of PFD and PID data based on shared

features. In contrast, the PCA plot (Figure 10b) illustrates the variance distribution along principal

components, o�ering a linear perspective on the dataset and showcasing broader patterns with less

pronounced clustering. Figures 11a-11b depict data embeddings from PFD and PID knowledge

generated by OpenAI GPT-4o on the primary Dataset (Knowledge Base), reduced to two dimensions

using t-SNE and PCA techniques. The t-SNE visualization (Figure 11a) highlights clusters, uncovering

intricate non-linear relationships within the dataset. The PCA plot (Figure 11b) illustrates the variance
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distribution, providing a linear perspective on broader patterns. Together, these visualizations o�er

complementary insights into the structure and organization of the processed information.

Figure 11(a). PCA plot (GPT-4o): Highlights the variance distribution and linear patterns in PFD

and PID embeddings.
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Figure 11(b). t-SNE plot (GPT-4o): Reveals clustering and non-linear relationships in PFD and

PID embeddings.

Figure 11. The �gure shows the visualizations of GPT-4o-generated embeddings for PFD and PID data,

using PCA to show variance patterns and t-SNE to highlight clustering and non-linear structures.
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Figure 12. The �gure compares BLEU, ROUGE-N, and ROUGE-L metrics for �ne-tuned models without

Graph RAG and pre-trained models with Graph RAG(W/o FT), highlighting the e�ects of �ne-tuning

and model size.
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Additional details

The hyperparameters for constructing knowledge graphs are optimized to enhance core processes,

including chunking, triple extraction, similarity evaluation, and storage. Chunking parameters, such

as window size ( ) and stride ( ), ensure that text is segmented into manageable and contextually

continuous segments. The window size ( ) is set to 1024 tokens, allowing for larger contextual

segments to capture detailed information, while the stride ( ) is set to 128 tokens, maintaining a

12.5% overlap to balance contextual continuity and computational e�ciency. For triple extraction,

advanced LLMs, such as GPT-4o, identify entities and relationships, generating structured triples

while adhering to a maximum per-chunk threshold ( ) of 20 triples to balance graph complexity and

e�ciency. Similarity evaluation incorporates a high cosine similarity threshold (0.9) to ensure precise

merging of semantically similar entities and applies a Levenshtein edit distance limit of 5 to resolve

minor variations in entity names or labels e�ectively. Finally, the graph is stored in robust systems

like Neo4j, capable of e�ciently managing the increased data volume from larger window sizes. This

parameterization ensures scalability, precision, and semantic consistency, leveraging state-of-the-

art techniques for constructing and managing knowledge graphs. Optimization of the ranking and

retrieval steps is crucial for handling large graphs e�ciently, as these processes can be

computationally expensive. To address this, precomputing summaries    for frequently used

communities can signi�cantly reduce runtime by avoiding repetitive computations during queries.

Additionally, indexing the embeddings    of these summaries enables faster similarity

computations, enhancing the overall scalability and framework performance.
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Figure 13. The �gure shows the evaluation metrics (Helpfulness, Correctness, Coherence, Complexity,

Verbosity) across di�erent model con�gurations. Fine-tuned models (without Graph RAG)

consistently achieve higher scores than Graph RAG with pre-trained models, based on results from the

Secondary Evaluation Dataset. Scores are rated on a 0-4 scale.
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Figure 14. The �gure shows a comparison of Graph RAG and traditional RAG with pre-trained LLMs on

evaluation metrics for generating PFDs and PIDs for unknown chemicals from the secondary

evaluation dataset. Graph RAG with pre-trained LLMs demonstrates superior performance as scored

by the Nemotron-4-340B-Reward model.

Figure 15. The �gure shows a Neo4j graph database visualization comprising 8,005 nodes and 22,237

relationships. The nodes represent key entities or parent chunks from the knowledge graph. Entity

nodes are connected to their respective parent chunk nodes and to other entities, indicating

associations or references within the database.
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