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Large language models have emergent capabilities that come unexpectedly at scale, but we need a

theoretical framework to explain why and how they emerge. We prove that language models are

actually non-ergodic systems while providing a mathematical framework based on Stuart

Kau�man's theory of the adjacent possible (TAP) to explain capability emergence. Our resource-

constrained TAP equation demonstrates how architectural, training, and contextual constraints

interact to shape model capabilities through phase transitions in semantic space. We prove through

experiments with three di�erent language models that capacities emerge through discrete

transitions guided by constraint interactions and path-dependent exploration. This framework

provides a theoretical basis for understanding emergence in language models and guides the

development of architectures that can guide capability emergence.
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1. Introduction

Current research in large language models has unveiled increasingly complex capabilities that emerge

unpredictably at scale. These emergent capabilities, from complex reasoning to zero-shot learning,

appear without explicit training[1]. While observing these phenomena, we found patterns suggesting

fundamental similarities with complex biological systems: capabilities emerged through sudden

transitions rather than gradual improvements[2], model behavior showed strong dependence on

context history[3], and next-token predictions varied signi�cantly based on the path taken to reach a

particular state[4]. These observations suggested that language models, like biological systems, might

Qeios

qeios.com doi.org/10.32388/00JQN6 1

mailto:javier@jmarin.info
https://www.qeios.com/
https://doi.org/10.32388/00JQN6


be fundamentally non-ergodic in nature. This insight led us to explore theoretical biology

frameworks, particularly Stuart Kau�man's theory of adjacent possible (TAP), which describes how

biological systems navigate their possibility spaces through restricted exploration[5]. Similar to how a

cell in a developing organism navigates a limited array of possibilities in�uenced by its environment

and history rather than choosing its next state at random, a language model's next-token prediction

arises from a complex interaction of collected patterns and existing constraints. This paper presents

both theoretical proof of language models' non-ergodicity and a novel framework based on TAP that

explains their emergent capabilities.

1.1. Current frameworks for emergent capabilities in language models

Actual advances in AI systems research primarily emphasize empirical observations of increases in

capability[6][2]  and scaling laws[7], yet we lack a uni�ed theoretical framework to explain the

underlying mechanisms.

Some studies approaching this challenge have shown the stochastic nature of these emergent

properties. Research on next-token prediction (NTP) proves that these capabilities arise from

intrinsically stochastic processes[8], challenging deterministic interpretations of model behavior.

Analyses of probability spaces in language models, including softmax distributions[9], entropy in

token predictions[9][10], and temperature sampling e�ects[11], suggest that this emergence follows

complex probabilistic patterns that current frameworks struggle to explain.

An important restriction in evaluating these emergent capabilities is the underlying assumption of

ergodicity in current approaches[12][13]. This assumption breaks down when observing how

capabilities emerge through path-dependent processes. In language models, each new capability

depends on the assembled context and previous token sequences, leading to di�erent probability

distributions for the same token in di�erent contexts. This context-dependent behavior contravenes

fundamental ergodic principles, which require time and ensemble averages to be equivalent[14]. The

non-linear dynamics seen in language models[15]  create a kind of “memory system” through the

context window. This leads to path dependence and temporal asymmetry, which are qualities of non-

ergodic systems[16]. This fundamental feature of language models suggests that a framework that

explicitly accounts for the historical path by which capabilities emerge is necessary to describe

emergence rather than relying on simple averages of states.
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1.2. Motivation for a biological-inspired approach

One of the most important di�erences between research in physics or disciplines such as theoretical

biology and research in mathematics or computer science is that theoretical physicists tend to ignore

everything that they consider irrelevant, focusing only on the fundamentals. When trying to describe a

phenomenon, physicists do not take into account the observable details but rather try to �nd the

fundamental laws that underlie it. This is why fundamental laws, such as conservation laws,

symmetries, or phase transitions, are present in di�erent �elds, such as astrophysics, general

relativity, particle physics, or quantum mechanics[17]. In this research, we aim to identify some

fundamental laws that govern AI systems. To do this, we will apply some of the current fundamental

laws of physics and biology to arti�cial intelligent systems, particularly large language models.

Similar to how a cell in a developing organism navigates a limited array of possibilities in�uenced by

its environment and history rather than choosing its next state at random[5], a language model's

next-token prediction arises from a complex interaction of collected patterns and contextual

constraints.  This idea suggests that some theoretical biology frameworks, particularly Stuart

Kau�man's theory of adjacent possible or TAP[5][18], might o�er a valid framework to understand

how language models navigate their possibility spaces when predicting the next token. In biological

systems, evolution is considered a process evolving within a set of constrained possibilities and

random events. This evolution creates, without selection acting to do so, new “adjacent possible

empty niches” which enable new possible directions of evolution. These paths are accessible based on

the system's current state and guide future evolution by removing incompatible random explorations

through selective exclusion[19]. Longo & Montévil[20]  further develop this understanding through

their theory of “extended critical transitions,” arguing that biological systems perpetually operate in

a critical state, continuously rede�ning their own phase space. They emphasize that biological

systems don't just explore pre-existing possibility spaces, but actively create new dimensions of these

spaces through their evolution[21]. This idea connects with how language models generate the next

token, where each possible selection not only explores but also reshapes the space of possible

continuations.

This biological approach to systems organization and adaptation has interesting connections with

current arti�cial intelligence architectures. LeCun's H-JEPA framework -Hierarchical Joint

Embedding Predictive Architecture-[22]  establishes a framework for autonomous intelligence that
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shows many similarities with the adaptive mechanisms of biological systems. H-JEPA builds

hierarchical world models via prediction-based learning, just like how living organisms form and

maintain their organizational structure. H-JEPA's emphasis on learning world models through

prediction is consistent with theoretical biologist Stuart Kau�man's theory of how living systems

explore their possibility spaces via restricted exploration[5].

Novel research in AI systems has further strengthened these connections between biological systems

and AI systems. For example, Zador[23]  provides relevant insights into how biological neural

networks' e�ciency and sparsity could inform arti�cial systems design. Richards et al.[24]  explain

how hierarchical learning in deep networks parallels biological development, showing similar

behaviors in how both systems build increasingly complex representations. This biological inspiration

extends to architecture design, showing how principles from neuroscience can guide the development

of more adaptive and e�cient arti�cial neural networks[25]. These �ndings illustrate how, while

modern AI architectures are still far from biological complexity, they are beginning to re�ect

biological system behavior. 

Another relevant research area in AI systems is continual learning, which clearly draws parallels

between the ability of biological and arti�cial systems to acquire new knowledge while retaining

existing capabilities[26]. Research on catastrophic forgetting and solutions inspired by biological

memory consolidation also provides valuable insights into how systems can maintain and expand

their possibility spaces over time[27]. Researchers have further shown how arti�cial systems can

achieve the kind of open-ended learning observed in biological systems[28]. The biological perspective

is likewise enriched by the work of Van de Ven & Tolias[29], providing a theoretical framework for

identifying diverse forms of continuous learning that closely resemble biological adaptation

processes.

The intersection of these areas, from biological self-organization to modern AI architectures,

suggests a deeper connection between how biological and arti�cial systems navigate their possibility

spaces. This connection becomes clearer when we consider how language models explore their

semantic spaces by combining learned patterns with contextual constraints in ways that are similar to

a living system's restricted creativity.
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1.3. Empirical evidence in LLMs

Recent empirical research provides compelling evidence for how language models navigate their

possibility spaces in ways that mirror biological systems' constrained exploration. Recent work

presented at NeurIPS 2024 on in-context exploration in large language models demonstrates how

these systems' exploration capabilities are fundamentally shaped by constraints similar to those

observed in biological systems[30]. The �nding that models need clear exploration hints and external

memory support to exhibit strong exploration behavior �ts with Kau�man's theory of how systems

navigate their adjacent possible spaces[5].

The poster presented at NeurIPS 2024 by A. Krishnamurthy, K. Harris, D. J Foster, C. Zhang, and A.

Slivkins makes a relevant observation of “su�x failures,” where models fail to explore optimal

choices even after initial exposure. This evidence suggests that, like in complex biological systems,

language models operate within constrained possibility spaces where exploration is limited by both

architectural and contextual factors. The need for external history evaluation corresponds with how

biological systems need ambient framing to increase their exploration ability. These empirical results

support our idea by proving how di�erent constraints in language models interact to shape the

exploration of the next token space—akin to the interacting constraints in biological systems that

shape possibility spaces[31]. Finally, the identi�ed exploration failures provide evidence for the non-

ergodic nature of these systems[32], where past trajectories fundamentally in�uence future

exploration capabilities. The convergence between theoretical predictions and empirical observations

strengthens our intention to apply complex biological systems frameworks to analyze language model

behavior.

2. Probabilistic spaces in language models

The foundations of probabilistic modeling in language trace back to Shannon's information

theory[33]  and early statistical NLP[34]. This framework initially treated language as a stochastic

process where words could be predicted based on their statistical co-occurrence patterns. Modern

language models have progressed past traditional static statistical methods, using dynamic, context-

sensitive probability distributions via transformer architectures[35]. This evolution represents a

fundamental shift from considering language as an essentially statistical phenomenon to viewing it as

a dynamic, context-dependent system.
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Current transformer-based models provide probability distributions that di�er fundamentally from

traditional statistical language models in several aspects, like contextual dependency or sampling

dynamics. Probability distributions are computed through complex attention mechanisms[35],

capturing semantic uncertainty and ambiguity[36]. The formation process involves complex

interactions between attention heads[37]. Beyond basic temperature sampling, actual innovations

include the nucleus sampling scheme, top-p sampling[9], and top-k sampling[38]. Meister &

Cotterell[11]  observed that models learn “only a subset of the tendencies” rather than complete

theoretical distributions. The success of these approaches unveils the non-uniform nature of the

probability space.

2.1. Evidence of non-ergodicity in language models

Ergodicity in dynamical systems implies that a system, if left to itself for long enough, will pass close

to almost all the dynamical states consistent with energy conservation. Though this is a very

simplistic view to de�ne ergodicity. A dynamical system may have a hierarchy of properties, each of

which implies the one before it[39]. Ergodicity is only the �rst. Central to understanding ergodicity is

the notion of symmetry in temporal evolution[40][41]. The invariance of statistical properties under

time translation in ergodic systems reveals time symmetry; the system's behavior remains consistent

whether observed now, at a later time, or in a forward or backward temporal direction[42][43]. This

temporal symmetry guarantees that time averages are equivalent to ensemble averages, a

fundamental principle of statistical mechanics[44]. Non-ergodic systems break this symmetry, which

fundamentally in�uences the system's future possibilities and creates distinct temporal phases that

are impossible to average[45].

Consider how language models generate text: each token prediction depends not just on direct

context, but on the entire sequence of previous tokens. Unlike classical ergodic systems, where future

states are independent of the path taken to reach the current state, language models exhibit strong

path dependence. A word appearing early in a sequence can fundamentally alter the probability

distribution of all subsequent tokens. This creates an intrinsic asymmetry in time that violates the

basic premise of ergodicity. For example, when a language model builds a story, the context and

characters selected at the outset limit all potential scenarios. Past choices introduce semantic and

logical constraints for coherence, preventing the model from exploring all possible story states. This is

similar to how biological systems expand within constrained spaces, where every possibility during
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development bounds and shapes what might happen in the future. Language models show this non-

ergodic behavior by using their attention mechanisms and analysis of context. The cumulative context

window shapes the model's state space, creating what we might call ‘semantic valleys’ that guide and

constrain predictions about future tokens. Although time and ensemble averages converge in ergodic

systems, language models have persistent memory e�ects that make certain semantic paths more

probable based on the past evolution.

Meister & Cotterell[11]  observation that models learn “only a subset of the tendencies” rather than

complete theoretical distributions provides clear evidence for non-ergodicity in language models[14]

[32][39][46]. This would imply that models follow a constrained exploration, thus not operating in a

fully ergodic space where all states are equally accessible[47]. This aligns with Kau�man's theory of

constrained possibility spaces[18]. Language models, as complex biological systems, show a preference

for empirically observed patterns over theoretical possibilities[32]. These models also capture path-

dependent patterns emerging from actual language use. The fact that the probability space is shaped

by training history rather than theoretical distributions creates a fundamental asymmetry in how

models explore their possibility space[17].

3. Complex dynamics and emergence in language models

The evolution of probability distributions across tokens shows patterns that go beyond simple

statistical dependencies. For example, classical statistical measures like perplexity fail to capture

emergent capabilities in language models[2]. This limitation is not new in complex systems, where

reductionist statistical methods fail to capture emergent behaviors[48].

3.1. Limitation of classical statistics

In systems exhibiting non-linear behaviors resulting from the interaction of multiple parts or sub-

systems, basic aggregation of probabilities fails to describe coherent, long-range dependencies. In

LLMs, complex interactions between context layers create capabilities not predictable from individual

components[3]. These capabilities often appear swiftly at certain scales[2], suggesting phase

transitions in model behavior[32][46][39]. In language models, probability distributions are likely to

evolve through paths that preserve coherence throughout long sequences, suggesting they operate as

complex adaptive systems (CAS).   In CAS, non-linear behaviors take place from multiple interacting
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components showing a high sensitivity to initial conditions. These systems also present self-

organizing properties emerging at multiple scales.

3.2. Complex system dynamics and emergent behaviors in language models

The emergence of capabilities in language models suggests some characteristics common in complex

adaptive systems, such as hierarchical organization and phase transitions[39]. Token-level

interactions give rise to higher-order semantic structures where multiple scales of organization

emerge simultaneously[49]. These hierarchies resist reductionist analysis. LLMs demonstrate

capabilities that emerge at certain model scales[2]. These emergences imply phase transitions,

revealing the presence of critical phenomena in model behavior.

Recent research demonstrates that context signi�cantly in�uences model behavior due to the creation

of context-dependent representations through sequential processing[3]. Dynamic memory e�ects

in�uence long-range dependencies[50][51], and context modi�cations show non-linear e�ects on

model output[4]. These mechanisms suggest an adaptive behavior where models seem to adapt to

changing contexts. Furthermore, long-range coherence emerges from local interactions[3] and self-

organization appears at multiple scales[2].

4. Complex adaptive systems and biological evolution

Complex adaptive systems, or CAS, are de�ned by some fundamental mathematical properties that

discern them from simple dynamical systems[52][53]. CAS create and apply internal models to predict

the future, taking current actions according to expected outcomes. This characteristic di�erentiates

CAS from other types of complex systems, as well as making the emergent behavior of CAS more

di�cult to understand[54]. When Haken[52]  coined the term “synergetics,” he gave a very simple

de�nition, referring to self-organizing systems (a property of CAS) as those characterized by the fact

that the system �nds its organization or function on its own, without direct external guidance[55].

Analogously, language models develop internal representations during pre-training, capturing

statistical patterns of language, semantic relationships, contextual dependencies, and domain

knowledge. These internal models are encoded in the weights and attention patterns of the neural

network[35]. Internal models are able to generate next tokens based on predicted probability

distributions using attention mechanisms to “look back” at context and then “predict forward.” The
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model’s decisions about token selection are based on these predictions that can also be changed based

on the evolving context. As a result, language models' capabilities “emerge” from interactions

between di�erent layers, attention heads, and learned patterns. During their training, language

models adjust weights based on training text data, and during inference, they adapt their internal

model to the speci�c context of the current conversation or task.

An important practical limitation of CAS is that they don’t have a single governing equation, or rule,

that controls the system[53]. Thus, a direct approach to analyze these systems is by evaluating their

di�erent properties, such as non-linearity, emergence, self-organization, and phase transitions[56].

Non-linearity implies that the system's behavior cannot be derived from linear relations[56]. The

following sections will elaborate on the meaning of emergence, self-organization, and phase

transitions.

4.1. Emergence in complex systems

Emergence appears when complex behaviors arise from simple rules and interactions in a system[48].

The CAS theory[57][53][58]  together with synergetics[52]  provide a comprehensible theoretical

framework that can be used to study emergence. Mathematically, emergence can be formalized

through the interaction between fast and slow variables in a system. Slow variables are the high-level

patterns that emerge and guide the system, meanwhile fast variables are the detailed, moment-to-

moment changes in the system[59]. We can consider these variables as the macroscopic

parameters[58]. In these systems, the link between order parameters and components is complex

because multiple components (fast variables) in�uence, and sometimes de�ne, the order parameters.

This is known  as the slaving principle, which results in the notion of circular causality. The limited

order parameters govern the behavior of the individual components, whereas the components

in�uence the behavior of the order parameters[52]. Haken[60] de�ned the slaving concept, which links

both rapid and slow variables, as follows:

where    is the state vector (microscopic level variables),    is a nonlinear vector function,    is a

grading operator acting on  ,    represents control parameters, and    denotes �uctuating forces

that characterize the external or internal noise a�ecting the system. The transition from Equation 2 to

a simpler parametric equation describing the system’s collective behavior is not evident. The complete

≡ = N(q,  ∇,α) + F(t)
dq

dt
q̇ (1)

q N ∇

q α F(t)
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mathematical derivation, including all necessary assumptions and detailed proofs, can be found in the

literature[61][62][63][64]. In short, we need to �nd a time-independent solution   for a speci�c set of

control parameters. Then, when the system operates near an instability point, small perturbations

around this solution can be analyzed. This allows us to sort the system’s behavior into di�erent time

scales, identifying fast-decaying stable modes and slowly-evolving unstable modes that become

critical near the instability point. In a language model, slow variables would be equivalent to the

overall �ow of a story in language generation, and fast variables could be individual word choices.

4.2. Self-organization and phase transitions

In statistical mechanics, the underlying assumption behind the theory of self-organized criticality

(SOC) is that a complex system will naturally organize itself into a state on the edge of two di�erent

regimes, without intervention from outside the system[65][66]. The mathematical formalization of

self-organizing systems can be expressed through the concept of pattern formation and symmetry

breaking[67]. Systems exhibit spontaneous pattern generation governed by equations of this type:

where    represents the pattern-forming �eld,    is a di�usion coe�cient, and    is a control

parameter. When    reaches critical values, the system undergoes spontaneous symmetry breaking,

leading to pattern formation. Function    could represent, for example, temperature variations in

thermal convection, or population density in ecological systems. In language models,    could

represent the distribution of attention weights, the activation patterns across layers, or the

probability distributions over tokens. Equation 2 is divided into two terms:   calculates how the

�eld changes over time from di�usion or spatial spreading, and   represents the local dynamics.

Phase transitions are another fundamental property of complex adaptive systems, marked by abrupt

changes in system behavior at critical points[68]. The universality principle categorizes di�erent

physical systems based on their behavior near critical points, leading to the emergence of universal

scaling laws, also known as power laws[69]. Physical quantities follow power laws as systems

approach critical points. At these phase transitions, key parameters like correlation length and

susceptibility show divergent behavior, characterizing the critical phenomena. The correlation length 

 near a critical point,   , represents the scale at which a system’s general properties begin to diverge

from its main properties. It can be de�ned as  , where    is the critical exponent

q0

= D u + f(u,α)
∂u

∂t
∇2 (2)

u D α

α

u

u

D u∇2

f(u,α)

ξ TC

ξ ∼ |T − |TC
−ν

ν

qeios.com doi.org/10.32388/00JQN6 10

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


governing the divergence of the correlation length. The characteristic length scale ξ diverges as the

system    approaches a critical point    with a negative exponent    by following a power-law

behavior.

In language models, self-organization arises through the emergence of coherent text structures from

local token interactions, whereas phase transitions are characterized by sudden improvements in

model capabilities at certain scales[70][71]. The correlation between successive tokens follows power-

law scaling near critical points, suggesting similar underlying mechanisms to phase transitions

occurring in many natural phenomena.

4.3. Non-ergodicity in biological systems

The ergodic hypothesis articulates the notion that a point within a moving system, whether it be a

dynamical system or a stochastic process, will eventually go through every part of the space in which

it works, in a way that is both uniform and random[43]. This suggests that we can infer the overall

behavior of the system from the path taken by a representative point. Classical statistical mechanics

relies on the ergodic hypothesis, which states that time averages equal ensemble averages[39]. We can

de�ne an ergodic system as one in which, for any property  the time average and ensemble average

are equivalent:  . In ergodic systems, events occur quickly relative to an observation time 

. When the system may be evolving at a very slow rate too for an observer (

), the system enters a non-ergodic state. The hypothesis that, given enough time, a

system will explore its entire phase space implies that a system will eventually explore all accessible

states with equal probability. Ergodic breakdown can be probed by either measuring the evolution of 

 for some properties at �xed  , or by changing   for �xed  [72].

Biological systems challenge this assumption via two primary mechanisms: historical contingency,

since the system’s current state depends critically on its past trajectory and not only on the current

con�guration[73], and through adaptive dynamics, where the whole space of possible states evolves as

the system advances[18]. These mechanisms can be formalized with the following equations:

Equation 3 shows that, even when    and    have the same energy, path-dependent transition

probabilities   di�er due to historical unfolding[74]. Equation 4 shows the adaptive dynamic nature of

T TC −ν

 A,

= ⟨A⟩A
¯ ¯̄̄

≪τint tobserved

≫τint tobserved

τint tobserved tobserved τint

P (st + 1|st) ≠ P (st + 1 t)∣∣s
′

(3)

Ω(t + 1) ≠ Ω(t) (4)

st ts
′

P
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the phase space of accessible states  . According to these mechanisms, biological systems cannot be

understood through the statistical ensemble averages[75].

4.4. The adjacent possible theory (TAP)

Theoretical biologist Stuart Kau�man worked to �gure out fundamental principles that govern a

speci�c category of non-equilibrium systems, particularly those involving coevolutionary self-

constructing communities of autonomous agents[5]. The adjacent possible theory, or TAP, appeared as

an important advance for understanding how biological and other complex systems explore and

expand their possibility spaces. In his book “Investigations,” Kau�man presents this concept by

initially considering an important question: How do biological systems perpetually generate novelty

in an apparently limitless way? The solution lies in understanding how each current state of a system

de�nes a collection of possible subsequent states—a concept he refers to as the adjacent possible. The

adjacent possible suggests not every conceivable state, but speci�cally those states that exist just one

step away from the present reality, unveiling the potential transformations that can arise from the

existing organization[76]. However, it is important to note that, in contrast to phase spaces in physics,

each expression of an adjacent possible state generates new additional adjacent possibles. In

Kau�man's words, “The adjacent possible consists of all those molecular species that are not

members of the actual but are one reaction step away from the actual”[5].

TAP provides a theoretical framework for understanding how systems can be both constrained by

their current state and perpetually creative. It suggests that evolution, rather than exploring a �xed

space of possibilities, indeed expands the very space of what is possible. This expansion follows what

Kau�man de�nes as “the laws of the construction of the possibilities of the biosphere”[5]. TAP also

provides a mathematical framework for understanding non-ergodic evolution in biological

systems[18].

According to TAP, complex systems evolution could be described with the following equation[32]:

where    represents the number of elements in the phase space at a given time    (a molecule, a

species in an ecosystem, an innovation in the market, etc. The constant  ,  , is a constraint

parameter that limits which combinations are allowed. When   there is an evolution of the total

Ω

= + ( )Mt+1 Mt ∑
i=1

Mt

αi Mt

i
(5)

Mt t

α 0 ≤ α ≤ 1

α = 1
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possible throughout time. Exponent   represents an index for summation over possible combinations.

Constant    increased to the power of    operates as a limiting factor for larger combinations. The 

 parameter in the TAP equation constraints the combinations that are likely to occur, establishing a

balance between deterministic factors (combinations must be feasible given the current  ) and

stochastic exploration (the actual combinations that occur will depend on  ). The binomial coe�cient

(   choose  ) provides the potential combinations of    items selected from    items. Equation 5

describes the emergence of new possibilities through the combination of existing elements, while

setting constraints on the accessibility of greater combinations. This conceptual framework shows

how evolution emerges through accessible adjacent states rather than random leaps, representing the

dynamic nature of phase space: each new element    creates new combinatorial possibilities and

the phase space dimension grows as new combinations become accessible.

Latest Kaufmann’s work rewrites Equation 5 in a di�erent manner. Instead of considering    as a

constant increased with exponent  , this constraint does not depend on a single constant value but on

a sequence of constraint constants[77][78][31].

This reformulation represents a more realistic description of biological and other adaptive complex

systems where the possibilities space is constrained by several factors. For example, in the evolution

of metabolic networks in cells, multiple constraints can operate simultaneously. Chemical constraints

will regulate which reactions are thermodynamically possible, while enzymatic constraints will limit

catalytic chemical reactions. Additionally, the metabolites available will complete the resources

constraints. Each new metabolic innovation    is constrained not by a single factor but by the

interaction of these multiple constraints. A new metabolic pathway might be chemically possible

(high    for chemical constraints) but limited by the availability of speci�c enzymes (low    for

enzymatic constraints).

Architectural, training, and contextual factors constrain the space of possible token predictions in

large language models. This parallels the way in which the aggregation of multiple constraints

expands the metabolic possibility space.

i

α i

α

Mt

α

Mt i i Mt

Mt+1

α

i

= + ( )Mt+1 Mt ∑
i=1

Mt

αi
Mt

i
(6)

Mt+1

α α
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5. Application of TAP framework to language models

The conceptual framework introduced by the TAP equation could be applicable to understanding how

language models could navigate their possibility spaces via restricted combinations of existing

elements rather than through a random search of all potential possibilities.

5.1. Mathematical framework

We need to de�ne the necessary mathematical structures for mapping TAP to language models. Let 

 be the probability space associated with language model token predictions, where    is the

sample space of all possible token sequences,    is the  -algebra of measurable events[79], and    is

the probability measure generated by the model.

5.1.1. Model’s state space

While biological systems operate in continuous state spaces, language models work with discrete

token sets. Let    represent the state of the system at time  . For a language model, we can de�ne 

  as a tuple    where    is the active vocabulary subset at time  ,    is the semantic

state space at time  , and    is the probability distribution over tokens. For a mapping

between continuous semantic representations and discrete tokens, we de�ne  the discretization

operator  . Formally, we can de�ne   as a manifold in a high-dimensional space:

where    is smooth and locally invertible. The dimensionality of  ,    is the number of

independent semantic features actively involved in token prediction at time  .

In language models, while the lexical space    is constrained by a �xed vocabulary or lexicon, the

semantic space    reveals a complex system with hierarchical organization[80]. Just as a book

represents a hierarchy from words to complete narratives, language models process and generate

language across multiple hierarchical levels: starting from individual tokens as elementary units to

phrases, clauses, sentences, paragraphs, and even broader narrative structures. These models create

this organization through attention mechanisms and contextual relationships[81], where each level

emerges from combinations of lower-level elements. The possibilities for these combinations expand

as we move up the hierarchy. This is analogous to the slaving principle de�ned by Haken[59], where

fast variables (lower-level elements) generate slow variables (high-order elements).

(Ω,F,P ) Ω

 F σ P

Mt t

Mt ( , , )Vt St Pt ⊆ VVt t St

t : ⟶ [0, 1]Pt Vt

: ⟶Dt St Vt St

= {s ∈ |∃ φ : ⟶  and  ∘ φ}St R
n Vt R

n Dt (7)

φ St )dim(St

t

V

S
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5.1.2. Computational resources space

We can de�ne computational resource utilization as the vector-valued function  ,

where  is the model memory use,   is the attention computation cost, and   is

the hidden state computation cost at time  . The total computational cost can be represented as:

where    is a weighted norm,    is the maximum computational

capacity, and    are weight coe�cients for di�erent resource types. The resource bound function 

 connects to model architecture as follows:

where    is the individual resource constraints from memory capacity, attention computation,

context window size, and hidden state dimension.

5.1.3. Mapping TAP equation to language models

Lemma 1. Let   be the vocabulary space and   be the semantic space of a language model. There exists

a measurable mapping

that satis�es the following properties:

For any state space  , the mapping preserves the combinatorial structure of Equation 6

from TAP

where

and 

For any  , the mapping is bounded by computational resources:

= ( , , )Ct Memt At Ht

∈ RMemt
+ ∈ RAt

+ ∈ RHt
+

t

R ( ) = min(1,   )Ct
−Cmax Ct

Cmax
(8)

∥ ∥ = + +Ct Memw1 t Aw2 t w3Ht Cmax

w

R ( )Ct

R ( ) = min(1,   ( ))Ct ∏
i=1

n

ri Ct (9)

( )ri Ct

V S

φ : V × S → Ω (10)

∈ V × SMt

= ( , , )Mt+1 Vt+1 St+1 Pt+1 (11)

= ) ∪{φ( ( ))}St+1  φ(St ∑iαi
Mt

i

= ( )Vt+1 Dt St+1

: ⟶ [0, 1]Pt+1 Vt+1

x ∈ V × S

≤ R ( )∥φ(x)∥2 Ct (12)
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The mapping preserves the dimensionality constraints:

Proof. Given the measurement space    where    is the Borel  algebra, and    is the

product measure[79]. We de�ne    through the composition  , where    is the attention

mechanism, and    is the projection onto the probability simplex. The mapping    preserves TAP

equation structure:

Equation 14 illustrates that when we make small changes to the model's state, the resulting changes in

the mapped space are well-behaved and predictable - they consist mainly of a linear component plus

some small higher-order corrections. This is central to showing that the mapping is compatible with

how the TAP equation describes system evolution. The equation essentially establishes that    is

di�erentiable and provides a Taylor expansion around  , which is necessary for proving the

mapping preserves the mathematical structure needed for the TAP framework.

5.1.4. Resource limits

Lemma 2. For the mapping    de�ned in Lemma 1, there exists a positive constant 

 such that:

The proof of this lemma can be developed in three basic steps, each dependent on the previous one in

order to set a �tting bound. First, we are going to de�ne the combinatorial framework of token

prediction in large language models and its relation to TAP theory. Second, we will de�ne an

isomorphism between attention processes and the combinatorial space of TAP. Finally, we will verify

resource boundedness through analyzing model capacity constraints.

First step. Next token prediction in LLMs follows a combinatorial structure analogous to TAP. The

probability of the next token given a context can be represented as:

where    denotes the attention mechanism operations and    are learned weights. This structure

directly corresponds to the combinatorial summation in TAP.

dim(Im(φ)) ≤ dim(V ) × dim ( )St (13)

(V × S,B,μ) B σ− μ

φ φ = π ∘ ψ ψ

π φ

φ ( + ΔM) = φ ( ) + ∇φ ( ) ΔM + O( )Mt Mt Mt ∥ΔM∥2 (14)

φ

Mt

φ :  V × S → Ω

K

≤ K ∙ R ( ) ∀x ∈ V × S∥φ∥2 Ct (15)

P ( |context) = ∙ g ( )tokent+1 ∑
i

wi tokenst (16)

g wi
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Second step. The attention mechanism provides a natural isomorphism to TAP's combinatorial space.

For any query  , keys  , and values  :

This isomorphism is valid because the softmax function constrains outputs to the interval  ,

similarly to Kau�man’s TAP’s    coe�cient in equations 5 and 6. In addition, the distribution of

attention patterns re�ects TAP equation combinatorial selection, and the scaling factor 

 guarantees numerical stability by providing a natural limit.

Third step. We can de�ne resource boundedness through model capacity constraints 

. This evidences the �nite dimensionality of attention head outputs and the

bounded nature of the weighted sum across heads by considering the resource constraint  .

Hence, integrating these results:

where   .

Corollary. The resource boundedness of    implies that the semantic space    grows at a rate

constrained by available computational resources:

where    is a monotonic function of the resource bound. Lemma 2 and this corollary establish the

mathematical basis for describing how computational resources limit the expansion of the semantic

space in language models, connecting theoretical TAP dynamics in complex biological systems with

large language models constraints.

5.1.5. Semantic space evolution

To model the semantic space evolution, we have to extend Kau�man's idea of expanding possibility

spaces by explicitly incorporating computational limitations. The evolution of the semantic space can

be modelled with the following equation:

Q K V

Attention(Q,K,V ) = softmax( )V ≅ ( )
QKT

d
−−

√
∑
i

αi
Mt

i
(17)

[0, 1]
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1/ d
−−

√

dim(Attention) ≤ Cmax

R ( )Ct

= ≤∥φ∥2 ∥Attention (Q(x),K(x),V (x))∥2

≤ K ∙ R ( )∥V ∥2∙ softmax( )
∥

∥
∥

QKT

d
−−

√

∥

∥
∥

2

Ct

(18)

K = max( ) ⋅||V ||2 (dim(V ))
− −−−−−−−

√

φ St

≤ h (R ( ))
∂dim ( )St

∂t
Ct (19)

h

dim( ) = ∇ − λ(t) dim( )
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dt
St ∑

l=1
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gl
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∂t
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where    represents the number of dimensions the semantic space has at time  , and    is a

decay term ensuring computational feasibility. The term   captures how the hierarchical functions

in�uence dimensionality at each level  .

5.2. Constraints in language models

Equation 6 provides a framework that can be naturally mapped to token space growth. We identify

three key types of constraints that in�uence language model behavior: architectural constraints[82]

[35], training data constraints[7], and contextual constraints[3]. These constraints interact to shape

model capabilities and performance. We are going to describe these constraints in the following

sections.

5.2.1. Architectural constraints

Some limitations set by the model's architecture are the vocabulary size, which limits possible

tokens[82], and the context window length, which restricts the amount of past information that can

in�uence predictions[3]. The model’s attention mechanism design constrains through both

computational and architectural limitations. The mechanism's quadratic complexity with sequence

length creates memory and speed constraints, while the structure of attention heads limits parallel

relationship tracking through the trade-o� between head count and dimensional capacity[83]. The

model's information �ow is also limited by attention patterns and inter-token path length, which

control the ability to capture relationships[35].

The multi-head architecture enables the model to simultaneously analyze many text features, yet the

fundamental con�guration of these attention patterns �xes post-training[35]. While increasing the

number of attention heads enhances the model's ability to capture diverse relationships in the text, it

also reduces the depth of each head's representation of these interactions. This eventually results in a

considerable reduction in the model's capabilities. The distribution of restricted computing resources

between the extent of attention coverage and the depth of connection representation causes this

limitation[84].

5.2.2. Training data constraints

Training data constraints can include statistical patterns in language[85][7], domain-speci�c

knowledge acquisition[86], implicit learning of grammar and syntax[87], and token co-occurrence

dim( )St t λ(t)

∇gl

l
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patterns[82]. In neural networks, the emergent linguistic hierarchical structure represents a basic

constraint, showing implicit patterns and rules learned during training[88].

The learned connections between tokens and their contexts, and how often they appear together in

di�erent contexts, also limit the model by shaping the probability space for predicting the next token,

becoming an important constraint to consider[7].

5.2.3. Contextual constraints

Contextual constraints complete how language models predict the next token in a sequence. These

constraints shape token prediction through three primary mechanisms: First, sequential

dependencies operate through attention mechanisms, where each token's prediction is in�uenced by

all previous tokens in the sequence[35]. This enables the model to maintain coherence over long

sequences by incorporating the full context of prior outputs[3]. Second, models develop internal

representations that track semantic relationships throughout the generated text[2]. These

representations help maintain topical coherence by preserving key semantic information across the

generation process, preventing topic drift and ensuring contextual relevance. Third, style consistency

emerges from the model's ability to recognize and maintain attributes like tone and formality. This

style coherence is achieved through pattern recognition learned during training[82], and reinforced

through contextual processing. The interaction of these mechanisms creates a dynamic constraint

system that guides text generation while preserving semantic and style consistency.

5.2.4. Constraints interaction mechanism

Equation 6 for the TAP framework introduces the constraint factor  , which is a combination of

several constraint factors. Therefore, to translate the TAP equation to language models, we need to

de�ne how these constraints interact. To clarify the nature of these interactions, we could look at how

di�erent complex biological systems' mechanisms work. For example, in biological metabolic

networks, the Michaelis and Menten equation for enzyme kinetics follows multiplicative interactions

to integrate di�erent rate constants[89]. The apparent equilibrium constant in the Michaelis and

Menten equation is derived from the product of the ratios of the forward and reverse rate constants for

each reaction step[90].

αi
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In gene regulation, there is evidence for both additive and multiplicative interactions between

transcription factors that regulate the transcription rate of a set of target genes[91]. Some of these

factors can follow multiplicative e�ects, meanwhile others can be combined through additive e�ects.

In cell signaling, there is further evidence of both multiplicative and additive signal integration[92].

For example, in calcium signaling, cells use di�erent types of    in�ux channels to contribute to

the cytoplasmic calcium increase. These inputs present di�erent activation mechanisms as voltage-

operated (VOOC), receptor-operated (ROOC), mechanically activated (MA), and stock-operated

(SOOC)[93]. The combination of these mechanisms implies an additive process where    is

the sum of the di�erent channels[94]. An example of a multiplicative e�ect in cell signaling can be

found in the biological responses associated with mitogen-activated protein kinase (MAPK)

signaling[95].

When sequential dependent processes exist, multiplicative interactions prevail. The already

mentioned Michaelis-Menten equation is a classic example of an enzyme cascade in which each step is

dependent on the completion of the previous phase. As a general rule, in equilibrium-based systems,

the multiplicative mechanism prevails. Additive interactions prevail in parallel and independent

processes where multiple paths can achieve the same outcome.

We could conclude by saying that, in biological systems with alternative pathways or where multiple

processes share resources through compensation mechanisms, the additive process is prevalent.

Conversely, in systems that incorporate redundancy mechanisms, a multiplicative mechanism

prevails, enhancing the system's robustness. 

We could apply the TAP equation to language models in three ways: either by linking the sequence of

constraint factors  additively, multiplicatively, or simultaneously by both mechanisms. In language

models, architectural constraints appear to be multiplicative because all components are necessary for

the model to operate e�ciently; if any architectural component (vocabulary access, attention

mechanism, or context processing) fails, the model fails. In contrast, training data constraints might

follow additive patterns since multiple di�erent training examples can lead to similar model

behaviors. Context constraints could theoretically exhibit both behaviors: they can multiply when the

context demands strict requirements like logical �ow, reference resolution, or grammatical

consistency. However, when the context o�ers multiple valid paths, such as di�erent synonyms that

achieve the same meaning, alternative phrasings that maintain style, or multiple valid continuations

of a story, these elements combine additively, representing parallel valid options.

Ca2+

[C ]a2+
influx

αi
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Based on these �ndings, we propose focusing on the multiplicative e�ect when applying the TAP

equation to language models for several reasons:

It better captures the critical nature of architectural constraints,

aligns with how biological systems handle essential component interactions, and

provides a more conservative estimate of possibility space growth.

5.2.5. Constraints and non-ergodicity in language models

We have considered three natural constraints in�uencing language models' state space expansion.

Let   be the mapping from state space to resource space. Then we have:

where   is the model's memory use,   is the attention computation cost, and   is the hidden

state computation cost at time  . Each component of   induces our natural constraints:

where   are the architectural constraints,   are the training data constraints, and   are the contextual

constraints. These constraints converge into an overall constraint function  , which is dependent

on time due to its dynamic nature.

The ergodic hypothesis postulates that the system spends equal times in equal volumes of its �xed

phase space[14]. Next token prediction in language models operates at two fundamental levels: the

lexical level and the semantic level. In language models, the lexical formatives are selected in a well-

de�ned way from a �xed universal vocabulary set[96]. The current mathematical framework

demonstrates the non-ergodic nature of language models through three primary mechanisms:

Path-dependent resource use. Given two states  ,    with equal computational cost  , their

future resource utilization di�ers:

This path dependence introduces the architectural constraints   through:

T :   →Mt Ct

T ( ) = ( , , )Memt ∥ ∥Memt mem ∥ ∥At comp ∥ ∥Ht state (21)

Memt At Ht

t T

= sup{ ≤ }βi x : ∥ ∥Memt model memory Cmax (22)

= sup{ ≤ }γi x : ∥ ∥At attention Cmax (23)

= sup{ ≤ }δi x : ∥ ∥Ht hidden state Cmax (24)

βi γᵢ δᵢ

α(i, t)

st s′
t ∥ ∥Ct

P ( | ,R( )) ≠ P ( | ,R( ))Ct+1 st Ct Ct+1 s
′
t Ct (25)

βi

= sup{x :  P ( | ,x)}βi Ct+1 st (26)
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This dependence re�ects how attention mechanisms allocate computational resources based on

context history, creating inherent asymmetries in resource utilization.

Training-induced state space restrictions. The training process creates fundamental asymmetries

in how the model explores its state space  , leading to training

constraints  . These constraints emerge from the model's learned

patterns and knowledge representations, a�ecting how it navigates its possibility space.

Context-dependent transitions. The semantic component governs the model’s word interpretation

according to a context, creating a path-dependent behavior that can be de�ned as 

. This dependence implies emergent contextual constraints that can be

de�ned as  . For the system state space  , these

mechanisms can be seen in output probability transition  \(P\left( M_{t + 1}|M_{t} \right) \neq

P\left{ M_{t + 1}|{M^{'}}_{t} \right)\) revealing a path dependence even when   and   have

identical computational requirements. This path dependence can be observed in:

a. The model’s attention weights evolve as well based on both current and historical context: 

 where   is the current input. This evolution creates memory-like e�ects

in the model’s processing.

b. Even when the aggregate information content is identical  , di�erent

sequence orderings produce di�erent probability distributions 

  because order information presentation in�uences

model behavior.

c. The model's computational resource use depends on the speci�c path taken 

 where   is the processing history. This creates a fundamental asymmetry

in resource allocation based on the speci�c sequence of previous states.

The semantic manifold   evolves non-uniformly as:

where    is a smooth mapping function taking tokens to semantic vectors. We can de�ne    as

follows:

where   is the inverse mapping from token to semantic space,   is the query vector for token  , 

  is the key matrix for the context,    is the value matrix for the context, and  ,  , 

≠ ∪ {new states}Ωt+1 Ωt

= sup{x :  x ∈ }γi Ωt∪Ωt+1

P ( | ) ≠ P ( | )st+1 st st+1 s
′

t

= sup{x :  P ( | ,x)}δi st+1 st = ( , , )Mt Vt St Pt

Mt M ′
t

= f( , )Wt Wt−1 Xt Xt

=∑n−1
i=1 ti ∑n−1

i=1 t
′

i

P ( | , . . . , ) ≠ P ( | , . . . , )tn t1 tn−1 tn t′
1 t′

n−1

R( | )/R( | )Ct ht Ct h
′
t ht

St

= {s ∈ |∃φ : →  such that s = φ(v) for v ∈ }St R
n Vt R

n Vt (27)

φ φ(v)

φ(v) = (Attention ( , , ))D−1
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 are learned weight matrices. This mapping is non-uniform since attention weights depend on the

entire context history, the same token can map to di�erent semantic vectors depending on context,

and the dimensionality of   can change as context accumulates

These non-ergodic qualities automatically give rise to the three types of constraints (architectural,

training, and contextual) that characterize the model's behavior, building a direct connection between

the system's non-ergodicity and its operational constraints.

5.3. A TAP equation for language models

We propose a version of the TAP equation for modeling the expansion of language models, taking into

account the speci�c constraints and dynamic nature. To arrive at this equation, we have to de�ne the

phase space (equivalent to    in Equation 6) and the integrated constraint function, equivalent to 

 in Equation 6.

5.3.1. Resource-bounded phase space

Let    represent the accessible state space at time  . We �rst establish the fundamental resource

bound:

Lemma 3. For any language model with maximum computational capacity  , there exists a

monotonic function   such that    where    and    is a model

architecture-dependent constant. The bound is de�ned by the following factors:

memory constraints  ,

attention computation bounds  , and

vocabulary access limitations  .

5.3.2. Constraint integration

We de�ne the integrated constraint function as

where    means architectural constraints,    are training data constraints,    are contextual

constraints, and    is the resource bound function. The multiplicative relation is justi�ed as all

components must operate e�ectively for the model's complete functionality. The integrated

constraint function   in our TAP equation can be de�ned as:

WV

St

Mt

αi

At t

Cmax

 f sup ( ) ≤ f ( )At Cmax f(x) = κ ⋅ x ⋅ log(x), κ

O ( ⋅ )dmodel nlayers

O ( )sequence2

O (|V | ∙ )dmodel

α(i, t) = ,R( ))min( ,γβi iδi Ct (29)

βi γᵢ δᵢ

( )Ct

α(i, t)
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where   are the individual constraints, and   is the number of active constraints.

5.3.3. Proposed resource-bounded TAP equation

In Equation 6,    represents a �xed constraint on combinatorial possibilities according to initial

resource availability. Lower values of    at    indicate a system with limited starting resources,

hence constraining its future possibility of growth relative to systems with higher    values. Large

language models have two types of �xed initial constraints: a �xed universal vocabulary set  , and

�xed computational resources driven by the model architecture (memory capacity, attention heads,

and context window size). The third type, contextual constraints, di�ers fundamentally as they begin

minimal and evolve dynamically as context accumulates during operation. The semantic space

evolution thus lacks a �xed initial constraint at  , re�ecting the dynamic nature of constraints in

language models. This dependence on initial conditions, particularly for �xed constraints, is a

common property of complex adaptive systems, CAS[68][58][97].

To arrive at our equation, we must follow several important steps. Extending TAP’s central idea in

Equation 6, we integrate the computational resources  :

We split   into component constraints as detailed in (29):

We need to add hierarchical structure using a special function   while incorporating    into the

hierarchical function's bounds: . This function maps from  , which is the

probability space over the vocabulary  , to an  -dimensional real space 

At time      showing that the initial state space is constrained by the �xed vocabulary

size. This initial condition re�ects the starting point where only lexical combinations are possible,

before the semantic space begins its dynamic evolution through hierarchical interactions and

α(i, t) (i, t)∏
j=1
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cj (30)

(i, t)cj m
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constraint e�ects. Finally, we replace the term   by the constrain function  . This leads to

our �nal resource-bounded TAP equation for language models:

This equation describes how language models explore their possibility space while subject to

constraints.    represents the accessible state space at the next time step, and    is the current

accessible state space. The �rst sum    captures the hierarchical levels of language processing

(from tokens to phrases to broader structures). The second sum    represents all possible

combinations within the vocabulary size.   combines all constraints (architectural, training, and

contextual) at time  , and the binomial coe�cient (  choose  ) represents possible combinations of

tokens.

The hierarchical function   transforms these combinations into the model's semantic space bounded

by computational resources through the condition . Constant    is a model

architecture-dependent constant that scales the relationship between the hierarchical function and

computational resources. It sets an upper bound on how much the hierarchical transformations can

expand given the available resources. We have de�ned this constant in Equation 18 as 

, where    describes the maximum norm of vocabulary

embeddings, and   is the dimensionality of the vocabulary space.

Equation 34 satis�es the following conditions:

a. Conservation

Let

Then:

where    represents an in�nitesimal time step in the limit calculation. Considering the bounds

introduced before, we have:

Where   is the number of hierarchical levels (from the sum over   in previous equations), and 

  is the architecture-dependent constant we de�ned earlier. In order to satisfy the equality in
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Equation 38 while ensuring necessary scaling related to computational resources, we de�ne   as:

Equation 39 preserves the   scaling factor, normalizes the computational resources by  ,

and ensures that the bound decreases in a monotonic way as computational resources are used.

b. Hierarchy

Because

then

Equation 40 states that the dimension of the space covered by the hierarchical transformation 

 applied to all possible token combinations must be non-negative. These equations prove that

our model's semantic space grows hierarchically, adding new dimensions as it explores more

complex combinations of tokens, while never losing existing dimensions.

c. Computational capacity constraints

The computational capacity condition ensures that the growth of the model's accessible state

space remains bounded by available computational resources. This is formalized as:

According to Lemma 3, we can prove the following:

Inequality in Equation 42 shows that the magnitude of change in the accessible space between

any two time steps,  , cannot exceed what the system's computational resources

allow,  . This condition is necessary because it mathematically guarantees that the

model's exploration of new possibilities remains computationally feasible, preventing the

system from attempting to access states that would exceed its resource capacity. In Kau�man’s

terms, it guarantees that the adjacent states are possible.

5.3.4. Attention mechanism and TAP structure

The connection between attention mechanisms in language models and the combinatorial structure of

TAP represents an important connection between neural computation and theoretical biology. This

g

g(x) = L ⋅ K ⋅ ( )x

Cmax
(39)
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connection becomes apparent via a formal isomorphism, showing the natural mapping of attention

operations to the combinatorial selection process of the TAP framework.

Lemma 4: Attention-TAP isomorphism. An attention space    forms a category where objects are

attention triplets   Morphisms are attention operations, and composition is given by

sequential attention application. A TAP space    forms a category where objects are combinatorial

sums  , and morphisms are constraint-preserving transformations. Composition

preserves the bounds on   in  .

Given the attention space :

and the TAP space  :

The isomorphism   has two important properties:

 - dimensionality preservation-, and

 - probability structure -.

If   is the functor that takes attention operations to their vector space representations, and   is the

functor that takes TAP combinatorial selections to their probability distributions, there exists a

natural transformation   that commutes with morphisms in both categories[98].

6. Experimental work

The main goal of this research is to validate the accuracy of our TAP framework-based equation

(Equation 34) when predicting emergent properties in language models. This equation suggests that

language models evolve through constrained exploration of their possibility space, driven by three

main mechanisms: phase transitions in semantic space, multiplicative interaction of constraints, and

path-dependent evolution. To systematically validate these theoretical predictions, we propose the

following three hypotheses.

A

 (Q,  K,  V )∈ Rᵈ.

T

( )∑Mt
i=1 αi

Mt

i

αi [0, 1]

 A

A ={A(Q × K × V )|Q,K,V ∈ }Rd (44)

T

T ={ ( )| ∈ [0, 1]}∑
i=1

Mt

αi
Mt

i
αi (45)

ψ : A → T

dim(Im(ψ)) = dim (span  )αi

P (x) ≤ P (y) ⟺ ψP (x) ≤ ψP (y)

F G

: F(a) → G(a)ηa
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6.1. Research hypotheses

H1: Phase transitions in semantic space correlate with capability emergence. Our hypothesis is that

increases in model capabilities occur through discrete phase transitions in the semantic space, rather

than through gradual improvements. We should observe sudden shifts in the model's ability to handle

increasingly complex tasks. Speci�cally, we predict that:

The e�ective dimensionality of the semantic space shows sudden increases at critical points.

These critical points correspond to the emergence of new capabilities.

The transitions follow power-law scaling relationships characteristic of phase transitions in

complex systems.

Resource requirements (computational and context) show distinct scaling behaviors before and

after the transition.

H2: Constraint interactions shape capability boundaries. We propose that model capabilities are

shaped by the multiplicative interaction of three types of constraints: architectural, training, and

contextual. This hypothesis predicts that:

Performance limitations arise from the multiplicative e�ect of multiple constraints rather than

from single bottlenecks.

Relaxing any single constraint produces limited improvement unless other constraints are

similarly relaxed.

The impact of expanding computational resources depends on the state of other constraints.

Models with similar total computational allocation but di�erent constraint distributions will show

distinct capability patterns.

H3: Path dependence a�ects problem-solving trajectories. Our third hypothesis postulates that the

non-ergodic nature of language models creates signi�cant path dependence in their problem-solving

capabilities. This can be observed through:

Di�erent solution trajectories emerging from identical problems presented with di�erent context

orderings.

Initial conditions (like prompt design) having persistent e�ects throughout the problem-solving

process.
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The existence of “unreachable” solutions despite their theoretical accessibility within the model's

capability space.

Time-asymmetric behavior where forward and reverse problem-solving paths show

fundamentally di�erent characteristics.

6.2. Experimental setup

To validate our hypothesis about phase transitions in semantic space, we designed our experiments

using three di�erent language models: gpt2-xl with 1.5B parameters[8], opt with 1.3B parameters[99],

and pythia with 1.4B parameters[100]. These models were selected for being open source and for their

similar parameter counts but distinct architectural approaches, allowing us to separate the e�ects of

architectural di�erences while controlling for model scale. gpt2-xl represents a mature architecture

with established performance characteristics, while opt-1.3B and pythia-1.4B o�er more recent

architectural innovations but potentially less optimized training regimes.

To evaluate our hypothesis about phase transitions in semantic space, we used the high school

mathematics subset of the MMLU (Massive Multitask Language Understanding) dataset, which

provides a standardized set of multiple-choice questions[101]. The dataset was divided into three

di�culty levels (easy, medium, hard) based on sequential ordering, with 90 questions per level. While

this division method is simple, it provides a regular basis for comparing model performance across

increasing task complexity. All models were evaluated using a consistent prompt format, with

questions and choices formatted identically to minimize prompt-related variance. The experiments

used 16-bit �oating-point precision to balance computational e�ciency with numerical stability. This

setup allows for direct comparison of model behaviors while managing computational resources

e�ectively.

6.2.1. Hypothesis 1: Phase transition in semantic space

Our experimental design focused on three key measurements: performance accuracy, attention

entropy, and e�ective dimensionality of the semantic space.

Performance was measured through multiple-choice accuracy, with each model processing questions

in batches of size four to optimize GPU memory use while maintaining consistent evaluation

conditions. For its calculation, we used the following formula[102]:
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where    is the number of questions,    is the indicator function that returns    when the

prediction  matches the true answer   and   otherwise.

Attention entropy was calculated using the �nal layer's attention patterns, providing insights into

how models distribute their focus across input tokens[103]. For its calculation, we used the following

formula:

where   are the normalized attention weights.

Finally, e�ective dimensionality was calculated using PCA analysis of attention patterns, �nding the

number of components needed to explain 90% of the variance. For calculating e�ective

dimensionality   we used the following formula:

where    is the total number of dimensions - or eigenvalues[104]- in the original attention pattern

space,   is the index variable for summing over eigenvalues,   is the variable we're trying to minimize

that represents how many principal components are needed to explain 90% of the variance, and   are

the eigenvalues of the attention pattern covariance matrix[105].

6.2.2. Hypothesis 2: Constraints interaction analysis

To validate our hypothesis about constraints interactions shaping capability boundaries, we used the

same three language models. These models have similar parameter counts but distinct architectural

approaches, which allows us to analyze how di�erent constraint distributions a�ect model

capabilities while controlling for overall model scale. We also used the high school mathematics

subset of the MMLU dataset. This dataset allows us to study how constraints interact across varying

task complexities while providing a direct comparison with our H1 results. The constraint

measurements were calculated as follows:

Architectural constraints. The architectural constraints are indeed measured using Shannon’s formula

as in Equation 47 because it e�ectively quanti�es the model's capacity to distribute attention across

A  =   1( = )
1

N
∑
i=1

N

yi ŷ1 (46)

N 1( = )yi ŷ1 1

ŷ1 yi 0

H(A) = −  log( )∑
i=1

N

ai ai (47)

ai

deff
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i=1
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tokens, providing a natural way to measure how evenly the model can distribute its computational

resources. The architectural constraints in language models prove primarily through the attention

mechanism's capacity to distribute focus across input tokens. This distribution capacity is

fundamentally limited by the model's architectural design, the number and structure of attention

heads, the dimensionality of key/query vectors, and the computational paths available for information

�ow. Then we can compute entropy to measure architectural constraints with an equation similar to

(47):

where    are the normalized attention weights. This equation captures two critical aspects of the

model’s architectural limitations:

a. Information processing capacity: higher entropy indicates more uniform attention distribution,

suggesting the architecture can e�ectively process multiple inputs simultaneously.

b. Structural bottlenecks: lower entropy indicates focused attention, potentially re�ecting

architectural limitations in parallel processing.

Training constraints: The calculation of this constraint is computed using Equation 46. This equation

is rooted in existing test theories[102], as well as in novel neural networks evaluation metrics[106]:

However, its theoretical interpretation and application change signi�cantly. Equation 46 evaluates the

accuracy of the raw performance, while Equation 50 quanti�es the limitations set by the system's

training patterns. The study of information bottlenecks in deep learning parallels this approach[107].

Equation 50 captures training constraints since it recognizes pattern limits as true predictions 

 and shows learned patterns re�ecting the model's acquired inductive biases[108]. The added

con�dence term    indicates the strength of learned associations inspired by the work in neural

network uncertainty quanti�cation[109]. Finally, the normalized sum represents the overall training

pattern constraints following statistical learning theory[110].

Contextual constraints. According to Achille & Soatto[111], contextual constraints reveal themselves

through speci�c mechanisms that shape how information �ows through the network. The cited paper

β = −  log( )∑
i=1

N

ai ai (49)

ai

γ  =   1( = )
1

N
∑
i=1

N

yi ŷ1 ci (50)

( = ),yi ŷ1

ci

qeios.com doi.org/10.32388/00JQN6 31

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


discusses several possible contextual constraint mechanisms such as sequential dependency or

context bottleneck e�ect. We can write our constraint as

Metric    re�ects how consistently the model uses context (which is related to

sequential dependency), shows how variable attention is distributed (which is related to the context

bottleneck e�ect), and it's easy to compute during training. This measurement aligns with our

theoretical framework, which postulates that contextual constraints emerge from the interaction

between the model architecture (attention mechanism), training objectives (task su�ciency), and

information bottleneck e�ects (layer stacking).

All three constraints directly a�ect the system's ability to explore its adjacent possible states

following the original TAP framework:

6.2.3. Hypothesis 3: Path dependence in�uences problem-solving trajectories

Our experimental design for analyzing path dependence focused on four complementary

measurements, capturing di�erent features of solution trajectory changes. As test data, we used the

high school mathematics subset of the MMLU dataset[101]  with 30 questions to ensure statistical

robustness. The four metrics are the following:

a) Building on trajectory analysis methods from stochastic processes[14], we compared solution paths

under normal and shu�ed input conditions, measuring step count variations, consistency

di�erences, and directness disparities. We used the expression

where   represents metrics including the number of steps, path consistency, and solution directness.

Solution paths were analyzed both in their original order and with shu�ed choice presentations to

assess path dependence e�ects.

b) Consistency through the model's hidden state representations is measured using cosine similarity

between consecutive solution steps. We extracted the �nal layer's hidden states for each solution step

and computed mean embeddings across the sequence length dimension. Finally, we calculated cosine

similarity between consecutive step embeddings. This approach follows methods established for

analyzing neural network internal representations[37]. We used the following equation:

δ = std (attention_weights[: windowsize]) (51)

std(attention_weights)

P (true|training) ∝ (1 − β)(1 − γ)(1 − δ)P (state|architecture) (52)

= | − |Δpath Mnormal Mshuffled (53)

M
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where   represents the semantic embedding of step   and   is the total number of steps.

c) We quanti�ed solution directness through a combination of step count and revision detection,

where revisions were identi�ed through speci�c linguistic markers (e.g., “actually”, “instead”,

“correction”) following approaches from solution path analysis[4]. To compute the solution

directness, we use the following equation:

where   is the total number of solution steps, and   counts backtracking instances.

d) Finally, the step length variations were computed with the following equation:

where   is the average step length under normal and shu�ed conditions.

This experimental design is rooted in existing methodologies for analyzing stochastic systems, which

we adapted to the unique context of large language model evaluation. The approach aligns with

previous work on analyzing non-ergodic behavior in complex systems[18]. The key limitation of this

setup is potential noise in path di�erence measurements for complex problems, addressed through

multiple trials and robust statistical controls[112]. This approach enables systematic comparison of

path dependence e�ects across di�erent model architectures while maintaining statistical robustness

and measurement reliability. Each metric captures a distinct aspect of path dependence, from direct

trajectory di�erences to more subtle variations in solution characteristics. Following standard

practices in language model evaluation, we used temperature sampling for generation.

7. Experimental results

7.1. Phase Transitions in Semantic Space (H1)

The �rst hypothesis proposes a correlation between the emergence of capabilities in language models

and phase transitions in semantic space. The experimental results support this prediction, although

there are signi�cant distinctions in the occurrence of these transitions. These results may explain why

models cannot perpetually expand their semantic complexity as well as the predictable impact of

C = cos ( , )
1

n − 1
∑
i=1

n−1

si si+1 (54)

si i n

D = +
1

1 + |steps|

1

1 + |revisions|
(55)

|steps| |revisions|
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resource allocation on model performance. Finally, it proves the inherent limitations of model scaling

based on available resources.

Figure 1. Model performance and task di�culty

Figure 1 illustrates how both gpt2-xl and opt-1.3B exhibit inverted U-shaped performance

trajectories, with a peak at medium di�culty at di�erent performance levels (gpt2-xl peak: 0.200,

opt-1.3B peak: 0.089).  In contrast, pythia-1.4B shows a di�erent pattern with a sharp initial increase

from easy to medium, followed by continued improvement, unveiling a di�erent form of phase

transition in its capability space.

The semantic space analysis in Figure 2 shows how these transitions correlate with changes in the

models' operational regime. gpt2-xl (green) operates in a distinctive regime characterized by a high

attention entropy (~1.7) and lower e�ective dimensionality (8-10 dimensions). This suggests the

model distributes attention broadly but in a more compact semantic space. In contrast, opt-1.3B (in

orange) and pythia-1.4B (in blue) show lower attention entropy (~1.3-1.4) and higher e�ective

dimensionality (14-20 dimensions). This could indicate more focused attention patterns but across a

larger semantic space. The size of the dots represents model performance, providing additional
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insight into how these di�erent regimes relate to model capabilities. This visualization reveals a

fundamental trade-o� in language model design: models can either operate with high entropy in a

compact space (like gpt2-xl) or with more focused attention across a larger dimensional space (like

opt-1.3B and pythia-1.4B). These distinct operational regimes suggest di�erent strategies for

managing the complexity of language processing, with implications for how phase transitions in

capabilities emerge in each architecture type.

Figure 2. Semantic space analysis.
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Figure 3. Correlation between performance and entropy.

In Figure 3, strong correlations between performance and entropy for each model (gpt2-xl: 0.910,

pythia-1.4B: 0.883) suggest that transitions follow organized patterns rather than random

�uctuations. The varying stability metrics (gpt2-xl: 0.925, opt-1.3B: 0.728, pythia-1.4B: 0.438)

further suggest that di�erent models show di�erent types of phase transitions, from smooth

progressions to sharp capability shifts.

7.2. Constraint interactions shape capability boundaries (H2)

Our second hypothesis considers that model capabilities are shaped by multiplicative interactions

between architectural, training, and contextual constraints. The experimental results can be seen in

the following tables.

Performance stability metrics shown in Table 1 suggest di�erent behavior patterns across

architectures. Model gpt2-xl shows higher overall performance (mean=2.3477) while maintaining

qeios.com doi.org/10.32388/00JQN6 36

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


moderate stability (CV=3.26%). opt-1.3b shows the most stable performance (CV=2.68%) but lower

absolute performance (mean=1.8089), and pythia-1.4b has the highest variability (CV=6.97%),

suggesting less robust constraint management. The stability patterns indicate that architectural

di�erences signi�cantly in�uence how models manage constraint trade-o�s, with gpt2-xl achieving

the best balance between performance and stability.

Model Std CV(%) Range Min Max Mean

op-1.3B 0.0484 2.68 0.096 1.7639 1.8602 1.8089

pythia-1.4B 0.1281 6.97 0.2471 1.7340 1.9811 1.8380

gpt2-xl 0.0765 3.26 0.1461 2.2616 2.4077 2.3477

Table 1. Performance stability metrics.

Table 2 shows the analysis of constraint interactions across di�erent di�culty levels. Architectural

constraints show a systematic decrease with di�culty (from 6.2444 to 5.9117). The highest e�ect in

easy tasks suggests more e�cient architectural utilization, and the signi�cant drop in hard tasks

points to architectural strain. Training Constraints show non-monotonic behavior (from 0.1300 to

0.0000 and to 0.1261) with a valley at medium di�culty, suggesting a critical transition point.

Recovery in hard tasks suggests adaptive training dynamics. Contextual Constraints reveal a slight

increase with di�culty level (from 0.0831 to 0.0935), being the most stable among all constraints. It

suggests increasing reliance on context for complex tasks. The weighted constraints combination

(“Performance” column in Table 2) shows peak performance in easy tasks (2.0829), then stabilizes

around 1.94-1.97 for medium/hard tasks. These results provide evidence that constraint interactions

adapt dynamically to task complexity. The systematic decrease in architectural e�ects with increasing

di�culty supports our hypothesis about adaptive constraint dynamics.
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  Performance

Easy 6.2444 0.1300 0.0831 2.0829

Medium 6.2380 0.0000 0.0826 1.9414

Hard 5.9117 0.12611 0.0935 1.9702

Table 2. Analysis of constraints across di�culty levels. The performance column represents a weighted

combination of architectural, training, and contextual constraints e�ects (30%  , 40%  , and 30% ), plus

an additional 10% contribution from their interaction.   are the architectural constraints,   are training

data constraints, and   are contextual constraints.

7.2.1. Constraints analysis

Analysis of normalized constraint values in Table 3 shows several striking patterns. For example,

architectural constraints remain consistent across models (from 0.6348 to 0.6409), revealing a

common architectural bottleneck. This suggests that despite di�erent architectures, all three models

hit similar fundamental limitations in how they can process information. Training constraints show

higher variance (from 0.3333 to 0.5193), with the pythia-1.4b model having the lowest normalized

training constraint impact. This variation suggests that models learn and utilize training data

di�erently. Contextual constraints show a clear progression (from 0.3350 to 0.4054). The model gpt2-

xl shows a bigger impact of context constraints, which is consistent with prior entropy analyses

indicating a wider attention distribution for gpt2-xl.

β γ δ

β γ  δ

β γ

δ
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Model

op-1.3B 0.6348 0.5000 0.3350

pythia-1.4B 0.6409 0.3333 0.3562

gpt2-xl 0.6378 0.5193 0.4054

Table 3. Normalized constraint values.   are the architectural constraints,   are the training data

constraints, and   are the contextual constraints.

In Table 4, we can see how training constraints consistently show the highest relative importance

(from 0.7506 to 1.4952), pointing to their primary role in shaping the model’s performance.

Architectural constraints represent model-speci�c relative importance, with the opt-1.3b (0.8325)

and gpt2-xl (0.7314) showing similar dynamics. Contextual constraints show lower but consistent

relative importance (from 0.1581 to 0.5223). The high R² score values con�rm the signi�cance of these

results.

Model  imp.  imp.  imp. R2 score

op-1.3B 0.8325 1.4591 0.5223 0.9634

pythia-1.4B 0.1645 0.7506 0.1581 0.9984

gpt2-xl 0.7314 1.4952 0.1667 0.9513

Table 4. Relative constraints importance.   are the architectural constraints,   are the training data

constraints, and   are the contextual constraints.

β γ δ
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δ

β γ δ
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δ
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Model  threshold  threshold

opt-1.3B 5.72 0.11

pythia-1.4B 5.80 0.11

gpt2-xl 7.45 0.06

Table 5. Architectural constraints  , and training constraints   threshold.

Table 5 shows di�erent thresholds in the e�ects of architectural and training constraints for all

models. This supports our hypothesis that capability boundaries are in�uenced by the interactions of

constraints. The gpt2-xl model has a higher architectural threshold in comparison to other models.

This indicates improved performance, implying that architectural constraints signi�cantly in�uence

model capabilities.

β  γ

β γ
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Figure 4. Training vs architectural constraints e�ects.

The correlation between training and architectural constraints shown in Figure 4 reveals uncorrelated

dynamics. gpt2-xl (green dots) shows consistently high architectural e�ects (~7.0-7.5) regardless of

training e�ects. opt-1.3B (blue dots) and pythia-1.4B (orange dots) cluster together at lower

architectural e�ects (~5.5-6.0). This clear separation suggests fundamentally di�erent operational

regimes between gpt2-XL and the other models. Training e�ects range from 0.0 to 0.25 across all

models with no clear pattern or correlation between training and architectural e�ects. Points are

scattered horizontally, suggesting training e�ects vary independently of architectural constraints.

The lack of correlation suggests architectural and training constraints operate independently. While

gpt2-xl maintains higher architectural e�ects despite training variations, opt-1.3B and pythia-1.4B

show similar architectural behaviors across di�erent training e�ects.

Training and contextual constraints correlations in Figure 5 vary signi�cantly by model. The model

gpt2-xl shows a precise positive correlation ( =1.0 with  -value=0.000), while the pythia-1.4b and

opt-1.3b models o�er less signi�cant correlations ( =-0.866 with  -value=0.333, and  =0.500

with  -value=0.667 respectively). Figure 6 illustrates how architectural and contextual constraints

R2 p

R2 p R2

p

qeios.com doi.org/10.32388/00JQN6 41

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


correlations show a precise negative correlation across all models ( =-1.0 with  -value=0.000),

indicating a fundamental trade-o� between both constraints.

Figure 5. Training vs contextual constraints e�ects.

R2 p
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Figure 6. Architectural vs contextual constraints e�ects.

Figure 7 shows an interesting distribution of constraint e�ects across three di�erent models, and its

results connect directly to our theoretical framework in several important ways. The in�uence of

architectural constraints in all three models compared to contextual and training constraints (near  )

aligns with our theoretical prediction that architectural constraints are �xed at initialization and

fundamentally limit the model's capability space. Particularly interesting is that gpt2-xl shows the

highest architectural constraint, suggesting its architecture more strictly bounds its possibility space.

These results re�ect our theoretical framework's emphasis on architectural constraints through 

. However, we need additional independent evidence to validate whether this emphasis

accurately represents the real dynamics of language models.

0

R ( )Ct
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Figure 7. Constraints distribution for di�erent models.

Figure 8 shows the relationship between combined constraint e�ects ( ) and model

performance, revealing critical phase transitions in the constraint space. The plot demonstrates

distinct model behaviors and clear transition points. Model gpt2-xl has the highest performance

(from 2.2 to 2.4), maintaining stable performance across a wider range of combined constraint values

(from 0.06 to 0.12). In contrast, the opt-1.3b and pythia-1.4b models operate in a lower performance

region (from 1.7 to 2.0) and show more abrupt transitions. Each model demonstrates a distinct critical

threshold (marked with vertical dashed lines): gpt2-xl at 0.10, pythia-1.4b at 0.08, and opt-1.3b at

0.07. The pre-transition region (red shaded area) represents a phase where models operate below

their optimal constraint balance, while the post-transition region (blue shaded area) indicates where

models achieve better constraint integration. These thresholds mark points where models transition

from lower to higher performance states. Higher thresholds correlate with better overall performance.

For example, model gpt2-xl not only has the highest threshold but also maintains more consistent

performance in the post-transition region. This suggests that its architecture achieves a more robust

balance of constraints. The sharp performance shifts at these thresholds indicate the non-linear

β  ×  γ  ×  δ
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nature of constraint interactions and the existence of critical points where model behavior has a

symmetry breaking.

Figure 8. Phase transitions for combined constraints across di�erent models.

Our experimental results provide strong support for hypothesis 2 through various pieces of evidence.

First, the performance-stability analysis shows how di�erent architectures manage constraints

distinctly, with gpt2-xl achieving optimal balance while maintaining high performance. Second, the

constraint interaction analysis across di�culty levels reveals dynamic adaptation, evidenced by the

systematic decrease in architectural e�ects and the architectural/contextual constraints ratio

demonstrating how constraints adapt to task complexity. Third, the correlation analysis reveals

fundamental trade-o�s, particularly the perfect negative correlation between architectural and

contextual constraints. Finally, the phase transition analysis reveals clear threshold e�ects in both

architectural impact and combined constraint interactions, where each model shows distinct but

related critical points. These transitions and model-speci�c thresholds demonstrate that performance

emerges from multiplicative interactions between constraints rather than simple additive e�ects,

qeios.com doi.org/10.32388/00JQN6 45

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


conclusively supporting our hypothesis that model capabilities are shaped by complex interactions

between architectural, training), and contextual constraints.

7.3. Constraint interactions shape capability boundaries (H3)

Results for Hypothesis 3 can be seen in the following �gures. Figure 9 shows the path di�erences

across models. Model opt-1.3b shows the highest number of step di�erences (0.447), suggesting the

strongest path dependence in solution approach. Models pythia-1.4b and gpt2-xl show moderate step

di�erences (0.347 and 0.287 respectively), suggesting more stable solution strategies despite input

order.

Figure 10 compares the step length variability across models. Pythia-1.4b shows the largest step

length di�erence (15.957), indicating high sensitivity to input ordering in terms of solution verbosity.

Model opt-1.3b shows moderate step length variation (11.941), and model gpt2-xl shows high but

consistent step length di�erences (13.819). Figure 10 shows the consistency vs. directness analysis

dynamics, not revealing any important pattern to be considered.

In Figure 11, we observe that all models have similar directness di�erences (0.020-0.021), suggesting

comparable e�ciency in reaching solutions regardless of the path. Consistency di�erences vary more

signi�cantly, with model opt-1.3b having the highest value (0.067) and gpt2-xl the lowest (0.032).

The tight clustering of directness di�erences despite varying consistency di�erences suggests that

models maintain solution e�ciency even when following di�erent paths.
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Figure 9. Path di�erences across models.
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Figure 10. Step length analysis across models.
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Figure 11. Path di�erences across models.

Figure 12 shows a comparison of di�erent characteristics across the models. The model gpt2-xl

suggests the most balanced performance across di�erent metrics, showing moderate di�erences in

step length and the lowest variation in consistency. The opt-1.3b model demonstrates signi�cant path

dependence while ensuring consistent solution directness. Model pythia-1.4b has the greatest

variability in step length while also showing moderate levels of consistency and directness metrics.
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Figure 12. Path di�erences across models.

These results provide support for H3, suggesting that path dependence signi�cantly a�ects problem-

solving trajectories across all models. While all models exhibit path dependence, they use di�erent

strategies to maintain solution quality: gpt2-xl prioritizes consistency, opt-1.3b balances between

path exploration and directness, and pythia-1.4b shows high adaptability in solution length while

maintaining solution quality. The observed variations in path-dependent strategies align with our

theoretical framework's predictions about non-ergodic exploration in constrained possibility spaces.

gpt2-xl's higher consistency (lowest consistency di�erence 0.032) re�ects its architectural capacity

for parallel processing through multiple attention heads[35], enabling stable representation

maintenance across di�erent solution paths. Model opt-1.3B's balanced approach, with moderate step

di�erences (0.447), emerges from its enhanced layer connectivity that facilitates diversi�ed path

exploration while maintaining solution coherence[10]. Pythia-1.4B shows high adaptability in solution

length (15.957) while maintaining directness (0.021), indicating that position-aware processing

through scaled rotary embeddings enables �exible path exploration within semantic constraints[100].

qeios.com doi.org/10.32388/00JQN6 50

https://www.qeios.com/
https://doi.org/10.32388/00JQN6


These architectural di�erences manifest in our TAP equation through the hierarchical function  ,

where each model's speci�c attention mechanisms and layer connectivity patterns create distinct

mappings between token combinations and semantic space. The varying magnitudes of path

di�erences across models quantify how architectural constraints shape the adjacent possible states

accessible during problem-solving, supporting our framework's prediction that capability emergence

follows architecture-dependent trajectories through the possibility space.

8. Discussion

Our experimental results provide strong support for the application of TAP theory to understanding

emergent capabilities in large language models, while also revealing important nuances in how these

systems navigate their possibility spaces. The �ndings validate our proposed resource-bounded TAP

equation and demonstrate that language models exhibit behavior patterns consistent with complex

biological systems, particularly in terms of phase transitions, constraint interactions, and path

dependence.

8.1. Theoretical framework validation

The experimental results provide substantial support for our theoretical framework across several

important areas.

First, the observation of clear phase transitions in semantic space aligns with TAP theory's prediction

of discrete shifts in capability as systems explore their adjacent possible states. The inverted U-shaped

performance curves observed in gpt2-xl and opt-1.3B suggest that these transitions are not simply

cumulative improvements but rather represent fundamental reorganizations of the models'

operational regimes. This behavior parallels Kau�man's description of biological systems

transitioning between distinct organizational states.

Second, the multiplicative interaction of constraints observed in our experiments supports our

theoretical decision to model constraint interactions multiplicatively instead of additively in our TAP

equation. The observed negative correlation between architectural and contextual constraints

indicates that these constraints operate as fundamentally interconnected parameters, similar to the

combined constraints found in biological systems within metabolic networks.

Third, the strong path dependence observed across all models con�rms the non-ergodic nature of

these systems, a key assumption in our theoretical framework. The varying consistency di�erences

gl
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between models while maintaining similar directness metrics suggest that, like in biological systems,

language models explore their possibility spaces through restricted but e�cient pathways.

8.2. Emergence and phase transitions

Recent empirical research has provided speci�c evidence for emergence patterns in language models.

Wei et al.[2]  documented discontinuous improvements across 23 di�erent capabilities in PaLM,

�nding that abilities like multi-step reasoning emerged suddenly at certain model scales rather than

improving gradually. Analogously, Ganguli et al.[1]  analyzed the predictability of model capabilities

during scaling, di�erentiating between gradual improvements and unexpected behavioral changes.

Recent work by[113] explored the nature of emergent abilities, developing more rigorous methods for

categorizing between basic emergence and scaling e�ects. These works provide actual evidence for

non-random patterns in capability emergence, setting the stage for our analysis of the diverse

behavior patterns observed across models.

In our research, the diverse behavior patterns observed across models - from gpt2-xl's balanced

performance to pythia-1.4B's continued improvement pattern - suggest that emergence can appear

through di�erent mechanisms depending on architectural choices and constraint distributions. This

observation aligns with Holland[58]  characterization of emergence in complex adaptive systems,

where global patterns arise from local interactions under varying constraint conditions. The

correlation between performance and entropy suggests that these transitions follow organized

patterns rather than random �uctuations, relating to Prigogine's work on dissipative structures where

order emerges from the interaction between system dynamics and environmental constraints[45]. The

systematized nature of transitions we observed supports our theoretical framework's prediction that

capability emergence follows constrained exploration paths rather than random search. This aligns

with Haken's synergetics theory[60], which describes how collective behavior emerges through self-

organization under constraints. Our �ndings follows the theory of self-organized criticality

systems[114][76][65], as models appear to naturally evolve toward critical states where new capabilities

emerge. The architectural dependency of emergence patterns con�rm a hierarchical organization in

complex systems, where di�erent architectural con�gurations lead to distinct emergent

properties[80]. This systematized path-dependent nature found in emergence in language models

provides a connection between deterministic phase transitions in physical systems and the more
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complex emergence patterns seen in biological systems, suggesting a new category of emergent

phenomena in arti�cial intelligence systems that require further theoretical investigation.

While previous research proved the existence of emergent capabilities in language models, our work

provides a theoretical framework that explains why and how these capabilities emerge through using

non-ergodic dynamics and the adjacent possible theory. By proving that language models operate as

non-ergodic systems and demonstrating how their capability emergence is shaped by multiplicative

constraint interactions, we move beyond descriptive observations to a mechanistic understanding of

emergence.

8.3. Constraint dynamics, path dependence and non-ergodicity

The varying stability metrics across models suggest that di�erent architectures create distinct

hierarchical organizations of constraints, a�ecting how capabilities emerge The systematic decrease

in architectural constraints with increasing task di�culty indicates that models adaptively

redistribute their computational resources as tasks become more complex, supporting our resource-

bounded formulation of the TAP equation. The non-monotonic behavior of training suggests that

learned patterns play a complex role in shaping the adjacent possible space, similar to how biological

systems' past adaptations in�uence their future possibilities.

The path dependence results provide strong evidence for the non-ergodic nature of language models,

but with important quali�cations. The variation in step di�erences across models suggests that

architectural choices can signi�cantly in�uence the degree of path dependence. This �nding has

important implications for our theoretical framework, suggesting that while all models operate in

non-ergodic regimes, the strength of historical dependence can be modulated through architectural

design. This parallels biological systems where di�erent organizational structures can lead to varying

degrees of historical contingency.

We have seen that models used in our experiments adopt distinct strategies to maintain solution

quality. These strategies could be related to their architectures. For example, gpt2-xl's consistency

priority can be related to its larger number of attention heads (25 heads per layer) and relatively

smaller head dimension, enabling better parallel processing of information[8]. This architectural

choice explains its observed preference for consistency, as multiple attention heads can maintain

stable representations across di�erent solution paths.
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Model opt-1.3B's balanced approach can be related to the model’s additional skip connections and

modi�ed layer normalization positions compared to standard transformer architectures[99]. These

architectural features facilitate information �ow between di�erent layers, explaining its balanced

approach between path exploration and directness. The higher step di�erences and maintained

directness metrics suggest that the enhanced layer connectivity enables the model to explore di�erent

paths while maintaining solution coherence.

Pythia's architecture incorporates scaled rotary embeddings and modi�ed attention patterns that

enhance its position-aware processing[100]. This architectural choice explains its observed high

adaptability in solution length while maintaining quality. The largest step length di�erences and

consistent solution quality metrics align with its enhanced position-aware processing capabilities.

These architectural-behavioral correlations suggest a generalizable principle: the distribution and

structure of attention mechanisms fundamentally shape how models navigate their possibility spaces.

Models with more parallel processing capabilities tend toward consistency-focused strategies, while

those with enhanced layer connectivity or position-aware processing enable more �exible exploration

strategies.

This �nding has signi�cant implications for our theoretical framework, suggesting that although all

models operate in non-ergodic regimes, both the extent and type of historical dependence can be

adapted through architectural design. This is analogous to biological systems, where diverse

organizational structures may result in di�ering levels of historical contingency. The capacity to

predict path dependence strategies based on architectural features indicates that our TAP framework

captures the fundamental principles about the in�uence of system structure on the exploration of

possibility space.

9. Practical implications and future directions

Our theoretical framework and experimental �ndings could have signi�cant implications for AI

development while suggesting important directions for future research. In the domain of model

explainability, the TAP framework provides novel tools for understanding model behavior through

constraint interactions and phase transitions. Recent research on emergence in large language

models[115][116][113][2]  suggests that capability shifts can be predicted through careful monitoring of

model behavior, aligning with our observations of clear thresholds in capability emergence. These
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insights complement recent advances in mechanistic interpretability[117][118][119][120]  and neural

network interpretation[37][121].

The resource-bounded TAP equation (Equation 34) provides speci�c guidance for designing new

model architectures. The multiplicative nature of constraint interactions suggests that architectural

improvements should focus on the balanced enhancement of all constraints rather than optimizing

single components. This understanding leads to several important architectural innovations.

Attention mechanisms could be designed to maintain consistent entropy across di�erent operational

regimes, while layer connectivity patterns could facilitate both information preservation and �exible

path exploration. Position-aware processing could be integrated throughout the architecture to

enable adaptive context utilization. These principles extend to dynamic routing mechanisms that

enable �exible path exploration and adaptive connectivity patterns supporting multiple solution

trajectories.

The framework has particular relevance for AI alignment, where new research reports the importance

of understanding how models internalize training objectives[122]. The non-ergodic nature of language

models suggests that alignment strategies must account for path dependence, while the multiplicative

nature of constraint interactions indicates that controlling multiple constraints simultaneously might

be more e�ective than focusing on individual ones. This aligns with recent theoretical work on multi-

constraint optimization in AI systems[123] and phase-aware training methods[124].

Our framework enables deliberate design for speci�c phase transitions in model development.

Architectural features can be tuned to target desired capability emergence points, while resource

allocation can be optimized based on predicted transition thresholds. Critical points in semantic space

expansion can be engineered through careful constraint balance. This approach suggests that AGI

capabilities might emerge through discrete shifts rather than continuous improvement. Our �ndings

indicate that an intentional strategy for speci�c phase transitions in AGI development might bring

greater advantages than solely depending on scaling approaches. New research on architectural

innovation[70] and compute-optimal scaling[125] supports this insight.

The theoretical framework aligns with LeCun[22] approach to autonomous machine intelligence. New

implementations of H-JEPA[126]  test how hierarchical organizations might naturally emerge from

constraint interactions. The observed path dependence in problem-solving strategies suggests that
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world model formation follows similar constrained exploration patterns, supporting recent advances

in predictive modeling[127][128].

Likely, several promising research directions emerge from our work. The theoretical framework can

be extended to develop more precise mathematical models of constraint interaction dynamics and

investigate relationships between phase transitions and optimization landscapes. Practical

applications include the development of real-time analysis tools based on the TAP framework and the

implementation of phase-aware training algorithms. The framework also suggests rich opportunities

for interdisciplinary research, particularly in exploring parallels between AI and biological learning

systems through the TAP lens.

Resource management in future architectures will require built-in phase transition monitoring

capabilities and adaptive allocation based on capability emergence patterns. These systems should

incorporate �exible computational pathways supporting diverse problem-solving strategies while

maintaining balanced resource utilization. Such architectural innovations, guided by our theoretical

framework, could lead to more e�cient and capable language models that exhibit more controlled and

predictable emergence of capabilities.

This work opens new avenues for research while providing practical tools for immediate application in

AI development. The integration of constraint-aware design principles with phase transition

engineering and non-ergodic architecture principles o�ers a comprehensive approach to advancing AI

systems. Through careful application of these principles, we can work toward developing more robust,

interpretable, and capable AI systems that exhibit predictable and controllable emergence of

capabilities.

Our proposal in this paper is based on Stuart Kau�man's theory of the adjacent possible. Kau�man

introduced other ideas that could be very useful in the �eld of arti�cial intelligence. Future research

could explore how autonomous agents in language models maximize their average rate of exploration

of adjacent possible states while preserving coherent functionality, similar to capability expansion in

biological systems. A deeper understanding of molecular autonomous agents' principles could provide

new insights into how language models balance exploration of novel states with the maintenance of

existing capabilities, particularly in continual learning scenarios. Kau�man's NK �tness landscape

model[5]  could provide a robust framework for understanding how language models navigate their

possibility spaces through the interaction of N components (architectural elements, attention

mechanisms, layer connectivity) and K epistatic interactions (constraint relationships). Future
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research could further explore how the roughness of these landscapes, de�ned by the degree of

interdependence between components[129], in�uences the emergence of capabilities and the stability

of model behavior. This perspective suggests studying how di�erent architectural choices create

varying degrees of landscape ruggedness, potentially explaining why some models exhibit more

robust capability emergence while others show fragility or unpredictability. Adaptive walks on

correlated �tness landscapes[129]  could further provide novel training strategies that e�ectively

balance exploration of promising regions with exploitation of established solutions.
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