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Worldwide prevalence and mortality of lung cancer are gradually increasing. Tobacco smoking is the

major cause of lung carcinogenesis. Smoking causes a remarkable reduction in vitamin D

concentration. Moreover, vitamin D deficiency is associated with lung carcinogenesis. In this context,

vitamin D is effective in reducing lung cancer mortality. However, the underlying molecular

mechanisms are poorly understood. A comprehensive literature survey has been conducted to search

for studies associated with lung cancer, tobacco smoking, vitamin D, and molecular mechanisms.

PubMed, Google Scholar, Web of Science, Embase, and Scopus were used to search for articles up to

November 2024. Peer-reviewed full articles written only in the English language were taken into

consideration. VDR gene polymorphism is one of the important reasons of vitamin D deficiency in

smokers. Smoking increases Ca2+ influx in vascular smooth muscle cells, which is correlated with

lung carcinogenesis. However, vitamin D reduces Ca2+ via decreasing HRC. Smoking enhances

genetic/epigenetic alterations, gene mutations, SNPs, inflammation, oxidative stress, and activation of

signaling pathways related to lung cancer. Vitamin D reduces gene expressions of HIF-1α, Ki-67,

HTERT, NF1, CYP1A1, EPHX1, and VEGF. Additionally, it increases the survival of lung cancer patients

with p53, KRAS, and EGFR mutations. Besides, vitamin D reduces inflammation and increases B and

NK-cell counts. It decreases ROS and reactive oxygen. Lung cancer-associated signal transduction of

TGF-β, Wnt, Hedgehog, Notch, PI3K/AKT/mTOR, MAPK, ERK1, ERK2, and NF-κB are also reduced. The

present study highlights the therapeutic role of vitamin D to control and prevent the smoking-induced

progression of lung cancer.
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Introduction

As per the World Health Organization, lung cancer is the leading cause of cancer-related death worldwide.

Lung cancer is the second most common cancer globally. According to the last update, around 1.8 million

deaths have been recorded in the year 2020  [1]. According to the Global Cancer Statistics (GLOBOCAN

2020), the lung cancer incidence rate in men is high (37.5 in 100,000) in higher HDI (Human Development

Index) countries such as North America, North and West Europe, New Zealand, and Australia, and less

(10.3 in 100,000) in lower HDI countries of Africa and South-Central Asia [2]. However, the cases of lung

cancer are increasing in many countries. Around 14% of lung cancer deaths can be correlated with air

pollution with PM2.5 (particulate matter). However, most cases of lung cancer deaths (two-thirds) in the

worldwide population are due to tobacco smoking.

Two major types of lung cancer are found: non-small cell lung cancer (NSCLC) (85%) and small cell lung

cancer (10-15%). NSCLC can be further classified into large cell carcinoma, adenocarcinoma, and

squamous cell carcinoma [3]. Whereas small cell lung cancer can be sub-divided into lung carcinoid tumor

and other lung cancers  [4]. Lung cancer, or bronchogenic carcinoma, can be characterized by tumor

development in lung parenchyma or bronchi. It is already mentioned that tobacco smoking is the leading

cause of lung cancer mortality. Smoking develops dysplasia in the lung epithelium [5]. Tobacco smoking

activates the PI3K/Akt/mTOR signaling pathway, which in turn initiates tumorigenesis  [6]. Tobacco

smoking contains multiple carcinogenic compounds such as nitrosamines, polycyclic aromatic

hydrocarbons, and aldehydes, which may lead to certain mutations in genes such as KRAS, TP53, EGFR,

BRAF, MEK, MET, PIK3CA, etc.  [7]. Besides, the addictive tobacco compound nicotine induces the

progression of the cell cycle, epithelial-to-mesenchymal transition, migration, invasion, angiogenesis,

and evasion of apoptosis  [8]. Mutations, including genetic/epigenetic modifications (promoter

methylation), transcriptomic changes including inflammation and apoptosis pathways, lead to

premalignant alterations such as dysplasia and clonal patches [9].

It is extensively studied that vitamin D is less in tobacco smokers  [10]. Smoking significantly affects

vitamin D and calcium metabolism and reduces the serum 25(OH)D below the normal value and

parathyroid hormone  [11]. As per previous studies, the serum/plasma vitamin D level of <20 ng/ml is

considered vitamin D deficiency [12][13]. However, the exact molecular mechanism behind the reduction

of vitamin D in smokers is poorly understood. Besides, lung cancer patients carry remarkably low levels
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of vitamin D in their blood  [14]. Hence, inadequate vitamin D levels may be potentially associated with

lung cancer pathophysiology.

Therefore, this study aims to elucidate the molecular mechanisms and pathways linking tobacco-induced

lung carcinogenesis and vitamin D deficiency, and to explore the potential therapeutic role of vitamin D

in lung cancer.

Data curation

A comprehensive literature survey has been conducted to search for studies associated with lung cancer,

tobacco smoking, vitamin D, and molecular mechanisms. The key-words used for search strategy include

lung cancer, cigarette, tobacco, smoking, and Vitamin D. PubMed, Google Scholar, Web of Science,

Embase, and Scopus were used to search for articles up to November 2024. Peer reviewed full articles,

original research and reviews, case studies, and clinical trials written only in English language are taken

into consideration.

Vitamin D and tobacco smoking

Vitamin D is a potent micronutrient required for various biological functions in the body. Its low level is

widely associated with numerous disease pathogenesis and improper molecular functions [15]. Vitamin D

is synthesized by the epidermis using direct exposure to sunlight on the skin. It is of two types- Vitamin

D2 or ergocalciferol and vitamin D3 or cholecalciferol. Vitamin D2 and D3, after several hydroxylation

processes, form intermediates 25-hydroxyvitamin D or 25(OH) D in the liver and 1,25-dihydroxyvitamin

D or calcitriol in the kidney (Fig. 1). Serum 25(OH) D is an active hormone and a good parameter for

measuring vitamin D in serum.
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Figure 1. Vitamin D3 synthesis in the skin using sunlight and vitamin D2 and D3 synthesis in the small

intestine using dietary intake. Vitamin D3, after successive hydroxylation, produces 25(OH) D3 (Calcidiol) in

the liver and 1,25(OH)2D3 (Calcitriol) in the kidney.

A study conducted on the US population over the period from 2001 to 2014 revealed that both active and

passive tobacco smoking are associated with 25(OH) D deficiency  [16]. It is reported that the serum

concentration of vitamin D in active smokers is comparatively less than the non-smokers [17]. An effect of

smoking on VDR gene polymorphism is already reported  [18]. A previous study on cigarette smoke

exposure in a male Wistar rat model has reported lung injury with a reduction of the vitamin D receptor

(VDR). Depletion of VDR is associated with activation of the mitogen-activated protein kinase

(MAPK)  [19]. Activation of the MAPK signaling pathway is observed in lung cancer, especially in
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NSCLC  [20][21]. VDR has an important role in calcium and inorganic phosphate (Pi) homeostasis  [22].

Cigarette smoking significantly increases calcium and Pi [23][24] (Fig. 2). It is reported that nicotine binds

to α3 and α7 nAChR (nicotinic acetylcholine receptor) present on vascular smooth muscle cells and

promotes intracellular Ca2
+ influx  [25]. It is in this context that increased levels of calcium and Pi are

associated with lung cancer [23][26][27]. However, vitamin D supplementation is quite useful in reducing

increased calcium and Pi levels. A study on a mice model has revealed that vitamin D maintains calcium

homeostasis by downregulating the histidine-rich calcium-binding (HRC) protein and inhibits tumor

growth, proliferation, and migration [28]. On the other hand, it is reported that 30% of the Pi absorption

in the human intestine is vitamin D-dependent  [29]. It is reported that parathyroid hormone (PTH)

induces lung cancer in patients having hypercalcemia  [30]. However, vitamin D supplementation is

effective in reducing serum PTH levels  [31]. In addition to the VDR gene polymorphism, various toxic

compounds of cigarette smoke may have a potential effect on vitamin D metabolism [32]. Increased levels

of carcinogenic polycyclic aromatic hydrocarbons are correlated with decreased levels of vitamin D [33].

Another study shows that a high level of benzene is associated with a low level of vitamin D [34].
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Figure 2. (A) Reduction of vitamin D concentration due to toxic and carcinogenic components of cigarette

smoking. Smoking promotes elevation of Ca2+ influx in smooth muscle cells, which is associated with lung

cancer pathogenesis (B) Supplementation of vitamin D leads to the decrease of Ca2+ influx, which may be

beneficial to control tumor growth, proliferation, and migration.

Molecular aspects of smoking and lung cancer

It is reported that around 15% of smokers develop lung carcinoma [35]. Whereas, 80% - 90% of cases of

lung cancers are caused by smoking [36]. The molecular mechanisms of smoking-induced lung cancer are

complex to establish and poorly explored. However, frequent gene mutations, polymorphisms, gene

overexpression, inflammation, etc. may explain the disease pathogenesis as described here (Fig. 3).
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Figure 3. Toxic components of cigarette smoking effects on various biological events such as

genetic/epigenetic alterations, gene mutations, SNPs, the immune system, oxidative stress, and signaling

pathways related to lung cancer. Symbols “↓” and “↑” represent “low” and “high,” respectively.

It is demonstrated that smoking causes overexpression of the oncogene chromobox homolog 3 (CBX3),

which promotes lung cancer progression [37]. A study conducted on NSCLC patients shows that lifetime

cigarette smoking is closely associated with p53 tumor suppressor mutation. This study has reported that

47% of the tumor samples represent G:C→T:A transversion  [38]. In addition to p53 mutation, cigarette

smoking is also associated with K-ras mutation and overexpression of the erbB-2/neu oncogene in lung

adenocarcinoma  [39]. It is demonstrated that smokers having lung adenocarcinoma exhibit higher

expressions of EGFR, Ki-67, and HTERT compared to nonsmokers  [40]. Besides, it is reported for lung

cancer patients that AKR1B10 (Aldo-Keto Reductase Family 1, Member B10) is overexpressed in smokers

than in nonsmokers  [41]. AKR1B10 is reported to promote cancer cell survival and the initiation of lung

carcinoma  [42]. Similarly, overexpression of the epidermal growth factor receptor (EGFR) is associated

with NSCLC (40%-80%) [43]. Besides, EGFR mutation is a good biomarker and a potential target in lung

cancer [43]. It is reported that EGFR expression is high in current smokers [44]. However, smoking is less

associated with EGFR mutation rates and decreased overall survival of NSCLC patients  [45]. Current

smoking is closely associated with a reduction in the methylation of CpG islands compared to former and

never smokers [46]. It is in this context that CpG island promoter methylation is pivotal to regulate gene
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expression. Smoking-induced methylation of several genes is already reported  [46]. Especially,

hypomethylation of CpG sites of AHRR and F2RL3 is associated with lung cancer risk  [47]. DNA

methylation is catalyzed by DNA methyltransferases (DNMTs). It is shown that DNMT1 gene expression

is significantly higher in smokers than in nonsmokers, which depicts the low expression of target

genes [48]. An in vitro study using the lung adenocarcinoma cell line A549 shows that cigarette smoking

decreases transforming growth factor beta (TGF-β)-mediated suppression of tumors via lowering the

expression of SmaD3 (SMAD Family Member 3) [49].

In addition to the epigenetic regulations, tobacco smoking results in 1,000 to 10,000 mutations in a

somatic cell [50]. In smokers, 25% of the cells get driver mutations. It is reported for NSCLC that former as

well as current smokers show mutations in KRAS, STK11, NF1, KEAP1, and SMARCA4  [51]. Studies

conducted on NSCLC patients reveal that 35% of smokers show EGFR mutations  [52]. Similarly,

transversion mutations (G→T or G→C) can be found in KRAS in 25% of lung adenocarcinomas associated

with cigarette smoking [53][54]. However, different studies have been conducted, which suggest that EGFR

and KRAS mutations are frequent in smokers having lung cancer [55][56]. It is reported that smokers with

advanced lung adenocarcinoma show mutations in the anaplastic lymphoma receptor tyrosine kinase

(ALK) gene. Studies conducted on 9,575 patients have shown ALK mutations in 6.8%, out of which 70.9%

of lung adenocarcinoma patients are smokers [57].

Similar to gene expressions and mutations, smoking significantly causes gene polymorphisms in lung

cancer. Single nucleotide polymorphisms in smokers having lung cancer are documented for nicotinic

acetylcholine receptor alpha 4 subunits (CHRNA4)

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636285/), cytochrome P450 family 1 subfamily A

member 1 (CYP1A1)  [58], cytochrome P450 2A6 (CYP2A6)  [59], tumor suppressor TP53 (p53)  [60],

glutathione S-transferase P1 (GSTP1) [61], murine double minute-2 (MDM2) [62], and epoxide hydrolase 1

(EPHX1) [63].

Smoking-induced SNPs are also documented in inflammatory genes interleukin-1β T-31C [64], Il-6 [65], IL-

1β [66]. However, IL-6 and IL-1β polymorphisms are important in the development of lung cancer [67][68].

In addition to the gene expressions, mutations, and SNPs, smoking-induced inflammation causes a

tremendous effect to exacerbate lung cancer pathogenesis [69]. In this context, pulmonary disorders such

as chronic obstructive pulmonary disease (COPD) can be correlated with an abnormal inflammatory

response  [70]. Cigarette smoking promotes the overexpression of cyclooxygenase-2 (COX-2) and
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prostaglandin (PGE2) E2  [71]. Elevation of COX-2 and PGE2 plays an important role in promoting the

inflammation-induced development of lung cancer [72]. It is important to mention that smoking reduces

B-cell frequency. Depletion of B-cells results in the repression of T-cell and macrophage infiltration

towards lung tumors [73]. Besides, smoking impacts the tumor immune environment to induce a subset

of Treg cells for immunosuppression in lung cancer  [74]. However, the elevation of Treg cells and the

reduction of NK-cells in smokers having a high risk of lung cancer are also reported [75]. In vivo studies

show that smoking induces lung tumorigenesis through developing IKKβ and JNK1-mediated

inflammatory responses  [76]. Smoking promotes cancer stem cell proliferation, which in turn induces

epithelial-mesenchymal transition (EMT) and increases the production of inflammatory cytokines such

as IL-6, IL-8 [77].

Hypoxia and angiogenesis are two major factors in lung cancer carcinogenesis. Hypoxia leads to the

activation of transcription factors and promotes the high expression of proinflammatory genes, which

causes profound inflammation  [78]. It is demonstrated that nicotine results in the overexpression of

Hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in NSCLC [79]. HIF‑1α

is responsible for antiapoptosis and cancer cell proliferation  [80]. Whereas the increased expression of

VEGF causes angiogenesis, tumorigenesis, and metastasis [81]. Besides, signal transducer and activator of

transcription 3 (STAT3) is shown to be overactivated in tobacco-induced lung tumors with reduced

immunosuppression  [82]. In vitro studies show that myeloid cell leukemia-1 (Mcl-1) through STAT3 is

overexpressed due to nicotine exposure. It suggests that the downregulation of Mcl-1 and inhibition of

the STAT3 pathway may be potential targets in lung cancer  [83]. Nicotine has been shown to activate

phosphoinositide 3-kinases/ protein kinase B (PI3K/AKT), mitogen-activated protein kinases (MAPK),

and c-src survival pathways in lung cancer progression  [84]. Additionally, PI3K/AKT is also activated by

nicotine via α7-nAChR  [85]. In vitro studies show that cigarette smoke condensate phosphorylates and

degrades IκBα kinase (IKK), which in turn activates nuclear factor-κB (NF-κB) and enhances lung

carcinogenesis [86].

Oxidative damage due to smoking plays an important role in lung cancer pathogenesis. Reactive oxygen

species (ROS) can be generated directly from smoke itself and indirectly from other carcinogens or their

metabolites [87]. Free radicals and non-free radicals such as superoxide anions, singlet oxygen, hydroxyl

radical, and hydrogen peroxide cause significant damage to tissue by the oxidation of nucleic acids, lipids,

and proteins. However, the quinone/hydroquinone complex of the tar phase of cigarette smoke induces
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ROS generation. Oxidative damage to DNA/RNA results in the breaking of nucleic acid strands followed by

improper gap filling, which can lead to gene mutation and lung cancer  [88][89]. Oxidative stress can

further activate the transcription factor NF-κB to initiate the inflammatory cascade to trigger lung

cancer [90].

Vitamin D in lung cancer

Supplementation of vitamin D is reported to ameliorate lung carcinogenesis in different ways (Fig. 4). It is

reported that vitamin D deficiency (<20 ng/mL, 75.9%) is associated with the advanced stage of NSCLC,

where smokers (61.1%) show vitamin D concentrations <10 ng/mL [91]. Another study has shown that 46%

of the stage-IV lung cancer patients, including NSCLC, have vitamin D deficiency compared to

normal  [92]. However, supplementation of vitamin D with 30,000 IU/day for 14 days is effective in

achieving the target of 25(OH) D level in lung cancer patients (44%) having vitamin D deficiency [93]. A

systematic review and meta-analysis including 12 randomized clinical trials with 72,669 participants has

revealed the association of vitamin D intake with a reduction in lung cancer mortality [94]. In addition to

nicotine, a potential carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

promotes the nicotinic acetylcholine receptor (nAChR)/ proto-oncogene tyrosine-protein kinase

(Src)/STAT3-mediated lung tumorigenesis and activates the renin-angiotensin system and insulin-like

growth factor-1 receptor (IGF-1R) signaling [95].

Figure 4. Effect of vitamin D on various biological events such as genetic/epigenetic alterations, survival of

gene mutations, immune system, oxidative stress, and signaling pathways related to lung cancer. Symbols

“↓” and “↑” represent “low” and “high,” respectively.
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It is reported that VDR knockout mice exhibit decreased metastatic growth of lung cancer cells [96]. VDR

knockout mice show increased 1α,25(OH)2D3 levels in serum due to the absence of vitamin D-dependent

calcium activity. In this study, wild-type VDR+/+ and knockout VDR−/− mice have been injected with

cloned metastatic variant LLC cells tagged with GFP. It has been observed after day 18 that VDR+/+ mice

develop more metastatic nodules and tumors compared to VDR−/− mice. Another study shows that

vitamin D downregulates HRC protein and inhibits tumor growth, proliferation, and migration in lung

cancer [97]. In this study, H460 lung cancer cells with or without supplementation of calcitriol (2 × 10−8

M) are studied for HRC expression and other cancerous properties. It is noticed that HRC expression, as

well as cell migration and proliferation, are inhibited and apoptosis is initiated.

Molecular targets of vitamin D in lung cancer in relation to smoking

As mentioned earlier, mutations in the oncogenic suppressor p53 play a major role in lung cancer

progression. However, a study has reported that vitamin D at the dose of 2000 IU/d can reduce the risk of

death in p53 immunoreactive patients by increasing the survival rate up to 80.9% in gastrointestinal

cancer  [98]. Kras mutations are associated with smokers in NSCLC  [99]. KRAS itself, or through the

RAS/RAF/MEK/ERK canonical pathway, functions in cytoskeleton organization, cell survival,

proliferation, and vesicle trafficking  [100]. It is reported that Kras mutations are significantly correlated

with VDR overexpression [101]. Mutations in EGFR are also reported in smokers (23.4%), however, they are

more common in never-smokers (60.3%) [52]. It has been shown that activation of EGFR-tyrosine kinases

(TK) plays an important role in lung cancer progression [102]. However, EGFR mutations, such as T790M

mutations in EGFR, can resist drugs such as EGFR-TK inhibitors (gefitinib and erlotinib). Reduced levels

of vitamin D are associated with EGFR mutations, as reported in pulmonary adenocarcinoma [103]. In this

context, vitamin D may be useful for the progression-free survival of lung adenocarcinoma patients

having EGFR mutations  [104]. Similar to EGFR, Ki-67 is also associated with vitamin D levels. Ki-67 is a

prognostic marker, and its staining is useful to measure the tumor proliferative fraction  [105]. It is

reported that 1,25 dihydroxyvitamin D concentration in serum is inversely associated with Ki-67 [106]. In

this context, vitamin D3 supplementation in a dose-dependent manner is useful to reduce Ki-67

levels  [107]. Additionally, hTERT has been shown to enhance epithelial-mesenchymal transition in lung

cancer cells by increasing cMET (receptor tyrosine kinase)  [108]. It has been shown that 1,25(OH)2D3

downregulates hTERT mRNA expression and suppresses cancer growth in ovarian cancer cells  [109].
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However, the function of vitamin D to suppress lung cancer is yet to be explored. Additionally,

hypomethylation of smoking-related genes is already mentioned earlier, which is linked to lung cancer.

In this context, a higher concentration of serum 25(OH) D is linked to increased methylation, as reported

in breast cancer [110]. However, the effect of vitamin D in the regulation of smoking-induced epigenetic

modification in lung cancer is yet to be unfurled. Neurofibromatosis 1 (NF1) is a tumor suppressor and is

shown to downregulate RAS activity. NF1 mutations are common in lung cancer [111]. However, the serum

concentration of vitamin D is inversely associated with NF1 [112]. It further states the therapeutic efficacy

of vitamin D to suppress tumor development in patients with NF1. As previously stated, SNPs in CYP1A1

is reported in smokers having lung cancer[113]. In this context, vitamin D-induced expression of CYP1A1

has been reported using in vitro studies [60]. Besides, mutations and SNPs in epoxide hydrolase 1 (EPHX1)

are linked to lung cancer and various diseases [114][115]. EPHX1 is an enzyme involved in the hydrolysis of

epoxides from aromatic hydrocarbons and amines released by cigarette smoke [116]. This process leads to

the production of carcinogens and enhances the pathogenesis of lung cancer. In vivo studies show that

1,25(OH)2D3 results in the overexpression of EPHX1 in vitamin D-deficient rats  [117]. However, this

mechanism is not explored in lung cancer. IL-6 and IL-1B polymorphisms are associated with lung cancer

pathogenesis [118].

Apart from these, vitamin D is known to regulate the immune system. Vitamin D has been shown to

downregulate the proinflammatory cytokines IL-6 and IL-8  [119][120]. Additionally, cyclooxygenase-2

(COX-2) overexpression is associated with cigarette smoking-induced NSCLC [121]. However, vitamin D is

shown to be effective in reducing COX-2 and prostaglandins (PGs) in a dose-dependent manner  [122].

Vitamin D is also reported to inhibit PGE2 [123]. Moreover, 1,25(OH)2D3 has been shown to be involved in

activated B-cell proliferation and the improvement of regulatory B-cell function  [124][125]. It is reported

that NK cells exhibit the first line of defense against lung tumors. They generally activate both innate and

adaptive immune responses. Therefore, NK cells are used as immunotherapy to treat tumors. In this

context, 1,25(OH)2D3 directly affects the function and cytotoxicity of NK cells, which is supported by in

vivo studies  [126][127]. Additionally, vitamin D targets cancer stem cell-associated signal transduction

pathways such as TGF-β, Wnt, Hedgehog, Notch, and prevents cancer stem cell proliferation  [128]. As

mentioned earlier, EMT is associated with lung cancer progression. Hence, targeting EMT may be a

potential therapeutic strategy in lung cancer [129]. It is shown that vitamin D 1,25(OH)2D3 prevents EMT

by inhibiting proliferation [130].
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It is already mentioned earlier that overexpression of HIF-1α and VEGF is associated with lung cancer

pathogenesis. Besides, vitamin D level is negatively correlated with serum HIF-1α level in diabetic

nephropathy [131]. However, this correlation is not unfurled in the case of lung cancer. It is reported that

vitamin D has the potential to reduce VEGF gene expression as well as the serum level of VEGF [132][133]. It

is reported that vitamin D inactivates the PI3K/AKT/mTOR signaling pathway and inhibits the

progression of NSCLC through suppressing the Warburg effect and stemness of NSCLC cells [134]. It has

been shown that vitamin D is capable of suppressing MAPK signaling in colon cancer  [135]. However,

vitamin D targeting potential signaling pathways related to lung cancer needs to be studied in more

detail. As stated previously, NF-κB aggravates lung cancer by promoting lung tumorigenesis and

metastasis  [136]. Additionally, JAK–STAT signaling also contributes to lung adenocarcinoma, which may

be correlated with cigarette smoking  [137]. It is reported that inhibition of JAK1/2 may be a therapeutic

strategy in K-RAS-mediated lung adenocarcinoma [138]. In this context, an in vivo study with Drosophila

melanogaster reveals significant downregulation of genes associated with NF-κB and JAK/STAT signaling

pathways [139]. Cigarette smoking, especially nicotine, significantly contributes to activating extracellular

signal-regulated kinase 1/2 (ERK1/2) through phosphorylation, which can be correlated with lung

cancer  [140][141]. It is reported that administration of vitamin D can result in the downregulation of the

ERK1/2 activation pathway and attenuates chemokine secretion in myocardial injury [142]. However, the

correlation between vitamin D and ERK needs to be studied in lung cancer patients.

Vitamin D supplementation is reported to downregulate reactive oxygen species (ROS) [143][144]. Vitamin

D plays a central role in modulating mitochondrial oxidative metabolism by lowering fusion/fission and

oxidative phosphorylation  [145]. Vitamin D upregulates glutathione, which converts hydrogen peroxide

(H2O2) to water. Additionally, vitamin D activates glucose-6-phosphate dehydrogenase and

downregulates nitrogen oxide and converts O2− to H2O2
[146]. However, vitamin D increases superoxide

dismutase in muscle, which suggests vitamin D as a potential antioxidant [144][147].

Conclusion

The number of lung cancer cases and deaths is increasing. Clinicians are concerned about proper and

targeted therapeutics. Tobacco smoking is the leading cause of lung cancer-related mortality. In this

context, smoking causes a significant reduction in vitamin D concentration in both active and passive

smokers. It is also studied that vitamin D deficiency is associated with lung carcinogenesis in smokers.
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Besides, vitamin D supplementation has been shown to be effective in the reduction of lung cancer

mortality. However, the underlying molecular mechanisms are poorly understood. The present study has

shown the plausible molecular targets and biochemical interactions through which vitamin D can act as a

supplementation therapy to control and prevent lung cancer pathogenesis.

Extensive literature study and data compilation have revealed that smoking remarkably decreases the

vitamin D level in lung cancer patients. The reasons for reducing vitamin D in lung cancer may be due to

VDR gene polymorphism and VDR depletion because of the toxic and carcinogenic component of

cigarette smoking such as nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Smoking also

heightens Ca2+ influx in vascular smooth muscle cells, which further aggravates lung cancer

pathogenesis. In this context, vitamin D may lower the Ca2+ influx through decreasing HRC, which in

turn inhibits cancer cell proliferation and migration. Smoking significantly overexpresses genes related

to lung cancer pathogenesis. It also results in epigenetic alterations such as hypomethylation and genetic

alterations such as gene mutations and polymorphisms. Smoking potentially increases inflammation

and reduces vital immune cells such as B-cells and NK-cells. Smoking predominantly increases ROS and

activates various signaling pathways related to lung cancer progression. However, existing literature

shows the importance of vitamin D in targeting smoking-induced biochemical alterations as mentioned.

Vitamin D potentially targets and reduces the gene expressions of HIF-1α, Ki-67, HTERT, NF1, CYP1A1,

EPHX1, and VEGF, which are significantly associated with lung cancer pathogenesis. Additionally, vitamin

D increases the survival of lung cancer patients having p53, KRAS, and EGFR gene mutations.

Supplementation of vitamin D may reduce lung cancer-related inflammation and increase B and NK-cell

counts. Vitamin D has been shown to reduce ROS and reactive oxygen species to control oxidative

damage to nucleic acids. Nevertheless, vitamin D targets various signaling pathways such as TGF-β, Wnt,

Hedgehog, Notch, PI3K/AKT/mTOR, MAPK, ERK1, ERK2, and NF-κB, which may control lung cancer

progression. This study highlights the potential of vitamin D as an adjunct therapeutic agent in

mitigating smoking-induced lung carcinogenesis. However, extensive research in the concerned field is

required for an in-depth understanding of the underlying molecular mechanisms and target-specific

pathways.
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