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In the age of smart IT, data management - the very foundation of information technology - remains

laborious, inef�cient, largely inaccessible, falling far short of its potential. The means of taking a

major leap forward in data management is here. The rapid evolution of arti�cial intelligence presents

a paradigm-shifting opportunity in digital storage and data management. This paper suggests how

Agentic AI systems can revolutionize the ways organizations and people store, organize, and retrieve

data. We propose AI to manage all data storage and retrieval needs of humans. By leveraging advanced

machine learning, and autonomous decision-making capabilities, AI-driven data management

promises to transform data management from an inef�cient time-consuming process to an

intelligent personalized service accessible to everyone.
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1. Digital Neolith, Late Data Stone Age

From driverless cars to oh so realistic AI-generated deepfakes, to hyper addicting videos on YouTube,

TikTok and Net�ix, to helpful tools like MS Word and ChatGPT, the progress of information technology is

dazzling. The pace of chance is mesmerizing: “a year in machine learning [a foundation of modern AI] is

a century in any other �eld”[1]. 

Marveling at the digital world, it is hard to believe, ours is probably the Data Stone Age. You read it right:

Stone Age. How can this not be the pinnacle of human development, you may object? And yet, with all the

advances in AI and other tech, we are likely only at the dawn of the IT revolution. The reason is, data
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management, the very foundation of information technology remains laborious, inef�cient, largely

inaccessible, and falling far short of its potential. 

Data management is everywhere. Organizations, employees, and people going about their daily lives

constantly manage digital data. And nearly every time, this is a struggle. Saving a picture on a

smartphone, registering for a concert, making a social media post, backing up work �les to the cloud, is

not hard to do. Remembering the details in an email received a week ago, �guring out the most recent

version of a shared document, �nding all the relevant customer data, securing private records from

mischievous actors, is not so easy. As if by some cruel irony we create digital data with ease, only to

struggle managing it afterwards.

While computing devices, cloud, AI, platforms, and apps have made remarkable progress, most data

management tasks rely heavily on human intervention, and are grossly inef�cient. Data management is

commonly synonyms with effort and often, with frustration. In some projects, “data discovery, data

ingestion, data cleansing, and data-pipe engineering” can take “months”[2]. It has been estimated that

80% of the time in analytics projects is spent on data management[3].

Poor data management causes massive �nancial, reputational losses. Even leading information

technology companies struggle with data management, as evidenced by constant high-pro�le failures.

Consider, for example, the IBM Watson - MD Anderson Cancer Center debacle that instead of curing

cancer resulted in multimillion dollar losses[4][5]. Due to frequent debacles, valuable opportunities

routinely go untapped.

In the US alone, the estimated cost of poor data quality exceeds $3 trillion[6][7]. Organization are said to

be spending up to 30% of their revenue handling data quality issues[6]. These shocking �gures are a vivid

testimony of how important data has become, and how non-trivial it is to manage it. 

The good news is we are in a Digital Neolith, the Late Data Stone Age. This means change is near.

Arti�cial intelligence, leveraging such advances as Generative AI[8][9]  and Agentic AI[10][11]  is a natural

response to the onslaught of data. It is a recipe to evolve into a different paradigm of data management, to

usher in a new age of data. 

This paper suggests a key feature of the Next Data Age: data management powered by AI. The idea is

simple: for all data needs (creation, collection, storage, retrieval of data), a personal AI executive is there to

handle it. An AI Data Executive (AIDE) dynamically adjusts to the preferences, skills and capabilities of

the user, and handles all the �les, documents, and information the user provides. It abstracts the
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handling and storage process, which is highly optimized to ensure intelligent retrieval and

environmental ef�ciency. When the user wants to see or exchange the data, AIDE retrieves and provides

it. This simple vision, however, harbors a lot of complexity, involving a host of technical, social, security

and ethical challenges that need addressing. The paper outlines the general principles of AIDE and

suggests open questions that need to be answered to make AI data management a staple of the Next Data

Age.

2. Modern Data Management

2.1. Pains and Ills of Modern Data Management

Data management is laborious, inef�cient, and falling far short of its potential. The problem becomes

worse with time, as data volumes grow and reliance on digital data increases. Here are some observations

on the state of data management today (summarized in Figure 1). 

We begin with an unusual data management challenge, which unfortunately does not see the attention it

deserves. We will start with the issue of inclusion.

Inclusion in data management is ensuring that anyone interested in collecting, storing and using digital

data is able to do so with ease and bene�t. Modern data management is not inclusive. Period. Consider

just a few examples of data management inaccessibility. Most data management (e.g., setting up data

collection interfaces, creating data models, scripting database schema, optimizing queries) relies heavily

on human visual modality. This places a signi�cant barrier for people with visual impairments.

Furthermore, data management, especially on a scale, requires signi�cant technical skills, such as

knowledge of specialized software (e.g., Hadoop, NoSQL, data lakes), and languages (e.g., data modeling,

python, SQL). Some groups have been consistently marginalized and continue to be ill-represented in

data management (e.g., women). Speci�c activities of data management[6][12][13], such as modeling, data

collection and acquisition, data organization and curation have been called out for being poorly

accessible to diverse users[14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31].
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Figure 1. Data management challenges in the Late Data Stone Age

Inclusive data management is data management that accommodates different levels of skill and access

across all data management activities. This includes all aspects of data management, such as modeling,

acquisition, governance, infrastructure and consumption support (so called, MAGIC of data

management). The present focus in accessibility is on issues of interface design (data acquisition aspect

of MAGIC). In contrast, issues related to modeling, governance, infrastructure and consumption support

are generally ignored. By lowering barriers to access, inclusive data management should provide more

equitable and effective use of digital information, so everyone can bene�t from the wealth of

opportunities of the digital world. 

Data fragmentation  brings a host of challenges for people and organizations. Files and information

records are scattered across multiple platforms and devices - personal computers, cloud drives, mobile

phones, and organizational storage systems. Furthermore, data is not only standalone documents,

pictures or video �les. It is also information stored inside digital systems, such as platforms, apps,

software packages scattered across the digital universe. Hence, customer data in an organization might
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be spread across a customer relationship management system, an email marketing platform, sales

spreadsheets, and customer service logs. 

This fragmentation increases risks and breeds inef�ciency. Financial reports might rely on data from

accounting software, supply chain management platforms, and sales forecasts - each stored in different

formats and updated on separate schedules. A single discrepancy between these sources could skew the

entire �nancial outlook but reconciling them requires manual effort and cross-department coordination.

The result is that an organization may miss critical context, such as a customer’s recent complaint or a

pending contract renewal, leading to poor service and lost business opportunities (or worse). 

On a personal level, individuals face similar issues when trying to manage their private data. A person

planning a trip might have �ight details in their email, hotel reservations saved as PDFs in a cloud drive,

and notes on sightseeing spots in a mobile app. If the person wants to create a single itinerary or share

the plan with a friend, it would be an ordeal to manually gather this data from different platforms and

formats. Worse, if any data is outdated or saved in a format that’s no longer compatible with their current

device or software, they may have to manually convert it, if this is at all possible. 

At work or at home, people need to remember where they store speci�c �les and manually update and

transfer documents, pictures, videos between systems. Synchronization between platforms is often

inconsistent, forcing people to track different versions of �les and reconcile con�icts manually. Data

retrieval depends on precise naming or folder structures, and search functions are often limited by

incomplete metadata or poor indexing, making it dif�cult to �nd relevant information quickly. 

Lack of contextual awareness of data by data managing services is a major cause of effort and failure.

Data systems struggle to understand the deep meaning of data and identify semantic links. Current data

management tools can store and retrieve �les but struggle to recognize relationships between different

data sets or formats. For instance, a presentation, a spreadsheet with �nancial data, and an email

discussing the same project might be stored in completely different locations without any logical

connection established between them. Users must manually consolidate and cross-reference these �les,

which increases the risk of overlooking critical information or making decisions based on incomplete

data. Furthermore, data categorization and tagging remain largely dependent on user input, which is

inconsistent and prone to error[32][33][34][35]. 

Poor data quality - resulting from incomplete, outdated, or inconsistent data - can undermine decision

making and actions taken with data. Issues such as duplicate records, incorrect customer information,
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and misclassi�ed data increase risks and degrade operational ef�ciency[36][37][38]. Even leading

information technology companies struggle with data quality issues. Thus, after multimillion dollar

investments and much hype, MD Anderson Cancer Center scraped collaboration with an AI system

Watson provided by IBM[4]. This is despite IBM’s ambitious goal to use AI to cure cancer. The demise of

the MD Anderson-Watson project was signi�cantly in�uenced by issues of data quality. The project

struggled with inconsistencies and errors in the data, which hindered the effectiveness of the Watson

system in providing accurate and safe recommendations for cancer treatment[5]. 

Data quality is not only a technical issue of ensuring data is accurate, complete or timely – the common

data quality considerations[34][36][39][40][41][42][43][44][45][46]. Data is a social artifact[47][48][49][50]  and

quality also involves fairness - whether data has been collected ethically, legally, and in accordance with

relevant cultural norms. Present understanding of data fairness is scattered across speci�c areas of focus,

such as informed consent issues in scienti�c research and consumer surveys[51][52][53], or legal evidence

admissibility[54][55][56][57]. Fairness is not well-incorporated in general data management frameworks,

and hence, can be easily overlooked. 

Data security further complicates data management. Securing data remains exceedingly dif�cult as data

volumes and variety grow. Attacks and data breaches are on the rise, resulting in signi�cant damages.

The global cost of cybercrime is projected at $10.5 trillion[58], growing at a rate of 15 percent annually[59].

For example, a data breach experienced by Equifax in 2017 was caused by inadequate data security

measures that allowed hackers to access sensitive information of approximately 147 million people.

Cyberattacks using stolen credentials increased 71% year-over-year[59].

The proliferation of devices and data across different systems exacerbates security risks, with users

resorting to insecure workarounds such as emailing �les to themselves or using unapproved �le-sharing

platforms. Organizations and individuals must navigate complex permissions settings to share �les

securely across teams or personal devices to prevent unauthorized access and attacks. Backup and

recovery processes are similarly disjointed - most systems rely on scheduled backups rather than real-

time, context-aware preservation of critical data. 

With the explosion of data and progress in IT, security becomes harder to handle even for seasoned IT

specialists. For example, the advent of quantum computing threatens to undermine the cryptographic

foundations of modern secure communication. Researchers, companies and regulators around the world

scramble to address the impending quantum security challenges[60][61][62][62][63][64].
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Compliance with existing rules and regulations  is an especially dif�cult challenge for organizations

(and, to a lesser extent, individuals). As the importance of data in society grows, so do the rules and

regulations that organizations must follow or face penalties. Many organizations struggle to implement

clear policies for data ownership, usage rights, and retention, leading to unauthorized data access,

inconsistent data quality, and non-compliance with regulations such as GDPR (General Data Protection

Regulation) and CCPA (California Consumer Privacy Act). Failure to maintain proper governance can

result in legal penalties, reputational damage, and loss of customer trust.

The environmental impact  of data management is staggering and continues to grow. This is

unsurprising. It is dif�cult to manage fragmented data ef�ciently. While for most people, IT is invisible

(some even call it virtual, as if non-existent)[65], all IT is physical and this physical dataverse takes a very

heavy toll on the environment[66][67][68]. Much of this toll is in data management[69]. Thus, cloud storage

facilities alone account for over 1% of global electricity consumption[70]. If “digital world were a country,

it would be the third-biggest energy consumer after China and the United States”[71]. 

Figure 2 visualizes modern data management challenges as a word cloud. 

Figure 2. Cloud of data management challenges

qeios.com doi.org/10.32388/0386CK 7

https://www.qeios.com/
https://doi.org/10.32388/0386CK


2.2. Causes of Data Management Challenges

Complexity that exceeds human capabilities is a fundamental cause of data struggles we face today. As

long as it is easy to create new data, and it is useful and enjoyable to do, humans will continue doing it,

resulting in expanding volumes of data. The more digital data shapes different facets of human existence,

the more diverse kinds of data are produced, to match the complexity of the world around us. The greater

the volume and diversity, the harder the challenge to organize, curate, and retrieve data afterwards.

Yahtzee! We are in a race against complexity.

Humans are naturally inclined to document, share, and store information as a means of communication,

problem-solving, and self-expression[72][73][74].   The proliferation of smartphones, social media

platforms, and cloud-based applications has made data creation almost frictionless, accelerating the

growth of data volumes at an unprecedented rate. The more accessible and integrated these platforms

become, the more individuals and organizations contribute to the data ecosystem, reinforcing a feedback

loop of continuous data generation. 

The more digital data becomes embedded in different facets of human existence, the more varied and

specialized the types of data are produced. For instance, business data now includes not only structured

information such as �nancial records but also unstructured data like customer feedback, social media

interactions, and multimedia content[75][76][77][78][79][80]. Similarly, personal data encompasses not just

text-based information but also health metrics from wearable devices, location data from GPS tracking,

and images from social platforms. The heterogeneity of this data creates signi�cant challenges for

integration, as different formats and sources require distinct handling and processing methods. Without

intelligent systems capable of handling such diversity, the task of organizing and retrieving data becomes

increasingly effortful and inef�cient. 

The challenge is further compounded by the fact that data creation often outpaces data management

infrastructure. While storage capacity and data processing capabilities have improved, they have not kept

pace with the exponential increase in data volume and variety. As a result, organizations and individuals

frequently encounter data silos, inconsistent �le structures, and incompatible formats. The rise of cloud

computing and remote work has exacerbated this issue, as data is now distributed across multiple

platforms and geographic locations. This decentralization creates gaps in data visibility and control,

making it harder to establish a single source of truth. The more complex the data environment becomes,
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the greater the cognitive and operational burden on users to navigate and reconcile disparate data

sources. 

The cognitive load involved in data organization and retrieval increases with the diversity of data sources

and formats. Human working memory is limited in its ability to process and categorize information[81]

[82]. When faced with excessive or poorly organized data, people experience increased mental strain,

leading to slower decision-making and higher error rates[83][84][85]. In organizational settings, this

manifests as reduced productivity, miscommunication, and stress, especially for older employees[86][87]

[88]  or employees with disabilities[89]. Even at the individual level, the effort required to consolidate

personal data across devices and platforms - such as combining health data from a smartwatch with

dietary records from a mobile app - creates barriers to effective data use and decision-making. 

To sum up, as long as it remains easy and rewarding to create data, the volume and diversity of data will

continue to grow, reinforcing the complexity of the data ecosystem. Effective data management

strategies must therefore account for both the human tendency to generate data and the human

limitations in handling this complexity. Addressing modern data management challenges requires more

than just expanding storage or improving processing speeds; it necessitates the development of

intelligent data management systems capable of contextual understanding and adaptive organization.

3. AI, the Ultimate Data Manager

3.1. Foundations

This paper advances a critical proposition for the Next Data Age: AI-driven data management as a

fundamental data paradigm. At the core of this vision is the concept of an AI Data Executive (AIDE) - a

personal, adaptive system designed to autonomously manage all aspects of data interaction, including

creation, collection, storage, and retrieval. By dynamically adjusting to the user's preferences, skills, and

capabilities, AIDE assumes full responsibility for organizing and handling �les, documents, and

information, thereby abstracting the complexities of data management into a seamless, optimized

process. This intelligent system not only enhances ef�ciency in data retrieval but also prioritizes

environmental sustainability through resource-aware storage mechanisms. 

Despite the allure, the implementation of AIDE entails signi�cant technical, social, security, and ethical

challenges that must be rigorously addressed. Before articulating the architectural principles of AIDE, we
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make explicit its underlying core values. This is inspired by agile development and Agile Manifesto[90].

There may be multiple ways to implement AIDE, and we do not suggest for ours to be de�nitive or the

best.1 By laying out the foundational values of the system, however, we inspire future developments

which can �nd better ways to realize these values into speci�c technological implementations. We

propose Arti�cial intelligence to manage all data storage and retrieval needs of humans. This is needed to

handle the excessive and rising complexity of data management. The resulting AI Data Executive (AIDE)

is a speci�c system designed to achieve these goals. AIDE or any such system must adhere to the

following foundational values:

Value 1. Human �rst, human is the end, not means. 

The value “Human �rst, human as the end, not means” re�ects a philosophical and ethical stance that

prioritizes human well-being, dignity, and autonomy in any system, technology, or societal structure. It

suggests that: 

�. Human is always the priority. Human needs, rights, and values should be the primary consideration

in any AI implementation. Rather than prioritizing ef�ciency, pro�t, or automation for its own sake,

AI systems such as AIDE should be designed to serve and empower people. 

�. “Human as the end, not means. Human users should never be treated merely as instruments or

resources to achieve external goals (e.g., corporate pro�t, technological progress, or political power).

Instead, all systems and advancements should ultimately serve human �ourishing, rather than

reducing people to tools for some other objective. 

This value originates in Kantian ethics[91], which argues that human beings should always be treated as

ends in themselves, never merely as means to another’s end.

Value 2. Safety, reliability, sustainability, transparency over raw performance.

The value “Safety, reliability, transparency over raw performance" insists that in the design and

deployment of AI, certain foundational values should take precedence over speed, ef�ciency, or

computational power.

�. Safety First. Systems must be designed to prevent harm, both physical and digital. AI and automated

systems should not pose risks to individuals, society, or the environment. Safety includes

robustness against failures, adversarial attacks, and unintended consequences.
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�. Reliability. A system should function consistently and predictably under various conditions. It

should not behave erratically, make critical errors, or require excessive human intervention to

correct unintended outcomes. 

�. Sustainability. An implementation should prioritize the impact on the broader environment,

including nonhuman animals and natural resources of the planet.

�. Transparency. The inner workings, decision-making processes, and limitations of a system should

be understandable to users and stakeholders. Black-box AI models or opaque decision-making

mechanisms can lead to mistrust, bias, and unintended harm. Transparency ensures accountability

and fosters responsible use. Naturally, we recognize the impossibility of full transparency, especially

when dealing with highly performant AI models (e.g., deep learning neural networks)[5][92][92]. 

This value is consistent with the foundations of design as outlined in Larsen et al.[93]’s design science

validity. Any robust design according to design science validity should not only demonstrate superior

performance (criterion validity) but the designers should also con�dently know how the system works

(causal validity), and where it is appropriate to use it (context validity). 

Value 3. Data owners should be in full control over their data. 

The value “Data owners should be in full control over their data” promotes data sovereignty, which

asserts that individuals or entities that own data have the right to manage, access, and determine how

their data is used, shared, and distributed. This value advocates for personal autonomy over digital data,

ensuring that owners retain full authority over decisions regarding their data, rather than allowing third

parties or external organizations to dictate its use without consent. This includes the ability to grant or

revoke access, modify data, or delete it, all while maintaining transparency about how data is being

handled.
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Figure 3. Foundational values of AIDE

The three foundational values of AIDE (Figure 3) promote a human-centric approach to technology and

data management. Together, these principles advocate for ethical, responsible, and human-centered

technological progress. We now show how these values are implemented.

3.2. Architectural Principles

The general architecture of an AI Data Executive (AIDE) is provided in Figure 4. It depicts a basic set up

which can be specialized for particular needs, industries or in compliance with speci�c regulatory

requirements. The aim of any architecture is to realize the three foundational values behind AIDE as best

as possible. For general advice on how to implement abstract ideas into speci�c technological

implementations (or to establish instantiation validity), see[94][93][95][96][97][98][99][100]. 

qeios.com doi.org/10.32388/0386CK 12

https://www.qeios.com/
https://doi.org/10.32388/0386CK


Figure 4. Architecture of an AI Data Manager

3.2.1. System Owner 

A human �gure at the top is the System Owner, a person, a team of people, or their designated proxies,

who own the data. Recall that foundational value is to ensure the System Owner is always in full control

of their data, is always fully informed of any decision made and that no decision can be made without

informed consent of the System Owner. The rest of the architecture implements these ideals. 
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The AI Data Executive is a multi-layered, modular system. This ensures its ability to evolve and be �exible

to the changing user needs, technological developments and regulatory requirements[24][101][102][103][104]

[105]. Data �ows with the support of AI from its origin – the data creator, be it the human or human-

controlled process - to storage. Data also �ows back to data consumer – the owner or the devices

authorized by the System Owner to receive the de�ned information.

A System Owner is free to utilize a diverse range of devices, such as smartphones, laptops, drones, 3D

printers, and tactile interfaces, to both collect and display information. All this is managed and stored

centrally, facilitated by arti�cial intelligence. 

While the System Owner has the �exibility to choose which device to use, the devices place physical

limitations on the kind of information that can be collected and displayed. On the other hand, the

properties of the devices make certain type of data collection and presentation possible. For example, a

smartphone can gather location data, a drone can capture aerial imagery, and a 3D printer can produce

physical models based on processed data. 

The devices themselves may or may not be part of AIDE. Different options are possible. Hence, it is

possible to develop some devices that would provide additional capabilities to take advantage of AIDE. For

instance, a drone could be speci�cally designed to supplement AIDE, allowing it to send real-time

landscape imagery directly into the system for analysis and transmission to other devices (e.g., 3D

printer). This way the System Owner can orchestrate a multistage information exchange to automate

some complex tasks (e.g., building a 3D image of the landscape for construction purposes). At the same

time, general computational devices, such as laptops and smart phones, could simply install AIDE as a

software package or an app, thereby permitting these devices to be integrated into the AIDE’s ecosystem.

In a device that runs AIDE the collected data is processed and standardized through Universal Data

Exchange. This way data remains accessible and interoperable across multiple devices. This enables AIDE

to manage data consistently, even if the devices vary in capability and design.

3.2.2. Universal Data Exchange

All collected information is transmitted through a Universal Data Exchange (UDE), which standardizes

and translates the data into a uni�ed storage format. The UDE acts as a central hub, facilitating data

integration and enhancing the overall ef�ciency and adaptability of the system. The output capabilities of

UDE transform data into actionable formats suited to the receiving device’s functionality. For example,
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data collected from a smartphone on air quality can be visualized on a laptop dashboard or translated into

haptic feedback on a tactile interface to alert visually impaired users about hazardous conditions. 

The Universal Data Exchange has three components: Primary Multimodal, Custom and Code. In using

various devices, System Owner can leverage the speci�c functionalities of these three components,

provided the devices permit the integration with these components. Not all devices will be able to

support each component. For example, some devices may not allow the user to directly write code or

manipulate custom graphic user interface objects. In this context, the role of Primary Multimodal, which

is the AI-powered component, is to  automatically discover the physical capabilities of each device and

adjust data collection and presentation options accordingly. In contrast, Code and Custom components

are not AI-based and may require System Owner to manually negotiate the capabilities of a particular

device in order to enable these components.

Primary Multimodal is the main interface for collecting and presenting data. It is AI driven and seeks to

collect and provide data in any possible mode. The aim is to support the known human sensory

systems[106]: 

Vision (Visual System): Graphic use interface, the standard and most used type of interface today.

Principles of user interaction with graphical interfaces are established[107][108]. Advances in AI,

including natural language processing, and computer vision, allow for greater adaptivity and

customization of the graphic interface[109]. 

Hearing (Auditory System): Voice and sound interface. More recent, but now becoming widely

available due to progress in speech recognition, text-to-speech, natural language processing[109]. 

Taste (Gustatory System): Gustatory interface is presently a futuristic idea of providing real experience

of taste. Taste simulations are already being developed[110][111]. 

Smell (Olfactory System): Olfactory interface permits detecting odors and producing odors. Such

interface is already being considered[110]. 

Touch (Tactile System): Allows users to feel sensations like pressure, temperature, and pain through

receptors in the skin. These interfaces are emerging, including 3D surface generation, Braille systems,

and realistic video games[112]. 

AIDE’s Primary Multimodal interface allows users to interact with the AI system through different

modalities depending on the context, user preferences and abilities. The interface dynamically adjusts to

the user’s input style and the task at hand. For example, a user could start interacting with the system
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through a graphical interface, such as a dashboard displaying data visualizations. If the user needs deeper

insights, they could switch to natural language by asking follow-up questions in plain language, like

“Why did sales drop last quarter?” This transition between graphical and natural language inputs allows

the interface to adapt to varying levels of technical expertise and preferred ways to handle data. 

An optional component of AIDE is Brain-Computer Interface (BCI), a system that establishes a direct

communication pathway between the brain and an external device, such as a computer or prosthetic

limb. BCIs work by detecting and interpreting neural signals, typically electrical activity from the brain,

and translating them into commands that control an external device or software. The goal of BCIs is to

enable individuals to interact with machines or environments without relying on traditional muscle-

based pathways. It is understandable that BCI is a controversial technology and is not for everyone.

However, BCI plays a critical role for supporting people with some disabilities and those undergoing

rehabilitation that can be facilitated with BCI. Hence AIDE supports BCI.

Figure 5. Integrated Sensory Interface of UDE
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The optimal implementation of AIDE is to ensure that all sensory systems are integrated (see Figure 5).

This way, the interface, driven by AI, can adapt based on environmental and situational factors. In a

manufacturing setting, for instance, a technician might use haptic feedback to adjust machinery settings

directly through a tactile interface, while also receiving real-time diagnostic reports through a graphical

or natural language display. Only an integrated interface would permit people with different skills,

abilities, and needs to manage data effectively.

An important component of AIDE is Custom Interface. Unlike Primary Multimodal, Custom Interface is

not driven by AI’s adaptivity, but is rather a blank slate, allowing the user to design their own interfaces

by customizing and �xing the modalities and presentations upon their choice. This interface lacks the

adaptivity of the Primary Multimodal interface but ensures the ability of the System Owner to have full

control over all interface components. AI would still be responsible for processing the data generated by

Custom Interface. The output of data is controlled by the user and can be presented either through

Custom Interface or through Primary Multimodal, depending on the type of data and the rules set up by

the System Owner.

Both Primary and Custom interfaces are able to execute programming code, such as Python or SQL.

However, Primary Multimodal interface is driven by AI, and hence, code interpretation and execution are

AI-mediated. To allow for direct control over data using code, Code Interface is provided. The interface

seeks to support common programming languages and frameworks, including ability to download and

install new languages and frameworks. The aim of the interface is to collect and retrieve data using code.

Such systems as Apache Spark illustrate the potential to use different languages, including SQL, Java,

Scala, Python and R for data manipulation. They directly inspire AIDE.

Code Interface allows “power users” familiar with programming to write code in their preferred language

without interference from AI that might attempt to "optimize" or modify the execution path. For

example, a user might write a data manipulation job in Python to process a large dataset and then switch

to SQL to run some queries on the processed data. Direct code execution ensures that the execution

engine of the Code Interface processes the code exactly as written. The Code Interface always becomes

available for any device that permits entering text (or voice) or supports low/no code graphics.

The aim of Universal Data Exchange is to be responsive and intuitive, regardless of the complexity of the

task or the user’s preferred mode of interaction. The �exibility across modalities ensures that the system

is not only user-friendly and inclusive but also capable of supporting sophisticated, context-speci�c

work�ows. 
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3.2.3. Arti�cial Intelligence and Data Flow 

The AI layer of AIDE is made of several AI components. An AI functions as a tool to augment human data

management rather than replace it. Any implementation of the system remains aligned with human

values, goals and regulatory regimes. The aim is to build the AI layer based on the sound, reliable state-

of-the art engineering principles[113]. 

The Arti�cial Intelligence layer’s job is collecting, storing, processing, organizing data, and deriving

insights from data to support owner’s decision making and actions. Effectively, it connects System

Owner, via Universal Data Exchange with the Storage Layer. The AI layer interacts with the modalities of

the Universal Data Exchange. These modalities in turn are able to pass to AI any external sources

provided by the owner (e.g., video �le). 

Among the core AI components, a General Manager functions as a central orchestrator, overseeing and

coordinating the activities of multiple specialized AI agents to achieve complex, high-level objectives.

Acting as a meta-controller, the manager assigns tasks, monitors progress and dynamically adjusts the

roles and priorities of specialized agents based on real-time feedback and changing conditions. 

The functions of the General Manager leverage such AI technologies as hierarchical reinforcement

learning (enables autonomous decomposition of long-horizon tasks into simpler subtasks)[114] and meta-

learning (facilitating the learning process itself)[115]. 

Specialized AI agents are designed to handle speci�c data management functions - such as data analysis,

language processing, decision support, or automation - while the General Manager agent integrates their

outputs, resolves con�icts, and ensures alignment with overarching goals and AIDE’s values. This

architecture enables adaptive, context-aware decision-making, where the general AI agent synthesizes

insights from diverse agents, identi�es gaps or redundancies, and orchestrates coordinated responses.

Such a system is informed by research in multi-agent systems and autonomous coordination[116][117][118].,

where central intelligence manages distributed, task and domain-speci�c expertise.

Consider the tasks for one specialized agent. The Specialized Storage Agent is tasked with continuously

updating the Optimized (transformed) storage. This agent functions as an intermediary between the raw

data in the original storage and the AI processing layer, ensuring that the data remains clean, structured,

and up to date. The agent can employ data cleansing techniques such as outlier detection, imputation of

missing values, and normalization of data formats to maintain consistency. Moreover, it could use real-

time data streaming and batch processing strategies to handle large-scale data updates.
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The specialized AI agent would also need to handle data augmentation and fusion from multiple sources.

Related data often originates from heterogeneous sources sensor networks, user interactions, external

databases, and more. The agent would be responsible for aligning and merging these disparate data

streams, resolving con�icts, and �lling gaps to create a uni�ed, enriched dataset. Research on data fusion

techniques (Dong & Srivastava, 2015) suggests strategies for resolving inconsistencies and redundancies

to improve data reliability and downstream AI performance.

The Storage Agent should leverage advanced machine learning techniques to dynamically classify and

organize �les, moving beyond traditional hierarchical folder structures. By employing contextual

understanding, AI can analyze not only �le content but also metadata, creation context, and usage

patterns to create meaningful organizational structures. For example, an AI system could recognize that a

�nancial report and a sales forecast are related through shared data points and automatically group them

together under a broader “Business Strategy” category. This allows the system to maintain a more �uid

and adaptive �le organization system, ensuring that �les are easier to �nd and logically connected based

on real-world relationships rather than rigid folder paths.

Predictive categorization enables AI storage systems to anticipate user needs by learning from individual

and organizational �le management behaviors. For instance, if a user frequently accesses market

analysis reports at the start of each quarter, the AI system can proactively suggest or organize those �les

for easy access. Semantic indexing further enhances this capability by understanding the meaning and

relationships between �les rather than relying solely on keywords. If a user searches for “customer

engagement,” the AI can retrieve not only �les explicitly titled with those terms but also related

documents like user feedback reports, customer service logs, and marketing plans, based on semantic

similarity. This deeper understanding allows for more intuitive and effective search and retrieval

experiences.

Another specialized agent is Security. The AI agent would require robust governance and monitoring to

ensure the integrity and security of the optimized storage. The agent would implement anomaly

detection models to identify and isolate corrupted data, unauthorized access attempts, or system

malfunctions. For example, a cybersecurity AI system could use the agent to detect unusual network

traf�c patterns and update �rewall rules accordingly. The agent’s ability to maintain data integrity would

be guided by research on secure machine learning (Papernot et al., 2018). 

An agentic AI storage system would also incorporate autonomous management features to streamline

operations and enhance system reliability. Intelligent backup and redundancy mechanisms can
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automatically create and manage backup copies based on the importance and frequency of use of a �le.

For example, mission-critical project �les could be backed up more frequently and stored in

geographically distributed locations to minimize the risk of data loss. Dynamic security and access

management would allow the AI to adjust �le permissions based on contextual understanding of user

roles and behaviors. If an employee from the �nance department attempts to access sensitive HR �les,

the AI could �ag the attempt or restrict access automatically. Furthermore, resource optimization

features would enable the AI to predictively manage storage allocation, migrating infrequently used �les

to lower-cost storage while keeping frequently accessed �les in high-performance storage.

3.2.4. Two Guardrails – System Guardian and Direct Access

To promote the autonomy and control of the System Owner, AIDE implements a semi-independent

System Guardian. It also allows to bypass AI entirely via Direct Access. 

A System Guardian is a specialized entity designed speci�cally to protect the System Owner by

monitoring and evaluating AIDE’s behavior. It is an independent system component whose aim is not

data management, but ensuring the system operates within acceptable moral, legal and ethical

frameworks that prioritize System Owner’s well-being. 

This Guardian is a neurosymbolic AI system[119]. It relies on deterministic, hard-coded rules, with some

AI-driven learning and adaptability. The deterministic principles provide a stable foundation for

enforcing key ethical boundaries, security constraints, and operational rules. This ensures transparent

and predictable behavior aimed at promoting System Owner’s interests. 

Meanwhile, the AI component introduces adaptive intelligence, enabling the Guardian to identify

emerging risks, interpret complex scenarios, and recommend adjustments. The AI component of the

Guardian should be kept to a minimum - just enough to permit �exible and adaptive behavior, but not

enough to introduce unwanted uncertainty or opaqueness of decision logic that comes with the heavy

reliance on AI.

The System Guardian's primary role is to mediate between the system's internal processes and the

System Owner's values, priorities, and goals. Drawing from research in value alignment and AI ethics[120]

[121], the Guardian monitors potential con�icts or risks and enforces constraints on the potentially unsafe

operations of the AI layer of AIDE. For instance, if AI’s action could unintentionally compromise user

privacy (e.g., by exchanging private information with an external system without explicit owner’s

consent), the Guardian intervenes and stops the action, while altering the System Owner. Its
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deterministic core de�nes fundamental limits - such as ensuring data integrity or preventing harmful

outcomes - while the AI-driven component permits �exible responses in nuanced contexts. This hybrid

design ensures the Guardian remains both trustworthy and responsive, ultimately protecting the System

Owner’s autonomy and well-being.

AIDE implements an always-available Direct Access to data, an ability to bypass AI by providing a

channel from the Universal Data Interface to the underlying storage. This includes access to data in its

original raw format. This assures transparency, control, and reliability. 

As with Custom and Code interfaces, Direct Access ensures that users are not solely dependent on AI for

managing data, which can introduce biases, distortions, or �ltering based on the model's training data or

internal heuristics. By accessing raw data directly, users can validate AI-generated insights, detect

inconsistencies, and apply independent analytical methods when AI outcomes appear unreliable or

unclear. This approach enhances the user’s autonomy and decision-making capacity by enabling a

fallback mechanism that is not mediated by AI.

The System Guardian along with the AI core have visibility of the data moving through Direct Access but

is incapable of interfering with it (the noninterference is assured through immutable rules). The

Guardian’ access to the bypass actions of the System Owner is required for the Guardian to learn the

patterns of user’s direct actions. These learned patterns can later be enacted by the Guardian’s in a semi-

automatic manner, saving the owner’s future effort in manual intervention. The AI agents also have

visibility of Direct Access, but this is done for the purposes of learning to improve their data

management.

Direct Access is automatically implemented when using Code and Custom interface and is an option in

Primary Multimodal interface. 

3.2.5. Data Storage Layer

The Storage Layer is the place where data that needs to persist beyond a live session is stored. It consists

of three main components: original data, optimized (transformed) data and control data. 

The original, unprocessed data is always kept in the Original Container. Storing data in its original,

unprocessed format is essential for ensuring data integrity, reproducibility, and �exibility in future

analysis. When data is preserved in its raw state, it remains free from potential distortions introduced by

preprocessing, transformation, or AI-driven interpretation, allowing for independent validation and

reprocessing as needed. Retaining raw data enables traceability, allowing the System Owner or an
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entrusted party to audit processing steps and verify outcomes against the source data. Moreover, in �elds

such as scienti�c research and �nancial modeling, maintaining the original data is critical for

reproducibility and ensuring that �ndings can be independently veri�ed[122]. 

While original data may not be altered, it should be compressed as long as no signal is lost (so-called

lossless compression). The compression should not use any proprietary algorithms, to ensure that data

can always be uncompressed using open-source, freely available software. It is also advisable to store the

compression algorithm, in Data Controller Container (described below). 

The Optimized Data Container keeps the output of preprocessing, cleaning, and transformation

processes, designed to structure and re�ne raw data into a format that is both meaningful and ef�cient

for AI processing. This layer ensures that data is free from noise, inconsistencies, and missing values. For

example, in natural language processing (NLP), tokenization, lemmatization, and stop-word removal are

essential preprocessing steps that enhance the AI model’s ability to understand and generate human-like

text. Similarly, in machine learning models, data normalization and encoding of categorical variables

ensure that numerical inputs are scaled appropriately, preventing models from being in�uenced

disproportionately by large or small values[123][124][125]. As data cleaning and preparation can take up to

80% of the time, it is essential to optimize data for retrieval. Without this layer, AI systems would

struggle to handle raw, unstructured data, leading to increased latency, poor model performance, and

reduced predictive accuracy. 

A Data Controller Container is an advanced meta-data repository. It serves as a centralized storage place

that manages and organizes critical metadata, versioning, and information about the stored raw and

processed data. It functions as a control hub, maintaining an auditable record of data transformations,

access logs, and algorithmic processes applied to the data. This includes the storage of design patterns

and essential code used in data management, such as compression algorithms, encryption methods, and

indexing strategies. This ensures that data operations are not only traceable but also reversible when

necessary. The container also facilitates version control by managing historical snapshots of the data and

the code used to process it, allowing for rollback in case of processing errors. By consolidating this

information, the Data Controller enhances data governance and compliance with regulatory

requirements, such as GDPR and HIPAA, ensuring that data handling meets established standards of

transparency and accountability. 
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4. Potential Challenges and Mitigation Strategies

While the potential of AI in storage management is signi�cant, several challenges must be addressed to

ensure its successful usage. One of the foremost concerns is privacy. AI-driven storage systems are aimed

at handling vast amounts of sensitive data, raising concerns about unauthorized access and data

breaches. To mitigate these risks, AIDE should implement robust encryption techniques and require

explicit user consent before processing or storing sensitive information. Additionally, differential privacy

methods and access control mechanisms can enhance data security.

Another challenge is algorithmic bias, which can lead to unfair or suboptimal decision-making in AI-

driven storage management. Bias may stem from training data that lacks representativeness[126][127]

[128]  or algorithms that reinforce existing prejudices[128][129][130][131][132]. To counteract this, AI systems

should be carefully pre-trained using diverse datasets that re�ect varied user needs. Improved bias

mitigation techniques with the focus on data[133][134][135][136][137][138] and algorithms[128][133][135][139][140]

[141]  is needed. Notably, AI bias sometimes originates in the underlying reality which is discriminatory

and biased[5]. Hence organizational and psychology research on causes, identi�cation and mitigation of

organizational and personal biases[83][142][143][144][145][146] can also support the technical developments of

AIDE. 

System reliability is another critical factor, as AI-based storage solutions must function seamlessly to

prevent data loss or work�ow disruptions. Without adequate safeguards, unexpected AI errors or failures

could lead to signi�cant productivity setbacks. To address this, implementing fallback mechanisms such

as redundant system backups and human oversight options can ensure continuity. Regular system

monitoring, error detection, and fail-safe protocols are essential to enhance the resilience of AI-driven

storage. In general, as Bostrom[147] and others argue[148][149][150][151][152][153], AI needs to be based on solid

engineering and moral principles. 

An important facet of reliability is transparency of the decision logic used by AI. We already noted

transparency challenges which have been dramatically exacerbated with the introduction of deep

learning neural networks and large language models. There are many open questions related to

transparency, such as reverse engineering neural networks[92][154]  and explainability of large language

models[155][156][157][158]. A promising opportunity is model invariant approaches; these have become

especially important as modern AI models grow in complexity[92][159][160][161].
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Semantic transparency, ensuring that AI agents fully understand the meaning of data they manage,

remains a challenge despite impressive progress in AI. Present AI-powered search and organization tools

are limited in their ability to understand the context and nuances of different types of data, leading to

incomplete or irrelevant search results[162][163][164]. Hallucination, tendency of AI to make up nonsensical

data remains a challenge[165][166][167]. Some ague, the issues of semantics can never be fully resolved, as

human meaning is not a web of statistical probabilities[168][169][170]. As Chomsky and colleagues contend,

 “machine learning systems can learn both that the earth is �at and that the earth is round. They trade

merely probabilities that change over time. For this reason, the predictions of machine learning systems

will always be super�cial and dubious”[169]. Not everyone shares this pessimistic view. Some argue AI

does not need to think like humans to be useful[171]. More generally, research on AI semantics continues

to advance progress[165][166][167][172]. Such areas as large reasoning models hold special promise as they

combine statistical probabilities with logical reasoning[173]. Large action models, the key technology of

Agentic AI[174][175], 

Another key challenge is data and system interoperability. AI-driven storage must integrate seamlessly

with various existing platforms, �le formats, and enterprise software. Incompatibility issues can lead to

inef�ciencies, data silos, and operational disruptions. To mitigate this, AIDE should adopt standardized

data exchange protocols and API-driven solutions to facilitate seamless integration across different

digital ecosystems. Ensuring cross-platform compatibility and scalability is crucial for maximizing the

bene�ts of AI storage management. 

Another important issue is coordinating multiple AIDE systems, each belonging to their respective

owners. Such a need would be prominent in organizational settings, where employees and departments

may have their own AIDEs. This challenge can be supported by ongoing research on coordinating multi-

agent systems[116][117][118]. Developing high-level coordinating systems speci�cally tasked with

coordinating multiple AIDEs is another opportunity.

Under the assumption that AIDE would be widely used, environmental sustainability remains an important

challenge. While the goal of AIDE is reducing environmental impact, which we expect to happen due to

streamlining of data management activities, a rebound effect can be expected. Rebound or take-back

effect occurs when ef�ciency gains lead to increased consumption, potentially offsetting the initial

savings[176]. Consequently, conserving energy and reducing environmental impact should always be a

moving target, ideally staving off any rebound effects. One of the long-term solutions that addresses
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green data management is fundamentally green technology. This is technology that even at massive scale

does not signi�cantly pollute. For example, humans use air for verbal communication. This does not

appear to have any notable environmental impact.

Quantum computing, based on the most abundant substance in the universe, elementary particles, holds

futuristic promise to provide fundamentally green energy[69]. However, for this to happen, the signi�cant

inef�ciencies of current quantum solutions must be resolved[61][177][178][179].

Device capability limitations represent a challenge for AIDE, as the accuracy, resolution, and scope of data

collection and presentation are inherently tied to the physical and technical constraints of the devices.

For example, drones with limited �ight time due to battery capacity may not capture comprehensive data

over large areas, and tactile interfaces may lack the precision needed for detailed feedback. Moreover, the

processing power and sensor range of smartphones and laptops could restrict the complexity of real-time

analysis. A major challenge and opportunity is providing interfaces for the presently underutilized

human senses, such as olfactory, gustatory and tactile[110][111][112]. Much of reality is inaccessible to

humans due to their sensory limitations (capable of communication in a narrow band of audiovisual

spectra). Celebrated biologist, E. O. Wilson[180]  calls humans “sensory idiots” as 99% of species have

greatly superior sensory systems. The olfactory, gustatory and tactile interfaces may allow humans to

rediscover the world they live in. Another challenge is integrating the sensory modalities into an

integrated, universal interface.

Ethical considerations also play a crucial role in AI adoption for storage management. Issues such as data

ownership, accountability, and transparency must be well implemented to foster trust among users.

Establishing clear guidelines on AI responsibilities, ensuring users have control over their data, and

maintaining open communication about how AI makes decisions can help mitigate ethical concerns.

Regulatory compliance with data protection laws should also be a priority. Advancing research on general

ethics – which is a juvenile �eld[181]  - and ethics in AI[148][149][150][151][152][153]  is paramount to ensure

AIDE truly holds humans �rst in all its decisions.

A further challenge is cybersecurity threats. AI systems that handle large volumes of sensitive data may

become prime targets for cyberattacks, including ransomware, data poisoning, and adversarial AI

threats. To counter these risks, organizations should invest in advanced threat detection mechanisms,

implement multi-layered security architectures, and conduct regular security audits. It is paramount to

stay far ahead of the cybersecurity threats and anticipate developments as much as possible. Criminals

qeios.com doi.org/10.32388/0386CK 25

https://www.qeios.com/
https://doi.org/10.32388/0386CK


are already harvesting personal data with the hope that smarter AI and quantum computers may permit

decrypting the data decades from now[182]. Futureproo�ng and staying ahead of the developments in

cybersecurity is a paramount objective. 

Scalability present another signi�cant hurdle. As data storage needs grow, AI solutions must be able to

scale without performance degradation. Ensuring that AI algorithms can handle increased workloads

and diverse data structures ef�ciently is crucial. Implementing modular and �exible AI architecture that

allows for incremental updates and performance optimization will help maintain scalability while

keeping pace with evolving storage demands. Here again, future-proo�ng any storage solutions is

critical, as data volumes may suddenly explode requiring immediate solutions. Of particular promise is

work on scalable and distributed storage[183][184].

Organizations and regulators must also navigate the economic and organizational implications of AIDE

adoption. AI-driven storage systems have the potential to signi�cantly reduce time spent on data

management. This ef�ciency increase allows employees to focus on higher-value work, improving

overall productivity. Nonetheless, issues of job displacement, trust, integration into existing

organizational routines, implications for organizational strategy and general market dynamics, must be

thoroughly investigated to address any negative consequences. 

By addressing these challenges proactively and leveraging AI’s capabilities strategically, organizations

and individuals can unlock the full potential of agentic AI in storage management.

5. Conclusion 

Digital data generation has grown exponentially in recent years, creating unprecedented challenges in

storage, organization, and retrieval. Traditional data management systems rely heavily on manual

human intervention, leading to inef�ciencies, accessibility challenges, and signi�cant risks. Arti�cial

intelligence driven by such breakthroughs as deep learning, large language models, Agentic AI, presents a

solution that can address the fundamental limitations of data management by introducing intelligent,

autonomous data management capabilities at scale and for everyone.

Agentic AI represents a paradigm shift in digital storage, moving beyond traditional �le management

paradigms. By introducing intelligent, autonomous systems capable of understanding context, predicting

user needs, and dynamically managing digital assets, we can create more ef�cient, secure, and user-

friendly data management for everyone.
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Footnotes

1 In general, there are multiple ways to implement any idea into a technological solution, the problem

known as equi�nality (a given end state or outcome can be reached through many different paths)[185]

[186][94][187][188]. The goal is to �nd the one that best �ts the contextual requirements while maximizing

adherence to the values of AIDE.
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