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In this paper, we present the Global Multimedia Deepfake Detection held concurrently with the Inclusion

2024. Our Multimedia Deepfake Detection aims to detect automatic image and audio-video manipulations

including but not limited to editing, synthesis, generation, Photoshop, etc. Our challenge has attracted

1500 teams from all over the world, with about 5000 valid result submission counts. We invite the top 20

teams to present their solutions to the challenge, from which the top 3 teams are awarded prizes in the

grand �nale. In this paper, we present the solutions from the top 3 teams of the two tracks, to boost the

research work in the �eld of image and audio-video forgery detection. The methodologies developed

through the challenge will contribute to the development of next-generation deepfake detection systems

and we encourage participants to open source their methods1.

Corresponding author: Jianshu Li, jianshu.l@antgroup.com

1. Introduction

With the explosive advancement of AIGC deep synthesis technologies, capabilities in facial deepfake

generation have signi�cantly improved, allowing malicious actors to create highly realistic fake faces. In

recent years, the misuse of facial deepfake technology has garnered substantial public concern. In real-

world digital identity veri�cation scenarios, criminal organizations have employed such technology to

compromise facial recognition systems. If your face is substituted in a facial recognition video, that

counterfeit clip could potentially be utilized by cybercriminals to exploit your digital accounts. Therefore,

enhancing the security of biometric identi�cation necessitates the urgent development of e�ective facial

deepfake detection techniques.
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Dataset Manipulated Modality The Number of Generation Methods

FaceForensics++[1] Video 4

Celeb-DF[2] Video 1-2

DiFF[3] Image 13

LAV-DF[4] Audio-Video 1

AV-Deepfake1M[5] Audio-Video 1

MultiFF (ours)

Image 81

Audio-Video 100+2

Table 1. The comparison with other Deepfakes Datasets.

The e�ectiveness of deepfake detection methods  [6][7][8][9][10][11][12]  is highly dependent on the datasets.

We investigated deepfake datasets commonly used in academia and industry and recorded the types of

forgery methods they used in Table 1. Although the past few years have seen an increase in publicly available

datasets focused on image and audio-visual content manipulations, most of these datasets contain a single

or a few generative methods. However, in the realm of deepfake detection, a signi�cant challenge for

detectors is to generalize e�ectively to unseen deepfake sources in real-world scenarios. A conspicuous gap

remains in the lack of source-invariant representation exploited from the generator pipeline for forgery

image or audio-video detection. This de�ciency leads to failures in detecting unknown forgery domains.
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Figure 1. The construction of our MultiFF dataset.

To overcome the gap, the Multi-dimensional Facial Forgery (MultiFF) dataset was introduced, providing a

large-scale benchmark of images and audio-videos for the task of deepfake detection, which speci�cally

includes two subsets: Multi-dimensional Facial Forgery Image dataset (MultiFFI) and Multi-dimensional

Facial Forgery audio and Video dataset (MultiFFV). The images in the MultiFFI dataset are generated by

more than 80 atomic generation algorithms. The total generation methods in MultiFFV are more than 100.

Based on this dataset, the Global Multimedia Deepfake Detection challenge focuses on the binary

classi�cation of deepfake content. The challenge is planned to contribute to improving current detection

methods and aims to run as an ongoing benchmarking for the next several years, continually introducing

new challenges of deepfake technology to keep pace with its rapid evolution.

The rest of the paper is organized as follows. We will �rst demonstrate the setup of our challenge, and then

present the details of the solutions from the top 3 teams. After that, we will discuss the results from the

teams and conclude the challenge.

2. Datasets

In our challenge, we released a new diversi�ed fake digital face dataset named MultiFF, which speci�cally

includes two subsets: MultiFFI and MultiFFV, which will be used for the image deepfake detection task in

Track 1 and the audio-video deepfake detection task in Track 2 respectively. The MultiFFI dataset contains

over 900,000 images which are generated by more than 80 atomic generation algorithms. It is sourced from

four diverse facial datasets (CelebA, RFW, CASIA Webface, and some open online faces) and includes_
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techniques such as face swapping (SimSwap [13], FaceShifter [14], FSGAN [15], InfoSwap [16], etc.), animation

(FOMM  [17], ArticulatedAnimation  [18], etc.), attribute editing (DualStyleGAN  [19], GPEN Colorization  [20],

etc.), full-face synthesis (StyleGAN2  [21], StyleGAN3  [22], etc.), super-resolution enhancement (FaceSR,

CodeFormer [23], etc.), and AIGC (SD1.5, SDXL Inpaiting, etc.), among others. Additionally, it encompasses a

variety of facial attack materials, including diverse skin tones and ethnicities, di�erent angles and poses,

occlusions (such as glasses, masks, hats, and bangs), a rich array of indoor and outdoor scenes, as well as

variations in age and lighting conditions. The total volume of the MultiFFV dataset exceeds 600,000, with

facial video sources including VoxCeleb [24], CelebV-HQ [25], and VFHQ [26]. The real human audio sources

comprise VCTK  [27], TalkingHead, and LJSpeech  [28]. The MultiFFI and MultiFFV in our challenge include

over 150 types of image and audio-video forgeries so that the participants have ample design space to model

forgery types. The image and audio-video numbers of MultiFFI and MultiFFV in the proposed MultiFF

dataset are shown in Table 2 in detail.

Figure 2. The number of generation methods in MultiFFI (left) and MultiFFV (right), respectively.

_

_
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MultiFF Real images Forged images Real audio-video Forged audio-video

training set 99386 425043 68035 173955

validation set 59082 88281 27514 51994

public testing set 77602 96785 44089 128382

hidden testing set 156720 176129 33780 101135

Table 2. The breakdown of number of MultiFFI and MultiFFV in the MultiFF dataset.

Since the forgery of faces may cause more threats to AI systems, in our challenge we focus more on the face

region rather than the background areas. As a result, all images in our dataset are aligned and cropped to 512 

  512, where the ratio of face regions is about 0.6    0.7. All frames in the audio-video are aligned and

cropped to 384   384, where the ratio of face regions is about 0.4   0.8. Moreover, we are also concerned

about the generalization performance of the algorithm. Thus the testing sets contain new and unseen

forgery types compared to the training and validation sets, in order to measure the generalization capability

of forgery detection models.

3. Challenge Setup

3.1. Organizers

Our challenge was hosted in conjunction with Inclusion 2024. The organizers are Ant Group, China Society

of Image and Graphics, Advanced Technology Exploration Community, Ant Security Lab, University of

Science and Technology of China, Centre For Frontier AI Research, Alibaba Cloud, Hunan University, Sun

Yat-sen University, Fudan University, Shanghai Jiao Tong University, National University of Singapore,

Nanyang Technological University, Datawhale, Sunthy Cloud, etc. The technical program was hosted on the

Kaggle platform 3.

3.2. Processes

Our challenge has two tracks including image forgery detection (Track 1) and audio-video forgery detection

(Track 2). The whole challenge was divided into three phases, i,e. Phase 1, Phase 2, Phase 3.

× ∼

× ∼
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In Phase 1, only the training and validation sets are released. The forgery detection model can only be

trained on the training set, with ImageNet pre-trained model weights in Track 1 and pre-trained model

weights in Track 2. Data from external sources are not allowed in the training process. However, some image

processing methods, such as face detection and alignment, and face enhancement from the training dataset,

are allowed to be used in the challenge. The validation set is also released, which can be used by the

participants to improve the model performance and select the best model. Phase 1 lasted for about two

months to provide enough time to perform model training and validation.

In Phase 2, the public testing set was released. Participants can directly submit the predicted score of the

testing set to the platform and get immediate feedback on the evaluation scores twice a day. Phase 2 lasted

for eight days to avoid over-�tting of the testing set.

The top 20 teams from the leaderboard during Phase 2 can advance to the �nal Phase 3. In Phase 3, codes

and models are submitted together with technical reports, which are used to produce prediction scores on

our hidden testing set. The �nal ranking will be based on the weighted score of the public testing set, the

hidden testing set and the technical report, and the weights are 0.2, 0.6, and 0.2, respectively.

3.3. Evaluation Methods

For the performance evaluation, we mainly use the Area under the Curve (AUC) in both two tracks. AUC is

de�ned as the area under the Receiver Operating Characteristic (ROC) curve, and the value range is generally

between 0.5 and 1. To be speci�c, in our setting, True Positive (TP), True Negative (TN), False Positive (FP)

and False Negative (FN) are de�ned as follows:

1. TP: The forged images are recognized as forged images

2. TN: The real images are recognized as real images

3. FP: The real images are recognized as forged images

4. FN: The forged images are recognized as real images

With that, the True Positive Rate (TPR) and False Positive Rate (FPR) are de�ned in Equation (1) and

Equation (2), respectively.

The ROC curve is essentially the TPR v.s. FPR curve and AUC is the area under this curve. To further assess

and analyze the models, TPR at lower FPR, such as 1e-2, 5e-3, and 1e-3 will also be used as auxiliary metrics.

However, the rankings will still be based on AUC.

TPR =
TP

(TP + FN)
(1)

FPR =
FP

(FP + TN)
(2)
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4. Solutions and Results

Our challenge has attracted 1500 teams with valid submission counts. Our �nal validation set leaderboard

has teams and the �nal test set leaderboard has teams. The top 20 teams are invited to the �nal phase, Phase

3 in each track.

In the following subsections, we will present the solutions of the top 3 teams in each track of our challenge.

4.1. Track 1: Image Forgery Detection

4.1.1. Solution of the 1st Place

Solution title: Towards Generalizable Deepfake Detection via Clustered and Adversarial Forgery Learning

Team Name: JTGroup

Team members: chxy95, fengpengli, highwayw, kahimwong, kemoulee, namecantbenull, rebeccaee,

umlizheng, yiyayoo

General Method Description

The champion team proposed a generalized method for image forgery detection which can be categorized

into two stages: (1) Data preparation, and (2) Training, with their fundamental processes illustrated in

Figure 3.

Figure 3. Method overview of JTGroup.
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Data preparation

To enhance model generalization and alleviate over�tting, the proposed solution expands the training

dataset using a combination of image editing and Stable Di�usion (SD) [29] techniques. As shown in Figure

4, the data generation process involves the following operations: The �rst technique is image editing, which

involves altering speci�c elements of the original images to create new variants. Initially, the team applied

facial semantic segmentation to isolate the facial region and background. Once separated, the background is

modi�ed with di�erent colors (e.g., purple, green, and blue), while preserving the original facial features.

The second technique utilizes the SD model to generate new images from the original dataset. The resulting

images re�ect a wide range of styles and features, enriching the training set with diverse representations of

both real and manipulated data.

Figure 4. Data preparation of JTGroup. The left side illustrates the image editing operations, while the right side

demonstrates data generation using Stable Di�usion.

Data clustering

The types of forgery encountered during testing often di�er from those seen during training. This solution

proposes a Data Clustering method to reallocate the training and validation datasets. The primary objective

is to cluster the dataset according to forgery types, thereby simulating practical testing conditions where the

model is exposed to a broader variety of unseen forgeries.
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Figure 5. Real and fake data after clustering. Clustering operates at the feature level, and its e�ectiveness may not

be fully re�ected at the pixel level.

Network Architecture

The network architecture for the training stage is designed to ensure that the model can e�ectively

generalize across di�erent data distributions while remaining robust to forgery and adversarial attacks. As

depicted in Figure 3, this architecture consists of several integral components, each with speci�c roles

contributing to the overall model performance. The original images I from each fold are fed into trainable

expert models  . Each expert model  , parameterized by  , is

specialized to learn from the images within its respective fold. The output of each expert is a high-

dimensional feature vector  , which is used in two critical operations subsequently: �rst,

it is employed in the calculation of the InfoNCE loss  ; second, it is passed through a probabilistic head

to generate logits for the cross-entropy loss  .

Training description

During training, the team primarily utilized balanced sampling of positive and negative samples, the cosine

annealing learning rate adjustment strategy, and exponential moving average (EMA)  [30] weighted weight

smoothing. The number of clusters K for the unsupervised clustering algorithm is set to 20 and there are 

 expert models in the ensemble, each trained on a di�erent fold created through the clustering process.

The decay factor   for EMA is set to 0.995. The augmentations used include but are not limited to, JPEG and

WebP compression, blur, Gaussian noise, random brightness, and grid distortion.

{ (I; ), (I; ), … , (I; )}M1 θ1 M2 θ2 MI θI Mi θi

= (I; ) ∈vi Mi θi R
d

LNCE

LCE

I = 7

γ
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Testing description

During testing, the �nal prediction is determined by averaging the logits across all experts and applying the

sigmoid function.

Generalization Analysis

The champion team evaluated the performance of the proposed method on the MultiFFI dataset using

cross-entropy loss and the AUC evaluation metric, as shown in Table 4. It can be observed from the table

that although the baselines (E�cientNet and ConvNeXt) perform well on the validation set, achieving AUC

scores above 0.99, they do not generalize e�ectively to the public test set. The proposed framework

introduces innovative clustering at the dataset level, making the corresponding validation sets more

challenging. By incorporating clustering and adversarial optimization objectives, the learned forgery

features exhibit enhanced generalization. To further evaluate proposed method in detecting di�erent or

unknown types of forgeries (such as face swapping, face reenactment, facial attribute editing, face

synthesis, etc.), the team conduct additional experiments on the well-known datasets FaceForensics++ [1],

DFDC [31], and DFD [32]. The experimental results, using AUC as the evaluation metric, are presented in Table

3. State-of-the-art methods such as SBI [33], RECEE [34], and CFM [35] are introduced for comparison with

our method. To ensure a fair comparison, the team retrained all methods on the FaceForensics++ training

set. Additionally, the champion solution from the 2019 DFDC competition (DFDC-1st-place) is included as a

reference.

Method Venue

FaceForensics++

DFDC DFD

Deepfake Face2Face FaceSwap NeuralTextures

DFDC-1st-place - - - - - 0.8130 0.7211

SBI CVPR’22 0.9993 0.9927 0.9953 0.9915 0.8251 0.8268

RECEE CVPR’22 0.9995 0.9920 0.9972 0.9959 0.6690 0.8687

CFM TIFS’23 0.9993 0.9923 0.9985 0.9924 0.8022 0.9123

Baseline (EN-B4) - 0.9990 0.9913 0.9962 0.9910 0.7863 0.8867

Ours (EN-B4) - 0.9998 0.9954 0.9992 0.9965 0.8292 0.9265

Table 3. Qualitative advantages of the proposed method for detecting de�erent types of forgery attacks.
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Method

O�cial Train O�cial Val Split Train Split Val Public Test

Loss AUC Loss AUC Loss AUC Loss AUC AUC

Baseline

0.2583 0.9999 0.2637 0.9594 - - - - 0.86379

0.2249 0.9999 0.2414 0.9939 - - - - 0.92998

0.1539 0.9999 0.1626 0.9968 - - - - -

JTGroup

- - - - 0.2671 0.9999 0.2781 0.9852 0.90767

- - - - 0.2241 0.9999 0.2389 0.9977 0.94806

- - - - 0.1910 0.9999 0.2059 0.9986 0.97547

- - - - 0.1529 0.9999 0.1659 0.9985 0.97588

Final N/A 0.98051

Table 4. Results of generalization evaluation of the proposed method on the o�cial split dataset, our re-split

dataset, and the public test set.

4.1.2. Solution of the 2nd Place

Solution title: A Multi-Dimensional Method for Deepfake Detection

Team Name: Aegis

Team members: starethics

General Method Description

To improve the generalization of forgery detection ability, the solution mainly focuses on four aspects: (1)

data augmentation and synthesis, (2) model selection, (3) input modality selection, and (4) model fusion.

The main process of the method is as follows, and this pipeline is shown in Figure 6.
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Figure 6. Representative image of the Aegis method.

Data augmentation and synthesis

First, seven data augmentation methods are used to create more fake training data. The seven data

augmentation methods are blur, gamma adjustment, hsv-based color adjustment, random crop, random

noise, rotation, and horizontal �ip. Second, with the hypothesis that synthesizing more deepfake data with

more di�erent methods might be able to increase the coverage of the training set and thus improve the

model’s performance, the team tried to synthesize more deepfake data with several methods (inswapper,

SimSwap [13], E4S2024, Face-Adapter, Face X-ray, Di�Face, etc).

Model selection

Then, models are selected with di�erent backbones, namely MobileNet, E�cientNet, Xception, Mobileone,

Swin Transformer, etc, and the models are trained on the training set composed of the original data, the

data augmentation, and synthesis results.

Input Modality selection

Di�erent from most other traditional computer vision tasks which mainly focus on learning semantic

features, deepfake detection needs to focus more on many non-semantic features/patterns. To help the

model to better learn these features, the team designed di�erent types of inputs, such as YCbCr (in this color

space, a luma signal is isolated and can better represent the information of brightness distribution), SRM (a
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convolution �lter which can be applied to the image and is able to help extract the noise pattern of images)

and DCT (a format in 1D feature vector or 2D matrix).

Model fusion

After obtaining every single model, these models are evaluated on the o�cial validation set and their self-

made dataset. The team trained a small ensemble model with Attention and FC, which accepts prediction

scores from every single model and outputs a �nal score. The ensemble model will perform better than

simply averaging all scores.

4.1.3. Solution of the 3rd Place

Solution title: Multi-domain Fusion and Multi-model Ensemble for Face Forgery Detection

Team Name: VisionRush

Team members: youwenwang01, zpp159541, qhukaggle, zhonghuazhao, tchj65539, Fieldhunter

General Method Description

In this challenge, the 3rd team proposes a multi-domain fusion and multi-modal ensemble-based face

forgery detection framework, as shown in Figure 7. The key design lies in two points: Firstly, they

simultaneously utilize the pixel domain representation and noise domain representation of facial images as

inputs. Secondly, they construct forgery classi�cation models based on ConvNeXt and RepLKNet backbones

respectively, and fuse the predicted forgery scores of the two models as the �nal result.

Figure 7. The overall architecture of VisionRush multi-domain fusion and multi-model ensemble based face

forgery detection method.
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Data augmentation

The visual quality degradation for fake data

In the preliminary observation of the data, the team found that the distribution of visual quality of images is

quite di�erent. VisionRush initially performed a comprehensive evaluation of the competition dataset from

the perspective of image quality. Employing the CenseoQoE-SDK, a sophisticated image and video quality

assessment tool, they meticulously analyze the training and validation sets from the �rst phase. The

CenseoQoE model assigns a predictive score ranging from 0% to 100% to each image, with higher scores

indicating superior image quality. The analytical results for the training and validation sets are illustrated in

Figure 8.

Figure 8. Data distribution of real and fake images based on CenseoQoE.

The general augmentation for all data

In addition to performing quality degradation operations on forged data, the team also applied general

augmentation operations to all data during the preprocessing stage of training. Speci�cally, they follow the

rand-m9-mstd0.5-inc1 con�guration in RandAugment, which includes 15 di�erent image processing

operations such as contrast adjustment, histogram equalization, rotation transformation, and shear

transformation, as illustrated in Figure 9. During model training, the system randomly selects and applies

two strategies from these 15 options.
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Figure 9. Examples of 16 data augmentation e�ects.

Implementation details

The team trained ConvNeXt-based and RepLKNet-based real/fake binary classi�ers respectively, with

hyper-parameter settings detailed in Table 5. For pre-training, they utilize publicly available weights

trained on the ImageNet-1K dataset for each backbone. During training, the AdamW optimizer with a cosine

annealing strategy is employed, where the learning rate gradually decreases from various initial values to

1e-6. The number of training epochs is set to 20. In addition, the team applied the Exponential Moving

Average (EMA) technique to obtain more robust and generalized model weights in the training stage. During

testing, they �rst set the image resolution to 512x512 and leverage multiple additional data perspectives to

further improve inference performance, including  ,  , and   rotations, as well as horizontal and

vertical �ips. Then we average the predicted probabilities of the two classi�ers as the �nal result.

90∘ 180∘ 270∘
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Backbone Batch Size Input Resolution Initial Learning Rate

ConvNeXt 192 384x384 1e-4

RepLKNet 128 384x384 1e-4

Table 5. Training settings for di�erent models.

Generalization Analysis

To verify the generalization ability of the model, the team collected a large amount of data for testing,

including synthetic data collected from various AIGC platforms and deep synthesis tools on the Internet, and

some real data selected from academic datasets. The test results are shown in Table 6. It can be seen that the

method achieves high performance on data generated by all platforms and tools, demonstrating strong

generalization ability.
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Platform/Tool/Dataset Total Number Correct Number Recall

Fake data

Draft 384 384 100%

NetEase_AI_Design_Workshop 932 907 97.31%

JourneyArtAI 2054 2042 99.41%

liblibai 983 983 100%

miaohua 369 368 99.72%

6pen.art 289 288 99.65%

artguru 356 354 99.43%

imagine_ai 386 384 99.48%

promptthunt 400 400 100%

WomboVERSE 406 377 92.85%

shedevrum 429 418 97.43%

wujieAI 492 492 100%

di�usionbee 384 377 98.17%

eSheep 460 454 98.69%

MewXAI 460 452 98.26%

XingZhiHuiHua 6493 6438 99.15%

XiaoKuAI 447 447 100%

chushouAI 428 419 97.89%

Roop 132 132 100%

FaceFusion 203 202 99.51%

DoFaker 193 190 98.45%

Total 16680 16508 98.97%

Real data

Glint360K 5000 4676 93.52%

FFHQ 5000 4832 96.64%
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Platform/Tool/Dataset Total Number Correct Number Recall

COCO2017 5000 4725 94.50%

Total 15000 14233 94.89%

Table 6. Generalization evaluation of 3rd method.

4.2. Track 2: Audio-Video Forgery Detection

4.2.1. Solution of the 1st Place

Solution title: Audio-visual Deepfake Detection via spectrum and spatial joint learning

Team Name: chuxiliyixiaosa

Team members: chuxiliyixiaosa
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Figure 10. Method Overview

General Method Description

To boost the model’s forgery detection capabilities, the proposed solution leverages joint video-audio

learning using SyncNet as the backbone structure. As illustrated in Figure10, the approach involves

simultaneous processing of video and audio inputs through joint learning, exploiting temporal and spectral

features from both modalities. The video component utilizes VideoNet to extract sequential frame features,

while the audio component employs Short-Time Fourier Transform (STFT) and Mel-spectrograms to

capture audio features. Notably, the architecture includes dedicated modules for lip and face feature

extraction, enabling the model to focus on subtle inconsistencies between audio and video inputs. The
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feature outputs are then combined through a fully connected layer, pooling features from both modalities to

generate a probability score indicating the input’s authenticity. This approach emphasizes capturing minute

di�erences in audio-visual data, enhancing the model’s ability to detect various deepfake operations.

Data augmentation and synthesis

Data augmentation plays a crucial role in enhancing the diversity and robustness of the training dataset. To

achieve this, the model employs a mixup strategy during data loading, randomly concatenating two real

video segments with a 40% probability. This approach not only increases the diversity of real samples but

also helps balance the distribution of real and fake videos in the dataset. Furthermore, when processing

videos, the model limits the maximum number of frames to 900 consecutive frames, ensuring that

su�cient information is preserved to learn rich temporal features while preventing memory over�ow. Audio

data is sampled at a 16kHz rate, aligned with video frames, and synchronized between the two modalities.

This strategy e�ectively extracts useful information from the data, boosting the model’s performance. Other

data training parameters include: Image data is resized to a uniform size of (284, 284) and then normalized

by dividing by 255.

Network Architecture

The model architecture plays a crucial role in achieving high performance in deepfake detection. This

architecture is based on SyncNet, which enables joint learning of video and audio modalities. The model

constructs an e�cient detection framework by extracting audio and video features, combining Short-Time

Fourier Transform (STFT) and Mel-spectrograms. The video processing module, netcnnlip, extracts deep

features from adjacent frames using 3D convolution, and the output is fed into netfclip and netfcface

modules, which focus on lip and face feature extraction, respectively. Audio processing is divided into two

parts: Audio Part 1 computes STFT and spectrograms, while Audio Part 2 computes Mel-spectrograms,

extracting audio features. The alignment of audio and video inputs ensures that the model can e�ectively

learn the relationship between the two modalities, which is crucial for identifying deepfakes that may

exhibit subtle di�erences in lip movement and speech. Max Pooling is applied to the last dimension of the

tensors video out1, video out2, audio out1, and audio out2. The pooled tensors are concatenated and passed

through a fully connected layer to obtain a probability value. This value is then compared with the labels

using BCEWithLogitsLoss. The architecture employs a series of pooling operations to integrate features

from di�erent modules, including netfclip, netfcface, and netfcaud. The outputs of all modules are

connected after max pooling, and the �nal output is passed through a fully connected layer to produce a

probability value.
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Training description

The training process of the deepfake detection model is optimized for e�ciency and e�ectiveness. By

leveraging the Distributed Data Parallel (DDP) method, the model is trained on multiple GPUs, accelerating

the training time. Automatic Mixed Precision (AMP) is used to conserve GPU memory usage while

accelerating computations.

Testing description

During the testing phase, the model is evaluated on a separate test set to assess its generalization ability.

4.2.2. Solution of the 2nd Place

Solution title: The Solution of Team ShuKing for Deepfake Video Detection.

Team Name: ShuKing

Team members: Jack Hong (jaaackhong@gmail.com)

Figure 11. Structure of the main model.

General Method Description

The deepfake video detection solution proposed by team ShuKing adopts a comprehensive approach to

extracting both video and audio features. Figure11 illustrates the overall architecture of this approach. First,

the team utilizes an advanced video foundation model, VideoMAE-Base, to extract high-level semantic

qeios.com doi.org/10.32388/049V9P 21

https://www.qeios.com/
https://doi.org/10.32388/049V9P


features from the video, generating feature maps that capture object co-occurrence and contextual

relationships within the video. By employing mean spatial and temporal pooling technology, the model can

aggregate spatial and temporal information from the entire video, thereby identifying the overall patterns

and structures of deepfake videos. On the audio side, the team converts the audio signal into Mel-

spectrograms and uses another VideoMAE-Base model to extract audio features. This bimodal feature

extraction approach ensures that the model considers both visual and auditory elements when

distinguishing between real and AI-generated content. Finally, the team employs several MLP layers as the

discriminator. This discriminator processes the extracted video and audio features to make the �nal

prediction, ensuring a comprehensive analysis of both visual and auditory elements. The innovative aspect

of this approach lies in its simultaneous analysis of video and audio features, which enhances the model’s

detection capabilities.

Data augmentation and synthesis

In terms of data augmentation, the ShuKing team employed a range of techniques to enhance the model’s

robustness and generalization ability. During training, the team implemented standard data augmentation

strategies such as random scaling, cropping, and �ipping. Additionally, the team introduced more advanced

augmentation strategies, such as randomly sampling images and audio from di�erent time points in the

video to create diverse training samples. This temporal variation allowed the model to learn features from

di�erent video segments. Furthermore, the team occasionally replaced the original audio with audio from

di�erent videos, further increasing the diversity of the training data. This approach not only improved the

model’s adaptability to changes in audio content but also enhanced its ability to distinguish between real

and AI-generated content. Through these data augmentation techniques, the model demonstrated stronger

adaptability and accuracy when faced with di�erent types of deepfake videos.

Training description

During the training stage, the ShuKing team used VideoMAE-Base as the base model and performed pre-

training on the Kinetics-400K dataset to leverage the advantages of transfer learning. Each video was

randomly sampled at 16 frames, with a frame rate of 4 FPS, to ensure that the model could capture the

dynamic information in the videos. The learning rate was set to 5e-5, and the training process used 8

NVIDIA A100 GPUs, with each GPU processing a batch of 12 videos. The input videos were resized to a

resolution of 224×224 pixels, and the entire training process lasted for 20 epochs. Through these strategies,

the model was thoroughly trained on diverse data to improve its performance in real-world scenarios.
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Testing description

During testing, the input videos are resized to 224x224 pixels. Each video is uniformly sampled at 16 frames,

with a frame rate of 4 FPS. For videos exceeding 4 seconds, the team splits them into multiple 4-second

segments, evaluates each segment separately, and selects the highest score as the �nal result. Additionally,

the team employs the model soup technique, which averages the parameters from multiple trained models

to enhance generalization and overall performance.

4.2.3. Solution of the 3rd Place

Solution title: Deepfake Audio-Video Detection Via MFCC Features

Team Name: The Illusion Hunters

Team members: JinXiaoxu, ZiyuXue, mppsk0

Figure 12. Graphical representation for detection of deepfake audios.

General Method Description

The team ”The Illusion Hunters” employs the Mel-Frequency Cepstral Coe�cients (MFCCs) technique to

extract useful features from the audio in video. Figure12 shows the complete process from data

preprocessing, and feature extraction to feature processing and detection of deepfake audio. Speci�cally, the

MFCC features are computed using the MFCC function from the librosa library, and the arithmetic mean of

these features is returned. Subsequently, a Support Vector Machine (SVM) is used for classi�cation to

determine whether the audio-visual content is authentic or manipulated. The core of this approach lies in

the e�ective detection of deepfake content through the extraction and classi�cation of audio features.

Notably, this method avoids the use of complex deep learning models or pre-trained networks, opting

instead for a traditional machine learning approach based on MFCC features. This choice results in a lower

model complexity, enabling rapid training and deployment.
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Data augmentation and synthesis

In terms of data preprocessing, the team extracts audio from video �les and saves it in WAV format, laying

the foundation for subsequent feature extraction.

Training description

During the training phase, the team sets the number of extracted Mel-Frequency Cepstral Coe�cients

(MFCCs) to 13 by default, the FFT window size to 2048, and the window hop size to 512. The team uses the

librosa library to load the audio �les compute their MFCC features, and return the mean of these features.

Additionally, the team applies the StandardScaler to normalize the features, ensuring that they have a mean

of 0 and a variance of 1, which accelerates convergence. For classi�cation, the team employs a linear kernel

Support Vector Machine (SVM).

Testing description

During the testing phase, the team’s model uses standardized MFCC features as input, ensuring the

reliability of the test results.

5. Discussions

The technical reports indicate a prevalent use of data augmentation and data extension techniques in most

submitted solutions. Participants are also exploring modeling approaches for unseen forgery types, feature

and data representation, and model ensembling strategies. Although these e�orts have led to relatively high

area under the curve (AUC) scores, the challenges associated with image and audio-video forgery detection

remain unresolved. To underscore this point, we conducted an in-depth analysis of the submitted solutions,

with the �ndings presented Tables 13 and 7.

A considerable performance disparity exists which is particularly pronounced when the false positive rate

(FPR) is low. This performance gap can reach as much as 50%. Furthermore, the true positive rate (TPR) at

low FPR levels is suboptimal. The FPR metric is critical as it quanti�es the rate at which authentic images are

misclassi�ed as forgeries, leading to an unnecessary inconvenience for users. In practical applications,

where the user base is typically large, maintaining a minimal disturbance rate, represented by an FPR of

1/1000 or even 1/10000, is imperative. However, at such stringent FPR thresholds, the TPR, which indicates

the e�ectiveness of correctly identifying forged images, is not yet su�cient for usability.

The analysis highlights the necessity for continued research e�orts to narrow the performance gap between

familiar and novel forgery types. Additionally, advancements are needed to enhance TPR at low FPRs, a
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challenge that warrants signi�cant research focus.

 

chuxiliyixiaosa 53.38% 47.98% 37.49% 22.93% 15.53%

ShuKing 41.30% 38.76% 34.32% 27.17% 22.80%

The Illusion Hunters 15.99% 12.09% 6.89% 2.94% 2.03%

Table 7. TPR and FPR of Top 3 teams in terms of unseen types of forgery on the test set in MultiFFV.

Figure 13. TPR and FPR of top 3 teams in terms of unseen types of forgery on the test set in

MultiFFI.

6. Conclusion and Future Work

In the realm of Global Multimedia Deepfake Detection, the challenge of multi-forgery detection has been

formulated with precision and depth. This competition has illuminated several innovative approaches to

tackling this complex problem, exempli�ed by the unforeseen e�cacy of data-centric strategies, the

development of simulations for previously unencountered types of forgeries, and the deployment of diverse

model architectures o�ering unique inductive biases. The initiatives undertaken by the top three performing

teams in each track of the competition re�ect a spectrum of technical methodologies. These teams have

1e − 1 8e − 2 5e − 2 2e − 2 1e − 2
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employed cutting-edge data manipulation techniques and model training strategies to enhance the accuracy

and reliability of deepfake detection systems. Their collective e�orts underscore the importance of robust

datasets and versatile models in navigating the intricate landscape of digital forgery detection.

To further advance research in this �eld, we have made available the MultiFF dataset to the wider research

community. This dataset serves as a valuable resource for the testing and development of novel detection

methodologies, o�ering a simulated environment that closely mirrors the adversarial and dynamic nature of

real-world deepfake challenges.

The competition stands as a testament to the ongoing e�orts to evaluate and improve the creation and

detection of deepfakes in complex environments. It highlights the necessity of continual adaptation and

innovation in methodologies to keep pace with the evolving threats posed by digital forgeries. Through

collaborative e�orts, the research community can better understand the intricacies of deepfake detection

and develop strategies that ensure the integrity and authenticity of multimedia content in an increasingly

digital world.

While this competition strives to simulate real-world deepfake attack scenarios as closely as possible, it

neglects the exploration of interpretability in detection results. Existing academic research has investigated

the interpretability of face deepfake detection, including single-face deepfake localization  [36], multi-face

deepfake localization [37], and audio-visual deepfake temporal localization [38]. These studies o�er a wealth

of evidence for deepfake detection beyond the simplistic real/fake classi�cation task. Consequently, we plan

to incorporate forgery localization labels in the future to advance the development of interpretability in

deepfake detection tasks.

Footnotes

1 https://github.com/inclusionConf/DeepFakeDefenders/

2 There are 40 and 7 generation methods for video and audio modalities respectively, therefore the total

number of modalities combination generation methods exceeds 100.

3 https://www.kaggle.com/competitions/multi-�di
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