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This research aims to develop a cloud-based system utilizing the You Only

Look Once version 8 (YOLOv8) model for assessing road surface quality. The

system is designed to address critical road maintenance challenges and the

need for high accuracy and fast response road surface quality monitoring. Data

acquisition involved images from the Internet, dashcams, and smartphones,

with subsequent processing through advanced image techniques. The YOLOv8

model demonstrated ef�cacy in detecting various road surface defects,

achieving a precision of 0.457 and a recall of 0.486. While exhibiting potential

in identifying patches and potholes, further re�nement is required for crack

detection. The model’s processing speed, with 9.7 milliseconds per image,

indicates its capability for near real-time analysis. Finally, the model is

deployed on cloud infrastructure hosted by Digital Ocean to provide scalability

and accessibility. The cloud-based system enables users to upload videos for

automated defect detection and offers downloadable results, fostering

collaborative initiatives in road surface monitoring. While the model shows

promise, particularly in detecting patches and potholes, crack detection has

room for improvement. Future work could focus on enhancing the model’s

performance for this challenging defect class.
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1. Introduction

The inconvenience and uncertainty of public

transportation in Malaysia cause many citizens to rely

on driving. However, the condition of the roads they

traverse is a critical factor that impacts their safety.

Maintaining high-quality road surfaces is essential for

ensuring road-user safety, facilitating economic

activities, and providing access to essential services.

Recognizing this, the Malaysian government must

prioritize addressing road surface quality to mitigate

the risks associated with poor infrastructure.

The Ministry of Transport Malaysia (MOT) reports that

around 600,000 road accident cases have been recorded

throughout 2023[1]. In that time, 6,443 lives were lost to

road accidents, which translates to an average of 18

deaths every day last year[2]. A study by the Malaysian

Institute of Road Safety Research (MIROS) found that

road accidents were mainly caused by human

behaviour, followed by the design, condition of road

infrastructure, and vehicles’ condition[3]. This study

shows that poor road conditions signi�cantly

contribute to road accidents, although they are not the

leading cause. There is still a potential to reduce the

number of road accidents and injuries by improving

road surfaces, thereby fostering sustainable cities and

communities.

Understanding the nature of road surface defects is the

�rst step toward addressing this issue. According to Rolt

et al.[4], road surface defects pose signi�cant challenges

to the durability and safety of transportation

infrastructure[4]. For instance, potholes, which are
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depressions in the road surface, form due to factors

such as water in�ltration, freezing and thawing cycles,

and traf�c wear and tear. These defects can cause

vehicle damage and present safety hazards for drivers.

Another common defect, fatigue cracking, often

referred to as crocodile cracking, emerges from the

continuous pressure exerted by heavy vehicles,

combined with temperature changes and natural aging.

These cracks resemble the skin of a crocodile and, if not

addressed promptly, can intertwine and exacerbate

structural vulnerabilities in the roadway.

To tackle these issues, modern technology offers

promising solutions. Emara et al.[5]  highlighted the

importance of detecting and assessing road surface

conditions to ensure the safety and ef�ciency of

transportation networks. The rise of smartphones and

their built-in sensors has led to innovative methods like

mobile crowdsensing (MCS) for evaluating road surface

quality. This approach leverages the widespread use of

smartphones to collect data on road conditions,

offering a cost-effective and scalable solution[5]. The

future of road surface quality assessment lies in

integrating advanced technologies. Lasers, cameras,

sensors, smartphones, and cloud storage services are

revolutionizing how we monitor road conditions.

Although the initial cost of these systems may be high,

their bene�ts in terms of accuracy and coverage make

them a worthwhile investment. A cloud-based road

surface quality assessment system can be developed by

harnessing the computing power and various sensors

in smartphones and dashcams, addressing the growing

need for ef�cient monitoring. The primary goal of this

study is to design a cost-effective and highly accurate

road surface quality assessment system that effectively

monitors road damage and ultimately enhances road

user safety. By leveraging deep learning and cloud-

based technology, such a system can provide real-time

insights and timely interventions, ensuring safer and

more reliable transportation infrastructure for all.

2. Methodology

Figure 1 illustrates the framework of the research study

related to the cloud-based road surface quality

assessment. Data for this study was collected from site

visits and the internet, such as Google Images. These

images were pre-processed and partitioned into test

data and train data. A model was then developed based

on the train data. This model was evaluated using the

model’s predicted value and test data through cross-

validation. If the results were insigni�cant, the process

returned to the model development stage for

re�nement. Once the model evaluation was satisfactory,

the model was deployed in the Digital Ocean cloud

service.

Figure 1. Research Framework

3. Result

In this research, Python was used in the Jupyter

Notebook to run all the image preprocessing and

analysis. Figure 2 shows the video recorded by using

dashcam.

Figure 2. Video Recorded using Dashcam

Before model development, video and image

preprocessing were performed. First, frames were

extracted from the video and resized to 640*640 pixels.

Robo�ow was implemented to perform image

preprocessing, such as annotation, resizing,

augmentation, and data partitioning. After completing

all the preprocessing, this dataset was exported to a

Jupyter Notebook environment for model training.

Model used for this study is YOLOv8. YOLOv8 was

chosen because of its state-of-the-art (SOTA) object

detection model, which balances speed, accuracy, and

�exibility[6]. Building on its predecessors in the YOLO

series, YOLOv8 introduces architectural advancements

that improve precision and recall, enabling highly
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accurate detections even in complex environments. It

maintains the hallmark real-time inference speed of

YOLO models, making it ideal for time-sensitive

applications like autonomous vehicles and video

surveillance. The model's versatility is another key

strength, as it supports object detection, instance

segmentation, and image classi�cation within a uni�ed

framework. With multiple model sizes available (e.g.,

nano, small, medium, large), YOLOv8 is scalable for

deployment on devices ranging from resource-

constrained edge devices to powerful GPUs.

For this study, the number of epochs for model

development was 200, and the batch size was 16. By

default, the model training will trigger early stopping if

there is no improvement in the last 50 epochs to avoid

over�tting; thus, this model stopped at epoch 153. The

best result was obtained at epoch 103. Overall, for 263

images and 1180 instances, the model achieved a

precision of 0.457, a recall of 0.486, a mAP50 of 0.441,

and a mAP50-95 of 0.237. Speci�cally, for the “crack”

class, which had 711 instances, the model demonstrated

lower performance with a precision of 0.2, recall of

0.254, mAP50 of 0.136, and mAP50-95 of 0.0373. In

contrast, the “patch” class, with 113 instances, showed

the highest performance, achieving a precision of 0.651,

recall of 0.743, mAP50 of 0.703, and mAP50-95 of 0.504.

The “fatigue” class, with 242 instances, had moderate

performance, with a precision of 0.415, recall of 0.471,

mAP50 of 0.409, and mAP50-95 of 0.154. Lastly, the

“pothole” class, comprising 114 instances, performed

reasonably well with a precision of 0.564, recall of 0.476,

mAP50 of 0.515, and mAP50-95 of 0.251. These metrics

indicate that while the model performs reasonably well

in detecting “patch” and “pothole,” it struggles more

with identifying “crack,” highlighting areas for

potential improvement.

The model’s speed is also broken down as follows: it

takes 0.7 milliseconds (ms) for preprocessing, 7.5 ms for

inference, 0.0 ms for loss computation, and 1.5 ms for

postprocessing per image. This breakdown underscores

that the model is optimized for real-time or near-real-

time analysis, with the majority of the processing time

dedicated to inference, the task of detecting objects in

the image. Preprocessing and postprocessing times are

relatively minimal, suggesting that the model

ef�ciently prepares the data for analysis and processes

the results. The 0.0 ms loss time con�rms that loss

computation, typically used during training to optimize

the model, is not a factor during the evaluation phase.

This ef�cient processing is a key feature for road

anomaly detection in dashcam footage applications,

instilling con�dence in the model’s applicability.

A precision versus recall (PR) curve is called out to

illustrate the trade-off between precision and recall for

different thresholds. A perfect PR curve would achieve a

precision of 1 and a recall of 1, which are at the top right

of the plot. For instance, the “pothole” class achieves

high precision but at the cost of lower recall. This

means the model is very accurate when predicting a

pothole, but it might miss some actual one. mAP is a

metric that summarizes the PR curve by averaging the

precision across different recall thresholds. The value

“0.632 mAP@0.5” indicates the mean Average Precision

(mAP) at a recall level of 0.5, as shown in Figure 3.
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Figure 3. Precision versus Recall Curve

Figure 4 illustrates the training and validation

performance of an object detection model. The training

loss curves for box loss, classi�cation loss, and

distribution focal loss show a steady decrease over

epochs, indicating effective learning during the

training phase. Similarly, the precision and recall

metrics improve consistently before stabilizing,

re�ecting the model’s ability to correctly identify

positive cases while reducing false positives and

capturing more true positives over time.

For the validation metrics, the losses decrease initially

but exhibit some �uctuations, particularly the box loss,

which may suggest potential over�tting or challenges

in generalizing to unseen data in later epochs. However,

the mAP metrics (mean Average Precision at 50% IoU

and across IoUs from 50% to 95%) improve and plateau,

highlighting strong detection accuracy and consistency.

Despite the validation loss oscillations, the overall

performance trends indicate the model is achieving

decent results. To further enhance the model, it may be

bene�cial to investigate the causes of validation loss

�uctuations and apply regularization techniques such

as dropout or data augmentation. Additionally, using

early stopping could help mitigate over�tting. Finally,

testing the model on a separate dataset would con�rm

its ability to generalize effectively.

Figure 4. Overall Results for YOLOv8 Model Training

The model has been deployed on cloud infrastructure

hosted by Digital Ocean to ensure scalability and

accessibility. Users need to enter their username and

password to access the system. Once logged in, they can

upload videos to the cloud. The deployed model will

then begin detecting potholes, cracks, fatigue, and

patches in the videos. After detection, users can

download the results, which will include the latitude

and longitude of the road defects stored in a CSV �le, as
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well as the frames of the detections stored in a ZIP �le.

To export the results, users can click on the export

button for speci�c video �les.

4. Conclusion

The study introduces a cloud-based method for

assessing road surface quality, offering the potential to

signi�cantly reduce the time required for road defect

detection, improve accuracy, and lower associated costs.

By utilizing GIS technology, defect locations are

accurately recorded using latitude and longitude

coordinates, minimizing errors in the process. The

research presents a deep learning model capable of

accurately detecting and classifying road surface

defects such as cracks, patches, potholes, and fatigue.

Model performance was assessed based on accuracy,

accuracy per epoch, and loss per epoch, with the

YOLOv8 framework employed to identify and classify

road surface defects. Video data was processed by

extracting frames and converting them to JPG format

for input. The sample data, labelled with the correct

defect types using Robo�ow, was utilized for model

training to ensure accuracy and reliability.

The dataset for this research comprised 4,000 images

collected from various sources, including Google, and

on-site images from the Johor area. Preprocessing of

the images involved enhancement, resizing, and

annotation through Robo�ow, which was pivotal in

standardizing the images, ensuring accurate

annotations, and addressing class imbalance issues.

Once the pre-trained model was developed, it was

applied to detect and classify road surface defects in

real-world scenarios. The model’s performance was

evaluated using the F1-score, recall-precision graph,

and confusion matrix. The �ndings revealed that

YOLOv8 demonstrated high accuracy in detecting and

classifying defects for the "patch," "fatigue," and

"potholes" classes. However, its performance was less

accurate for the "crack" class, displaying lower accuracy

in detection and classi�cation.

This research stands to bene�t local government

departments and enhance public safety by enabling

timely and reliable identi�cation of road surface

defects, subsequently reducing the time required for

maintenance and repairs. This improvement could

signi�cantly enhance road safety, minimizing the

likelihood of accidents due to undetected defects.

Furthermore, by improving overall road conditions, the

research enhances the safety and comfort of drivers and

passengers, potentially reducing vehicle damage and

associated repair costs for the public.
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