
6 June 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Methods for Analyzing Large Bipartite

Graphs with Applications to Link

Prediction

Christopher W. Curtis1, Maryam Sabagh1

1. San Diego State University, United States

We look at several techniques for analyzing and characterizing large bipartite graphs with a focus on

better explaining the performance of graph neural networks in performing link prediction. We prove

several results for computing the number of a variety of small subgraphs to help characterize scale in

large bipartite graphs, and we also derive an asymptotic formula to characterize the longest simple

walk. We then look at using now standard convolution-�lter-based graph neural network learning

methods to perform link prediction in each data set. Ultimately, we �nd that the graph learning

methods used are most affected by whether the data is well described by a power-law distribution,

which indicates a scale-free structure in the data. The scale-free property is shown to degrade

predictive power, and it indicates that existing convolutional-�lter-based methods learn predictive

tasks better when there are strong distinctions in scales in a graph despite there potentially being

large numbers of disparate scales.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Prediction between dichotomous sets is at the heart of much of modern data-driven industry. The ability

to accurately predict what a user wants among a set of choices determines much of the success of any

number of digital platforms. In turn, there is a thriving research endeavour which has developed a range

of machine learning methods, broadly described as graph neural networks (GNNs), to learn from large

graphs so as to better our ability to predict user choices. Relatively exhaustive citation lists with historical

context about GNNs can be found in[1][2].

Qeios

qeios.com doi.org/10.32388/074O28 1

mailto:papers@team.qeios.com
https://www.qeios.com/
https://doi.org/10.32388/074O28

Given the staggering breadth of graph learning methodologies, we focus in this work on one class of

GNNs called message passing neural networks (MPNNs)[3][4][5][6][7], which have proven to be some of the

most powerful methods for learning on graphs. MPNNs rely on convolutional �lters to learn the graph

topology, thereby allowing for generalisability to make predictions of new links. However, as shown

in[8] and explored in detail in[7], most existing MPNNs can be shown to be no more expressive than the

lowest scale Weisfeiler–Lehman (WL) graph isomorphism test[9][10]. This limitation presents itself as an

inability of MPNNs to learn large-scale structures such as closed walks or related subgraphs, thereby

limiting the extent to which link prediction can be successful. While methods are being actively

developed to address this shortcoming, see for example[7][11], both approaches and related ones suffer

from computational limits induced by either the size of the adjacency matrix itself or the number of

smaller scale subgraphs in the network. Moreover, the role that statistical properties of a network play,

such as its degree distribution, has not received as much attention as other factors in graph learning

problems, though see[12] which explores the role of preferential attachment[13] in assessing the fairness

of link predictions in social networks.

Thus, in this work, assuming our graph is bipartite so that we are modelling link prediction between two

well-de�ned classes, we present a number of analytic and statistical approaches to help better

understand how MPNNs behave and are able to accurately predict linkage. In order to characterize scales

in our networks, we look at counting the number of simple walks of arbitrary length in a network. We

ultimately develop a number of metrics related to the largest singular value of the adjacency matrix of the

network graph. Through asymptotic analysis we develop, we couple graph structure to the value of the

largest singular value, thereby helping to provide interpretability and insight into otherwise large

networks. Moving to the other limit of small scales, to quantify the size of small subgraphs in our

network, we extend results in[14] and again develop a heuristic asymptotic formalism for determining the

longest simple walk in our network. This then lets us show that the largest singular value is a reasonable

estimate for distinguishing between small and large scale subgraphs in . These methods then give us a

way of appreciating in advance where MPNNs might struggle and hopefully point the way towards better

methodology. We study our methods on two bipartite data sets. The �rst consists of the classes

“playlists" and “tracks" which come from the Spotify Million Song Challenge[15]. The other is the

Amazon-book data set used in[16] consisting of classes “users" and “items". We are able to show that

while the Spotify and Amazon data sets are of similar node and edge counts, the small subgraph counts

G

qeios.com doi.org/10.32388/074O28 2

https://www.qeios.com/
https://doi.org/10.32388/074O28

are orders of magnitude apart. Further, we anticipate markedly longer simple walks in the Spotify data

which in principle should confound MPNNs.

We then present methods developed in[17] for determining whether a network has a power-law degree

distribution and therefore most likely developed according to preferential attachment (PA)[13], i.e. a “rich

get richer" process. Aside from being a foundational insight into the nature of a network, as we show, this

also appears to be a critical issue in our characterisation of how MPNNs perform. Most interestingly, we

see that the Spotify data only has a power-law distribution when looking at how playlists attach to

tracks, but not in the reciprocal direction. In contrast, the Amazon network clearly is described by a

power-law distribution in both directions. Thus, while we show that the Spotify data has more small and

large scale structure than the Amazon data, one can also distinguish in a statistically meaningful way the

difference between playlist and track nodes at every scale in comparison to the Amazon data set.

To illustrate the impact of this difference and also explore the role that varying subgraph scales play in

the learning process, we look at using three typical MPNNs to perform link prediction in both data sets.

These three are Light-GCN[16], GraphSage[18], and Chebnet[4]. We also look at a variant of the Bayesian-

Personalized Ranking Loss (BPRL)[19] and likewise explore the role of different levels of negative

sampling in our methods. As shown in[7], all three MPNNs should in principle do no better than a 1WL

test, though Chebnet has certain instances where it can transcend this limitation. Likewise, looking at

experimental results in[7], we would generally anticipate Chebnet performing best, all other things being

equal. This result holds up over the Spotify data set where Chebnet clearly outperforms the other MPNNs.

However, our numerical experiments show that while every method performs well as a class

discriminator, as measured by Area-Under-the-Curve (AUC) scores, when we look at Recall-at-K (ReK)

scores, the scale-free nature of the Amazon-book network lowers ReK scores but also makes GraphSage

and Chebnet perform in virtually identical ways with suf�cient negative sampling. So while Chebnet is

best at navigating the multiscale structure of the network, we posit that learning via MPNNs is more

challenging in a PA network since scale becomes less useful for discrimination, thereby making

GraphSage and Chebnet perform in nearly identical ways. To address this issue fully is a question for

future research.

The structure of the paper is as follows. In Section 2, we present our methods for analysing large bipartite

graphs and present our results on power-law distributions. In Section 3, we present our results on using

MPNNs to perform link prediction. In Section 4, we discuss conclusions and future work. This is followed

by Acknowledgments and �nally, an Appendix that collects proofs of technical theorems and lemmas in

qeios.com doi.org/10.32388/074O28 3

https://www.qeios.com/
https://doi.org/10.32388/074O28

the body of the paper. Note, in order to aid the reader by making concepts more concrete, we routinely

refer to the classes in our bipartite networks as “playlists/users" and “tracks/items".

2. Determining Scales in Large Bipartite Graphs

The bipartite structure of the playlist/track or user/item data means the af�liated adjacency matrix of

the graph can be written as

where we take to be (i.e. number-of-playlists/number-of-users by number-of-

tracks/number-of-items). We denote the set of nodes in as and the edges as . If we de�ne the

number of -cycle (non-simple) walks in the graph to be , it is a classic result then that

. Thus, from studies of alone, we can develop some quantitative

understanding of the number of different scales in a network.

2.1. Singular-Value Analysis for Counting Walks in Large Bipartite Graphs

The most straightforward way to compute for is via the following lemma.

Lemma 1. For bipartite graph with adjacency matrix , we have

where are the singular values of .

Proof. We readily see that

so

Given that for and , we see that

Likewise, if we have the SVD of so that , then

A

A = () ,0

BT

B

0

B ×N+ N−

G N E

2k (2k)nwlk

(2k) = tr()/4knwlk A2k tr()A2k

tr()A2k N ≫ 1

G A

(2k) =nwlk
1

4k
∑
j=1

N

σ2k
j

σj B

= ()A2k
(BBT)k

0

0

(B)BT k

tr () = tr ((B) + tr ((B) .A2k BT)k BT)k

tr(CD) = tr(DC) C m × n D n × m

tr ((B) = tr ((B) .BT)k BT)k

B B = UΣV T

qeios.com doi.org/10.32388/074O28 4

https://www.qeios.com/
https://doi.org/10.32388/074O28

Note, per convention, we order the singular values such that , where

. As we see from this result, if , then we can anticipate there being long walks, and

thus long scales, in . Therefore, as a �rst pass at assessing the presence of larger scales in our graph, we

would like methods for estimating which provide both quantitative estimates and also help us

understand how particular values of come about from subgraph structure.

To do this, we see that

where is the diagonal matrix of track/item degrees, say , and is the symmetric

matrix with zero-diagonal entries and off-diagonal entries

so is the number of playlists/users shared between the and track/item. Note, we could have

just as well written

and from hereon we provide results derived from either or .

To wit, we immediately get that

From this, we get the simple bound

which provides an easy test to determine if and thus if we should expect growth in as

 increases.

To get estimates for in terms of basic graph properties, let

(2k) = tr () = .nwlk
1

4k
A2k 1

4k
∑
j=1

N+

σ2k
j

□

≥ ≥ ⋯ ≥ ≥ 0σ1 σ2 σr

r = rank(B) > 1σ1

G

σ1

σ1

B = V = +BT Σ2V T D− B−
2h

D− ×N− N− d−
j B−

2h

=()B−
2h jk

∑
l=1

| |N+

bljblk

(B2h)jk jth kth

B = U = + ,BT Σ2U T D+ B+
2h

BBT BBT

= = .∑
j=1

r

σ2
j ∑

k=1

N−

d−
k

∑
k=1

N+

d+
k

≥ ,σ2
1

1
r
∑
k=1

N−

d−
k

> 1σ2
1 (2k)nwlk

k

σ1

= , = .d+
M max

1≤l≤N+
d+
l

d−
M max

1≤j≤N−
d−
j

qeios.com doi.org/10.32388/074O28 5

https://www.qeios.com/
https://doi.org/10.32388/074O28

 Then we see that the maximum-row-sum norm of is

Therefore, we have

which we note must be the same for . While convenient, this bound is not especially useful in

practice. We can get a better variational estimate of by noting that

so that

Proceeding in the same fashion gives us the immediate improvement

To get an even more re�ned estimate of the largest singular values, a perturbative approach can help

provide yet more insight into the way the graph structure in�uences the magnitudes of the . We prove

Theorem 1. If for

then for

where depending on which term de�nes .

Please see the Appendix for the proof. As can be seen from Theorem 1, if the maximum number of shared

playlists/users between two tracks/items is signi�cantly less than the maximum number of

playlists/users attached to any track/item, the leading order effects which determine the magnitudes of

BBT

=B∣∣∣∣∣∣B
T ∣∣∣∣∣∣∞

=

≤

max
1≤j≤N−

∑
k=1

N−

∑
l=1

N+

bljblk

max
1≤j≤N−

∑
l=1

N+

bljd
(p)
l

.max
1≤l≤N+

d
(p)
l

max
1≤j≤N−

d
(tr)
j

≤ ,σ1 d+
M d−

M

− −−−−
√

BBT

σ1

= ⟨(+) , ⟩ ,σ2
1 max

û

D− B2h û û

≤ + , = tr().σ2
1 d−

M || ||B2h F || ||B2h
2
F B2

2h

≤ min{ + , + }σ2
1 d−

M || ||B2h F d+
M

∣∣∣∣B
~

2h∣∣∣∣F

σj

j ≠ k

min{ , } = ϵ ≪ 1,
(maxj,k B+

2h)jk

d+
M

(maxj,k B−
2h)jk

d−
M

/ ≫ ϵd
(ch)
j d

(ch)
M

= + + ⋯σ2
j d

(ch)
j ∑

l≠j

1

−d
(ch)
j d

(ch)
l

()()B
(ch)
2h lj

2

ch = ± ϵ

qeios.com doi.org/10.32388/074O28 6

https://www.qeios.com/
https://doi.org/10.32388/074O28

 are the track degrees, with the next correction coming from the weighted overlap between tracks

relative to their difference in degrees. Thus, we get a clear sense now that the singular values encode

larger scale structure and, in turn, that larger scale structures determine the singular values.

From these results, we get several useful comparisons between our data sets. For the Spotify data, we

restrict so that every node has a minimum degree, say . Going below this threshold causes

later learning approaches to become overwhelmed with what amount to anecdotal cases, leading to

over�tting, thereby allowing for little meaningful generalization. In concrete terms, then, for the Spotify

data, we have and so that and . We plot the �rst

500 numerically approximated singular values of in Figure 1.

Figure 1. Plot of singular values of from the Spotify data set for .

As we �nd, , and thus as . Our upper bound on from Equation

[varapprox] gives us . We see then how the in�uence of the interacting tracks and playlists

gives rise to such a relatively large value of and thus the potential for large closed walks within .

σj

G = 30dmin

| | = 11888N+ | | = 7472N− |N | = 19360 |E| = 805071

B

σj B 1 ≤ j ≤ 500

≈ 154.02σ1 (2k) = O()nwlk σ2k
1 k → ∞ σ1

≤ 195.4σ1

σ1 G

qeios.com doi.org/10.32388/074O28 7

https://www.qeios.com/
https://doi.org/10.32388/074O28

For the Spotify data set, with , , so unfortunately, we cannot expect our result in Theorem 1

to provide a good approximation. Nevertheless, as we see in Figure 2, the expansion gives meaningful

insight into the �rst nine singular values, with the quality of the approximation improving by . This

gives us yet more analytic insight into singular values and how their magnitudes relate to the

neighborhood structure within the graph.

Figure 2. Plot of singular values of and their approximations using Theorem 1 for for

the Spotify data set.

To get a graph of comparable size, we �x the minimum degree of for the Amazon data to . In

this case, we get , , so that and . We immediately see

that the overall connectivity of the Amazon data is markedly lower than that of the Spotify data set.

Computing the singular values, we get , showing that the reduced connectivity of the Amazon

data set directly relates to the magnitude of the maximum singular value. We likewise �nd that, with

, This again helps quantify the marked reduction in connectivity in the Amazon data

ch = − ϵ ≈ .49

j = 9

σj B 1 ≤ j ≤ 8

G = 26dmin

| | = 9103N+ | | = 9766N− |N | = 18869 |E| = 539347

≈ 113.3σ1

ch = + ϵ ≈ .37

qeios.com doi.org/10.32388/074O28 8

https://www.qeios.com/
https://doi.org/10.32388/074O28

relative to the Spotify data set. As expected then, looking at our perturbative approach from Theorem 1 in

Figure 3, we see a closer approximation of the curves.

Figure 3. Plot of singular values of and their approximations using Theorem 1 for

 for the Amazon data set.

All of these results then give a strong indication that larger-scale subgraphs exist within each .

Moreover, we expect even more large-scale structure in the Spotify data set. We now examine why that is

and provide analytic formulas to better quantify which structures are present.

2.2. Quantifying Multiscale Network Structure via Counting Small Subgraphs

Returning to the quantity , we note that this value includes signi�cant counting of closed paths

over small subgraphs. For example, every long closed walk necessarily includes paths. To account

for this and thus determine a more accurate count of the large-scale structures within , following[14],

de�ning the number of homomorphic images (i.e. surjective homomorphisms) of a simple -cycle walk

to a subgraph to be and the number of subgraphs isomorphic to by , then

σj B

1 ≤ j ≤ 14

G

(2k)nwlk

2k 2|E|

G

k

H (H)ck H (H)nG

qeios.com doi.org/10.32388/074O28 9

https://www.qeios.com/
https://doi.org/10.32388/074O28

Thus, the number of simple length walks in our bipartite graph, say is given by

where by we mean every subgraph (up to isomorphism) of -nodes. For example then, the authors

of[14] show that

where is the number of edges and is the number of connected 3 node sequences (i.e. a graph

with nodes , , and edges and). This is illustrated in Figure 4, which also shows the other

subgraphs that we can compute in closed form as shown in[14]. Note, we have kept the notation

of[14] for ease of cross-referencing.

Figure 4. Subgraphs with closed form counting formulas for from[14].

We can extend the closed form formulas in[14] using the following lemmas. The proofs are found in the

Appendix.

Lemma 2. For ,

tr() = (H) (H).Ak ∑
H

ck nG

2k ()nG C2k

() = (2k) − () ()nG C2k nwlk
1

4k
∑
, d<2kHd

c2k Hd nG Hd

Hd d

() = (4) − (4 () + 2|E|)nG C4 nwlk
1
8

nG H2

|E| ()nG H2

a b c (a, b) (b, c)

(H)nG

(H)nG

k ≥ 2

() = − 4.c2k H2 2k+1

qeios.com doi.org/10.32388/074O28 10

https://www.qeios.com/
https://doi.org/10.32388/074O28

Lemma 3. For ,

Lemma 4. For ,

Performing some relatively straightforward counting to address the cases not proved above, we then �nd

We plot all of the relevant counts for the Spotify data in Figure 5 and for the Amazon data in Figure 6. For

the Spotify data, and thus it dominates the counts of all other subgraphs. also is

the largest count for the Amazon data, but it is now , again re�ecting the lower degree of

connectivity in the Amazon data. Likewise, is closer in magnitude to , so we have more

small-scale clustering in the Amazon data compared to the Spotify data. These results echo what we

expect from our singular-value analysis of , and so while there must be some internal maximum for

, we can expect that it is very large for relatively large values of . Thus, we expect that large-scale

structure is rampant throughout , indicating that long chains of playlists to tracks and back again are

present in the Spotify data set.

k ≥ 2

() = 4(− + 2).c2k C4 22k−1 2k+1

k ≥ 2

() = 2 ⋅ − 3 ⋅ + 6.c2k H4 3k 2k+1

() = (6) − (72 () + 12 () + 12 ()nG C6 nwlk
1

12
nG C4 nG H9 nG H4

+6 () + 12 () + 2|E|)nG H3 nG H2

() ≈nG C6 1013 ()nG C6

O()1012

()nG H9 ()nG C6

B

()nG C2k k

G

qeios.com doi.org/10.32388/074O28 11

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 5. Semi-log plot of the counts of using formulas from[14] for the Spotify data set.(H)nG

qeios.com doi.org/10.32388/074O28 12

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 6. Semi-log plot of the counts of using formulas from[14] for the Amazon data set.

Aside from their immediate utility, we also see that longer simple closed walks over subgraphs ultimately

balance the count of all walks found via the trace formula. For example, we see that

 while . Thus, these terms in part balance the growth from , and

show how we �nally achieve a maximum possible simple closed walk in . Said yet another way, we see

how surjective homomorphisms onto subgraphs de�ne a notion of maximal scale in .

To see this matter more explicitly, we prove

Theorem 2. For , we have

where

Proof. We label via the sequence . This naturally separates into even-index labels and

 odd-index labels. For a walk, if we start at we generate, for odd, the sequence

(H)nG

() = O()c2k C4 4k () = O()c2k H4 3k O()σ2k
1

G

G

k > j ≥ 2

() = 2j (−) , =c2k C2j Tk,j pk,j Tk,j j2(k−j)+3((j − 1)!)2

= 0.lim
k→∞

pk,j

Tk,j

C2j { , ⋯ , }a1 a2j j

j 2k a1 j

qeios.com doi.org/10.32388/074O28 13

https://www.qeios.com/
https://doi.org/10.32388/074O28

and for even

In either case, counting shows that this generates possible sequences.

We now suppose is absent in every odd entry of the above sequence. Denoting the number of these

sequences as , we �nd that

De�ning via the formula

we see then that . In turn then, we �nd that

For , we then have the result.

Our result then shows us for . If we suppose that

Using Stirling’s formula so that

and letting , we see that

, , , ⋯ , , ⋯ , , ,
a1

1

()
a2

a2j

2

⎛

⎝
⎜

a1

a3

a2j−1

⎞

⎠
⎟

3

⎛

⎝

⎜⎜

a1

⋮
a2j−1

⎞

⎠

⎟⎟

j

⎛

⎝
⎜

a1

a3

a2j−1

⎞

⎠
⎟

2k − 1

()
a2

a2j

2k

j

, , , ⋯ , , ⋯ , , ,
a1

1

()
a2

a2j

2

⎛

⎝
⎜

a1

a3

a2j−1

⎞

⎠
⎟

3

⎛

⎝

⎜⎜

a2

⋮
a2j

⎞

⎠

⎟⎟

j

⎛

⎝
⎜

a1

a3

a2j−1

⎞

⎠
⎟

2k − 1

()
a2

a2j

2k

=j2(k−j)+3(l)∏j−1
l=1

2
Tk,j

a3

m3,k,j

=m3,k,j

⎧

⎩
⎨
⎪⎪

⎪⎪

(j − 1j(k−j)+1)(k−j)+2((2l)∏(j−1)/2
l=1)2

2

(j − 1j(k−j)+2)(k−j)+1((2l)∏(j−2)/2
l=1)2

2

j odd

j even

pk,j

= − ,pk,j Tk,j
()c2k C2j

2j

0 < < (2j − 1)pk,j m3,k,j

< (2j − 1) {
pk,j

Tk,j
(1 − 1/j)(k−j)+1 (1 − 1/j)

1
j odd
j even

j ≥ 2 □

() = O(2 ((j − 1)!)c2k C2j j2(k−j)+4)2 k ≫ j ≥ 2

() ≈nG C2k

≈

(− () ()) ,
1

4k
σ2k

1 c2k C2j nG C2j

(− ((j − 1)!) .
1

4k
σ2k

1
1
2
j2(k−j)+3)2σ

2j
1

(j − 1)! ≈ (j − 1) ln(j − 1) − (j − 1), j ≫ 1,

ln(j − 1) ≈ ln(j) − 1/j

ln(((j − 1)!) ≈ 2 ((k + 1/2) ln j + j(ln − 1)) .j2(k−j)+3)2σ
2j
1 σ1

qeios.com doi.org/10.32388/074O28 14

https://www.qeios.com/
https://doi.org/10.32388/074O28

This is strictly increasing in , and thus we should get as close to as possible before compromising the

validity of our asymptotic approximations. We thus let , with the idea that we should later

let in order to get an estimate on the maximal simple walk length.

Keeping , we expect to get when

Using the expansion where , we get

and thus we get the estimate for the critical simple walk, say , of

For the Spotify data, letting , by choosing we get . Choosing we �nd

. Pushing our luck, as it were, and trying gets us . For the Amazon data,

, for , we get , for , we get , and for , we get .

Thus, while getting a de�nitive answer would require more sophisticated methods, we can conclude in

both cases that simple cycles longer than are present in relatively small numbers if they are there

at all. Thus, gives us a good estimate for the number of nodes that distinguish small and large scale

subgraphs in . We also point out that more general-purpose algorithms for counting simple cycles exist,

cf. [20], and exploring their use in this context is a question for future work.

2.3. Preferential Attachment and Scale-Free Networks

Beyond counting subgraphs, we can also look at from a statistical point of view. Letting the degree

distribution of be , we see in Figures 7 and 8 that the log-log plots of appear to be linear. A

typical conclusion then would be to see if , or if the distribution followed a power law. The

consequences of this, as �rst shown in the now seminal work of[13] are that we can then suppose a

preferential-attachment (PA) model, i.e., a “rich get richer" process, generates the network and, moreover,

that we expect the network to exhibit scale-free behavior; see also[1]. Of course, the term scale-free should

be understood in an appropriate limit since the results of the prior section clearly show that both

networks exhibit large numbers of small-scale subgraph structures with distinguished scales. Thus, the

results of this section should be understood over subgraphs with node counts larger than . Moreover,

j j k

k = αj α > 1

α → 1+

α > 1 () = O(1)nG C2k

(α − 1)j ln ≈ αj ln j − j + ln j.σ1
1
2

j ≈ +e1/ασ
(α−1)/α
1 c~ = o()c~ e1/ασ

(α−1)/α
1

j ≈ − ln , α > 1.e1/ασ
(α−1)/α
1

1
2α

σ
(α−1)/α
1

kcr

≈ α − ln , α > 1.kcr e1/ασ
(α−1)/α
1

1
2

σ
(α−1)/α
1

≈ 154σ1 α = 4 ≈ 223kcr α = 2

≈ 40kcr α = 3/2 ≈ 15kcr

≈ 113σ1 α = 4 ≈ 176kcr α = 2 ≈ 34kcr α = 3/2 ≈ 13kcr

O()σ1

σ1

G

G

G P (d) P (d)

P (d) ≈ d−α

σ1

qeios.com doi.org/10.32388/074O28 15

https://www.qeios.com/
https://doi.org/10.32388/074O28

as explored in detail in[17], while many distributions appear to follow a power law, whether that is a

statistically meaningful observation requires appropriate analysis.

Figure 7. Log-log plot of the degree distribution for the Spotify data with the power-law MLE

estimate for . The p-value for the KS test is , and thus we reject the null

hypothesis.

γ = 2.18 2.19 × 10−5

qeios.com doi.org/10.32388/074O28 16

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 8. Log-log plot of the degree distribution for the Amazon data with the power-law MLE

estimate for . The p-value for the KS test is , and thus we keep the null hypothesis.

To that end, if we suppose that , we �rst note that by construction we �x . To

normalize the distribution, we �nd to be

From[17], we can �nd the maximum-likelihood estimate (MLE) of to be

Likewise, we use the Kolmogorov–Sinai (KS) test to determine whether the null hypothesis of the data

being distributed according to the MLE approximation of is valid or should be rejected. Following

standard practice, we reject if the computed p-value is less than .

Returning then to the results in Figure 7, while the Spotify data does not seem to deviate signi�cantly

from the MLE �t, the p-value for the KS test is well below the rejection threshold, giving a very strong

γ = 2.6 .69

P (d) = Cd−γ d ≥ dc

C

C = , ζ(γ,) = .
1

ζ(γ,)dc
dc ∑

d=0

∞ 1
(+ ddc)γ

γ

γ ≈ 1 + |N |(ln)∑
j=1

|N | dj

− 1/2dc

−1

P (d)

5%

5%

qeios.com doi.org/10.32388/074O28 17

https://www.qeios.com/
https://doi.org/10.32388/074O28

indication that the data is not well explained by the MLE power-law distribution. To help illustrate the

issue, we generate synthetic data using the MLE distribution, and as can be seen in Figure 7, the tails do

deviate signi�cantly, thereby explaining the rejection of the null hypothesis in the KS test. So while to the

eye, and even somewhat intuitively, we might imagine that tracks and playlists form via PA to generate a

scale-free network following a power-law distribution, that is not the case. In contrast, for the Amazon

data, we readily pass the KS test with a p-value of . This gives us a very strong indication that the

Amazon graph follows a power-law distribution and thus should be well explained via PA.

However, given that is bipartite, it is natural to ask about the differences between the af�liated

distributions generated by and . Looking �rst at , which we can describe as how playlists/users

attach to a given track/item, for the Spotify data, we see in Figure 9 similar results to those seen in Figure

7. In this case, though, we just pass the KS test and keep the null hypothesis. Thus, how playlists attach to

tracks can be explained via PA. This intuitively makes sense since a track's popularity means more

playlists should link to it. Moreover, if we look at the tails in Figure 9, the discrepancy between the

measured and synthetic data is not as pronounced, helping explain why we can better explain the data

through the MLE power-law distribution approximation.

.69

G

B BT BT

qeios.com doi.org/10.32388/074O28 18

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 9. Log-log plot of the degree distribution for for the Spotify data with power-law MLE

estimate for . The p-value for the KS test is , and thus we keep the null hypothesis.

In contrast, examining for the Spotify data in Figure 10, we see that high-degree nodes cause even

more extreme deviations away from power-law predictions. Thus, while PA can explain how tracks

attach to playlists, this is not happening in a symmetric way to how playlists attach to popular tracks.

How large playlists are then generated clearly follows a different generative mechanism from PA.

BT

γ = 1.95 .055

B

qeios.com doi.org/10.32388/074O28 19

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 10. Log-log plot of the degree distribution for for the Spotify data with power-law MLE

estimate for . The p-value for the KS test is , and thus we reject the null hypothesis.

While we see a strong disparity in the attachment mechanisms in the Spotify data, looking at Figures 11

and 12, we see that the Amazon network does not exhibit as pronounced a dichotomy in how users attach

to items and vice versa. Moreover, the null hypothesis is kept in both KS tests, even though one can see

the distribution in Figure 12 does show some of the bending seen in Figure 10.

B

γ = 2.35 .006

qeios.com doi.org/10.32388/074O28 20

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 11. Log-log plot of the degree distribution for for the Amazon data with power-law MLE

estimate for . The p-value for the KS test is , and thus we keep the null hypothesis.

BT

γ = 2.69 .72

qeios.com doi.org/10.32388/074O28 21

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 12. Log-log plot of the degree distribution for for the Amazon data with power-law MLE

estimate for . The p-value for the KS test is , and thus we keep the null hypothesis.

In all, then, PA is clearly a reasonable mechanism for explaining the Amazon data set, whether we look at

it from a user/item or item/user perspective. This is not the case for the Spotify data set, though, which

shows a strong distinction in how tracks attach to playlists relative to the other direction. This

fundamental inhomogeneity leads to struggles for the learning strategies we employ, a point we explore

in the next section.

3. Link Prediction over Multiscale Networks

Using the template presented in[1], graph learning via MPNNs can be broadly explained via the following

steps:

�. Separate into a ‘message-passing’ graph and a ‘supervising graph’ . The nodes are the same

in both graphs, but the set of edges in is a strict subset of those in .

�. Choose an initial, weight-dependent, embedding .

B

γ = 2.51 .47

G GM GS

GM GS

: N →h0 R
Nf

qeios.com doi.org/10.32388/074O28 22

https://www.qeios.com/
https://doi.org/10.32388/074O28

�. At the -stage, for each node, say , �nd the received messages where

where denotes the neighborhood, relative to , of node .

�. Find via the formula

To update the weights in the embeddings, we use the recall score between playlist/user and track/item ,

say where

These ‘positive’ scores are computed over . For the -playlist/user, we also sample some

 ‘negative’ samples, i.e., tracks/items which do not share an edge with playlist/user in . This

generates negative scores . We then use a variant of the Bayesian-Personalized Ranking Loss

(BPRL), cf. [19], denoted by , in which we compute the average log-likelihood of the sigmoidal response

of the form

where denotes the number of tracks/items in a neighborhood, de�ned relative to , of

playlist/user . As we found, using in place of the more typical in effect helped �x a local

coordinate system to the playlist, thereby greatly enhancing training and ultimately generalized

learning.

What distinguishes MPNNs is how AGGREGATE and UPDATE are implemented. As shown in[6], most (if

not all) existing approaches can be written in the convolutional form

 where is the matrix formed from the separate node embeddings, is a convolution matrix, are

trainable weights, and is a sigmoidal response function. For example, the Light Graph Convolutional

Network (LGC) method sets and is given by

kth nj m()nj

m () = AGGREGATE(() , ∈ N ())nj hk nl nl nj

N ()nj GM nj

()hk+1 nj

() = UPDATE(() , m ())hk+1 nj hk nj nj

j l

s
p

jl

= ⟨ (), ()⟩ .s
p

jl
hk+1 n+

j hk+1 n−
l

GS jth

Nneg j GS

Nneg snjm

L

L = − logσ(−) .
1

NnegN+
∑
j=1

N+

∑
m=1

Nneg
1

|N (j)|
∑
l=1

|N (j)|

s
p

jl
∣∣s

n
jm

∣∣

|N (j)| GS

j ∣∣s
n
jm

∣∣ snjm

jth

= σ() , 0 ≤ k ≤ − 1,Hk+1 ∑
s=1

Nstps

CsHkWs,k Nlay

Hk Cs Ws,k

σ

= 1Nstps C1

= (D + I (A + I)(D + I .C1)1/2)1/2

qeios.com doi.org/10.32388/074O28 23

https://www.qeios.com/
https://doi.org/10.32388/074O28

For the Chebyshev spectral �lter[4], or Chebnet, one chooses and then de�nes convolutional �lters

via the recursive formulas

where the graph Laplacian with the diagonal matrix of degrees so that

and is the maximum eigenvalue of . The last example that we look at is GraphSage[18], which can be

recast as a two-step �ltration process in which and .

As shown in[7], any MPNN can be proven to be equivalent to some version of the k-Weisfeiler-Lehman

Test (kWLT); see[10] for further discussion and historical citations. While powerful, any kWLT is only a

necessary condition for isomorphism, and counterexamples exist for all [21]. This is due to each kWLT

being, in effect, a graph-coloring scheme over -tuples of the nodes, i.e., coloring on . In the 1WLT, the

coloring of each node is altered by the colors of its neighbors. Each higher-order test then looks at

longer-scale relationships between nodes to identify the particular color of any one node, thereby giving

any kWLT, for , greater discriminatory power for larger k but also introducing a fundamental

limitation due to the �nite value of . Perhaps somewhat frustratingly,[7] proves that generically LGC,

GraphSage, and Chebnet are no more powerful than the 1WLT, though Chebnet can distinguish any two

graphs that have different maximum eigenvalues of their respective Laplacians. This is used to explain

the signi�cant performance difference over the EXP dataset[22] as shown in[7]. However, while related,

the question of whether an MPNN can accurately count subgraphs is not identical to its kWLT

equivalence; again, see[7]. Likewise, the role that the preferential-attachment/scale-free property plays in

link prediction problems has not, to the best of our knowledge, been explored.

3.1. Results

In response to these issues, we look at how LGC, GraphSage, and Chebnet perform on both the Spotify

and Amazon data sets. The results in Figures 5 and 6 suggest that all three MPNNs will struggle due to a

basic inability to capture the small-scale connected structures which appear in such large quantities

throughout each network. That said, we would also anticipate that each MPNN would struggle less over

the Amazon data. But this ignores the effect that PA, potentially appearing on subgraphs larger than ,

plays in the learning process. As we show, the absence of PA in the Spotify data helps the learning process

Nstps

= I, = L − I, = 2 − , 1 ≤ s ≤ ,C1 C2
2
λM

Cs C2Cs−1 Cs−2 Nstps

L = D − A D

D = () ,D+

D−

λM L

= IC1 = AC2 D−1

k

k N
k

k ≥ 2

k

σ1

qeios.com doi.org/10.32388/074O28 24

https://www.qeios.com/
https://doi.org/10.32388/074O28

by essentially providing insight into important large-scale structure by way of there being a statistical

distinction between the node classes.

In our numerical experiments, we �x the embedding dimension , the number of times we iterate

through layers to , and the learning rate of the ADAM optimizer to . Variations of these values

were explored, and results were either unchanged or worse. For the Chebnet cases, on the Spotify data, we

set while we found improved performance on the Amazon data when we set . The

data sets are separated into of edges being used in training, for validation, and for testing.

We measure the success of our predictions through both Area under Curve (AUC) and Recall-at-K (ReK)

measurements. For the Spotify data, we set , representing of the total tracks. To generate

comparable results, we set for the Amazon data, again representing of the total items. For

all cases, we compare using to . In all cases, we train for 300 epochs across ten

experiments for each case.

The results of our experiments are presented in Figures 13, 14, 15, and 16. For the Spotify data, the AUC

scores shown in Figure 13, which in this case measure the classi�cation problem of determining whether

an edge exists between a particular playlist and track, clearly show every model is markedly better than

random classi�cation. Chebnet, in particular, stands out in this regard, with GraphSage performing the

worst, though it is close to LGC’s results modulo the higher standard deviation. Light-GCN is also

distinguished by having the smallest standard deviation around the mean, especially when .

Likewise, we see Chebnet reaches a slightly higher overall AUC with and also exhibits a small

reduction in the standard deviation of the AUC score.

= 64Nf

= 3Nlay .01

= 4Nstps = 3Nstps

70% 15% 15%

K = 300 4%

K = 392 4%

= 1Nneg = 10Nneg

= 10Nneg

= 10Nneg

qeios.com doi.org/10.32388/074O28 25

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 13. Comparison of AUC for Light-GCN (LGC), GraphSage, and Chebnet with

negative samples set to and for the Spotify data set. Chebnet is

trained with . The vertical bars represent the standard deviation around the

mean computed over ten trials.

= 1Nneg = 10Nneg

= 4Nstps

qeios.com doi.org/10.32388/074O28 26

https://www.qeios.com/
https://doi.org/10.32388/074O28

However, the predicted ReK for LGC, GraphSage, and Chebnet shows strong distinctions, with Chebnet

performing much better than its peers. Given the results in Figure 5, we posit that the differences in sub-

graph counting ability probably best explain the overall performance in learning. First, we note that

Light-GCN, despite being no better or worse than a 1WLT, cannot do better than guessing after training.

GraphSage is able to outperform LGC, but it exhibits signi�cant spreads in its predictive power, especially

when only one negative sample is used. In contrast, we see Chebnet is able to get both the best predictive

performance with minimal spread in predictive outcome, especially when we use . Thus, while

increasing the exposure to negative samples does not necessarily create large improvements in ReK

scores, we see that it plainly has an effect on the graph learning process that works in conjunction with

the extent to which each MPNN is able to navigate the vast scales of subgraphs in the Spotify data.

= 10Nneg

qeios.com doi.org/10.32388/074O28 27

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 14. Comparison of Recall-at- performance for Light-GCN (LGC), GraphSage,

and Chebnet with negative samples set to and for the Spotify data

set. Chebnet is trained with . The vertical bars represent the standard

deviation around the mean computed over ten trials.

K

= 1Nneg = 10Nneg

= 4Nstps

qeios.com doi.org/10.32388/074O28 28

https://www.qeios.com/
https://doi.org/10.32388/074O28

The AUC scores for the Amazon data shown in Figure 15 show much the same behaviour as over the

Spotify data. We note, though, that there is much less distinction in performance across the MPNNs. LGC

continues to underperform, but the overall spread among the three methods is less, and GraphSage and

Chebnet are almost indistinguishable. We note for that the performance of both is slightly

improved, so increased exposure to negative sampling still improves training. In all, though, we see each

MPNN is generally as strong a classi�er over the Spotify data as the Amazon data.

= 10Nneg

qeios.com doi.org/10.32388/074O28 29

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 15. Comparison of AUC for Light-GCN (LGC), GraphSage, and Chebnet with

negative samples set to and for the Amazon data set. Chebnet is

trained with . The vertical bars represent the standard deviation around the

mean computed over ten trials.X

= 1Nneg = 10Nneg

= 3Nstps

qeios.com doi.org/10.32388/074O28 30

https://www.qeios.com/
https://doi.org/10.32388/074O28

Looking at ReK, though, shows how different the graph learning process is on the Amazon data. First, we

note that by including more negative samples, while GraphSage is now the best-performing MPNN, its

distinction from Chebnet is nominal. We also see in this regard that the exposure to more negative

samples has a dramatic effect on predictive power. We also observe that LGC cannot compete at link

prediction, at least for the parameter choices we have made. This, then, is clearly a consequence of the

large numbers of small-scale graphs as shown in Figures 5 and 6. Finally, we see the overall predictive

power of all of the MPNNs is reduced on the Amazon data set, despite scaling our ReK criteria to be the

same across both data sets.

qeios.com doi.org/10.32388/074O28 31

https://www.qeios.com/
https://doi.org/10.32388/074O28

Figure 16. Comparison of Recall-at- performance for Light-GCN (LGC), GraphSage,

and Chebnet with negative samples set to and for the Amazon data

set. Chebnet is trained with . The vertical bars represent the standard

deviation around the mean computed over ten trials.

K

= 1Nneg = 10Nneg

= 3Nstps

qeios.com doi.org/10.32388/074O28 32

https://www.qeios.com/
https://doi.org/10.32388/074O28

4. Conclusion and Future Directions

As expected and as shown in the Spotify data set, the presence of large numbers of smaller scale

subgraphs makes Chebnet the most competitive choice among the MPNNs studied in this work. Given

that the subgraph counts are smaller (compare Figures 5 and 6) in the Amazon data, one might have

imagined, keeping the discussion of kWL tests in mind, that the ReK scores would have presented

themselves differently than they did. However, it appears that the fact that the Amazon data follows a

power-law distribution with its attendant scale-free property causes all of the MPNNs to struggle. Upon

further re�ection, this makes sense. The question of predicting a track/item relative to a playlist/user

would bene�t from some strong distinction between the two classes. Clearly then, given that the Spotify

data has such a strong asymmetry in the distributions of tracks-to-playlists versus playlists-to-tracks,

cf. Figures 10 and 9, the Chebnet �lter is clearly able to learn some part of this distinction and leverage it

for enhanced predictive power.

Future work would �rst address the issue of PA degrading the performance of MPNNs. For the task of link

prediction, the presence of PA most likely demands at a minimum adding graph attributes to help with

distinguishing node type and improving link prediction, especially if it is done in a uni-directional way,

e.g., strictly for item to user. Likewise, developing MPNNs that can cope with the large number of small

scale subgraphs is already an area of active research, and the results of this work clearly motivate

continued endeavour in this direction.

Appendix: Proofs of Theorems

Proof of Theorem 1

Theorem 1. If for ,

then for

where depending on which term de�nes .

j ≠ k

min{ , } = ϵ ≪ 1,
(maxj,k B+

2h)jk

d+
M

(maxj,k B−
2h)jk

d−
M

/ ≫ ϵd−
j d−

M

= + + ⋯σ2
j d

(ch)
j ∑

l≠j

1

−d
(ch)
j d

(ch)
l

()()B
(ch)
2h

lj

2

ch = ± ϵ

qeios.com doi.org/10.32388/074O28 33

https://www.qeios.com/
https://doi.org/10.32388/074O28

Proof. Without loss of generality, we suppose that . Rescaling by , we then have the

perturbation problem

where and . Note, through permutation, we order the values in

 in descending order to match that of the singular values.

To �nd , we use the expansions

At leading order, we get where is an arbitrary constant and . The next order

corrections are all of the form

Then, at every order, we get the solvability requirement

Note, we have tacitly chosen our inhomogeneous solutions to be orthogonal to the kernel so that

 for .

De�ning the diagonal matrix

we likewise �nd

Stepping through these formulas up to second order, at , we get

where we get zero since , and

Proceeding to the next order, we �nd the correction to be

ch = − d−
M

B = (+ ϵ) , BT d−
M D

~
B
~

= /D
~

D− d−
M = / (B

~
B−

2h maxj,k B−
2h)jk

D
~

B =BT
uj σ2

j uj

= + ϵ + + ⋯ , = + ϵ + + ⋯ .uj uj,0 uj,1 ϵ2
uj,2 σ2

j σj,0 σj,1 ϵ2σj,2

= cuj,0 êj c =σ0,j d
~
j

(−) = − + , k ≥ 1.D
~

σj,0 uj,k B
~

uj,k−1 ∑
l=1

k

σj,luj,k−l

= .σj,k
⟨˜B , ⟩uj,k−1 uj,0

⟨ , ⟩uj,0 uj,0

⟨ , ⟩ = 0uj,l êj l > 0

= {(−)D
~

σj,0
−P

kk

(−d
~
k σj,0)−1

0

j ≠ k

j = k

= (− +) .uj,k (−)D
~

σj,0
−P

B
~

uj,k−1 ∑
l=1

k

σj,luj,k−l

k = 1

= = 0,σj,1
⟨˜B , ⟩uj,0 uj,0

⟨ , ⟩uj,0 uj,0

= 0B
~
jj

= −(− .uj,1 D
~

σj,0)−PB
~

uj,0

σj,2

qeios.com doi.org/10.32388/074O28 34

https://www.qeios.com/
https://doi.org/10.32388/074O28

Setting and returning to our original scaling, we see that the singular values have the

expansion

Proofs for Counting Simple Closed Walk Homomorphisms

Lemma 2. For ,

Proof. Labeling the vertices of as (a,b,c), a long sequence starting at would look like

That gives total paths, and we subtract the sequence for a total of valid

homomorphisms. We would get the same number if we started the sequence from . If we started from ,

we would get valid sequences where we subtract the 2 sequences having only or .

Lemma 3. For ,

Proof. The closed walk generates a balanced binary tree. We label the vertices with , , , in

sequential order, and we �rst start the tree at . Thus, for positions, of them can be either or ,

while of them can be or , i.e. we generate sequences of the form

There are possible sequences. There are which do not include or equivalently only have . There

are then sequences with no not counting the sequence with only again. Likewise, there are

 sequences with no not counting the sequence with only again. Thus, starting from , we

have surjective homomorphisms. Given the symmetry of the labeling, we see we would

get the same result starting from , , and , thus we get the �nal result.

Lemma 4. For ,

= − .σj,2

⟨ , ⟩(˜D −)σj,0
−P

B
~

uj,0 B
~

uj,0

⟨ , ⟩uj,0 uj,0

c = 1 σ2
j

= + + ⋯σ2
j d−

j ∑
l≠j

1

−d−
j d−

l

()()B2h lj

2

□

k ≥ 2

() = − 4.c2k H2 2k+1

H2 2k a

a, b, a/c, b, ⋯ , a/c, b.

2k−1 a, b,a, b, ⋯ ,a, b − 12k−1

c b

− 22k a c □

k ≥ 2

() = 4(− + 2).c2k C4 22k−1 2k+1

C4 a b c d

a 2k k b d

k − 1 a c

a, b/d, a/c, b/d, ⋯ , a/c, b/d.

22k−1 2k c a

− 12k−1 b a

− 12k−1 d a a

− + 222k−1 2k

b c d □

k ≥ 2

qeios.com doi.org/10.32388/074O28 35

https://www.qeios.com/
https://doi.org/10.32388/074O28

Proof. Following the method used thus far, if we start at , we can trace out all possible sequences as

This gives a total of possible sequences. There are then sequences with no and

 sequences with no not counting the sequence with only again. This gives a total of

, and we see we get the same result starting from or for a total of

 surjective homomorphisms. If we start from , this gives us

 surjective homomorphisms. Adding gets the �nal result.

Statements and Declarations

Acknowledgments

We would like to thank Robert Simpson for participating in prior work on studying counts of subgraphs.

Likewise, we would like to acknowledge that we used the code and discussion from

https://medium.com/stanford-cs224w/spotify-track-neural-recommender-system-51d266e31e16 to begin

our work on this project.

References

�. a, b, cHamilton WL (2020). Synthesis lectures on arti�cial intelligence and machine learning. pp. 1–159.

�. ^Zhou J, Cui G, Hu S, Zhang Z, Yang C, et al. (2020). "Graph neural networks: A review of methods and applic

ations." AI Open. 1:57–81. doi:10.1016/j.aiopen.2021.01.001.

�. ^Kipf TN, Welling M (2017). "Semi-supervised classi�cation with graph convolutional networks." In: Interna

tional conference on learning representations. Available from: https://openreview.net/forum?id=SJU4ayYgl.

�. a, b, cDefferrard M, Bresson X, Vandergheynst P (2016). "Convolutional neural networks on graphs with fast l

ocalized spectral �ltering." In: Proceedings of the 30th international conference on neural information proc

essing systems. Red Hook, NY, USA: Curran Associates Inc. pp. 3844–3852.

�. ^Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017). "Neural message passing for quantum chemis

try." In: Proceedings of the 34th international conference on machine learning - volume 70. Sydney, NSW, A

ustralia: JMLR.org pp. 1263–1272.

() = 2 ⋅ − 3 ⋅ + 6.c2k H4 3k 2k+1

a

a, b, a/c/d, b, ⋯ , a/c/d, b.

3k−1 2k−1 d

− 12k−1 c a

− + 13k−1 2k c d

3(− + 1)3k−1 2k b

− − (− 1) − (− 2)3k 2k 2k 2k □

qeios.com doi.org/10.32388/074O28 36

https://medium.com/stanford-cs224w/spotify-track-neural-recommender-system-51d266e31e16
https://doi.org/10.1016/j.aiopen.2021.01.001
https://openreview.net/forum?id=SJU4ayYgl
https://www.qeios.com/
https://doi.org/10.32388/074O28

�. a, bBalcilar M, Renton G, Héroux P, Gaüzère B, Adam S, et al. (2021). "ANALYZING THE EXPRESSIVE POWER

OF GRAPH NEURAL NETWORKS IN a SPECTRAL PERSPECTIVE." In: Proceedings of the 10th international

conference on learning representations.

�. a, b, c, d, e, f, g, h, iBalcilar M, Heroux P, Gauzere B, Vasseur P, Adam S, et al. (2021). "Breaking the limits of mes

sage passing graph neural networks." In: Meila M, Zhang T, editors. Proceedings of the 38th international c

onference on machine learning. PMLR pp. 599–608.

�. ^Xu K, Hu W, Leskovec J, Jegelka S (2019). "How powerful are graph neural networks?" In: International conf

erence on learning representations. Available from: https://openreview.net/forum?id=ryGs6iA5Km.

�. ^Weisfeiler B, Lehman A (1968). "A reduction of a graph to a canonical form and an algebra arising during t

his reduction." Scienti�c and Technical Information. 2:12–16.

��. a, bArvind V, Fuhlbrück F, Köbler J, Verbitsky O (2020). "On weisfeiler-leman invariance: Subgraph counts an

d related graph properties." Journal of Computer and System Sciences. 113:42–59. doi:10.1016/j.jcss.2020.04.0

03.

��. ^Bevilacqua B, Frasca F, Lim D, Srinivasan B, Cai C, et al. (2022). "Equivariant subgraph aggregation netwo

rks." In: International conference on learning representations.

��. ^Subramonian A, Sagun L, Sun Y (2024). "Networked inequality: Preferential attachment bias in graph neu

ral network link prediction." https://openreview.net/forum?id=4i4fgCOBDE.

��. a, b, cBarabási AL, Albert R (1999). "Emergence of scaling in random networks." Science. 286(5439):509–512.

��. a, b, c, d, e, f, g, h, iAlon N, Yuster R, Zwick U (1997). "Finding and counting given length cycles." Algorithmica.

17:209–223.

��. ^Chen CW, Lamere P, Schedl M, Zamani H (2018). "Recsys challenge 2018: Automatic music playlist continu

ation." In: Proceedings of the 12th ACM conference on recommender systems. New York, NY, USA: Associatio

n for Computing Machinery pp. 527–528. doi:10.1145/3240323.3240342.

��. a, bHe X, Deng K, Wang X, Li Y, Zhang Y, et al. (2020). "LightGCN: Simplifying and powering graph convoluti

on network for recommendation." https://arxiv.org/abs/2002.02126.

��. a, b, cClauset A, Shalizi CR, Newman MEJ (2009). "Power-law distributions in empirical data." SIAM Revie

w. 51(4):661–703.

��. a, bHamilton W, Ying Z, Leskovec J (2017). "Inductive representation learning on large graphs." In: Guyon I, V

on Luxburg U, Bengio S, Wallach H, Fergus R, et al. editors. Advances in neural information processing syste

ms. Curran Associates, Inc. Available from: https://proceedings.neurips.cc/paper_�les/paper/2017/�le/5dd9d

b5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

qeios.com doi.org/10.32388/074O28 37

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1016/j.jcss.2020.04.003
https://doi.org/10.1016/j.jcss.2020.04.003
https://openreview.net/forum?id=4i4fgCOBDE
https://doi.org/10.1145/3240323.3240342
https://arxiv.org/abs/2002.02126
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://www.qeios.com/
https://doi.org/10.32388/074O28

��. a, bRendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009). "BPR: Bayesian personalized ranking fr

om implicit feedback." In: Proceedings of the twenty-�fth conference on uncertainty in arti�cial intelligenc

e. Arlington, Virginia, USA: AUAI Press pp. 452–461.

��. ^Giscard PL, Kriege N, Wilson RC (2019). "A general purpose algorithm for counting simple cycles and simpl

e paths of any length." Algorithmica. 81:2716–2737.

��. ^Cai J, Fürer M, Immerman N (1992). "An optimal lower bound on the number of variables for graph identi�

cation." Combinatorica. 12:389–410.

��. ^Abboud R, Ceylan II, Grohe M, Lukasiewicz T (2021). "The surprising power of graph neural networks with

random node initialization." In: Proceedings of the thirtieth international joint conference on arti�cal intell

igence (IJCAI).

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/074O28 38

https://www.qeios.com/
https://doi.org/10.32388/074O28

