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We look at several techniques for analyzing and characterizing large bipartite graphs with a focus on

better explaining the performance of graph neural networks in performing link prediction. We prove

several results for computing the number of a variety of small subgraphs to help characterize scale in

large bipartite graphs, and we also derive an asymptotic formula to characterize the longest simple

walk. We then look at using now standard convolution-�lter-based graph neural network learning

methods to perform link prediction in each data set. Ultimately, we �nd that the graph learning

methods used are most affected by whether the data is well described by a power-law distribution,

which indicates a scale-free structure in the data. The scale-free property is shown to degrade

predictive power, and it indicates that existing convolutional-�lter-based methods learn predictive

tasks better when there are strong distinctions in scales in a graph despite there potentially being

large numbers of disparate scales.
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1. Introduction

Prediction between dichotomous sets is at the heart of much of modern data-driven industry. The ability

to accurately predict what a user wants among a set of choices determines much of the success of any

number of digital platforms. In turn, there is a thriving research endeavour which has developed a range

of machine learning methods, broadly described as graph neural networks (GNNs), to learn from large

graphs so as to better our ability to predict user choices. Relatively exhaustive citation lists with historical

context about GNNs can be found in[1][2].
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Given the staggering breadth of graph learning methodologies, we focus in this work on one class of

GNNs called message passing neural networks (MPNNs)[3][4][5][6][7], which have proven to be some of the

most powerful methods for learning on graphs. MPNNs rely on convolutional �lters to learn the graph

topology, thereby allowing for generalisability to make predictions of new links. However, as shown

in[8] and explored in detail in[7], most existing MPNNs can be shown to be no more expressive than the

lowest scale Weisfeiler–Lehman (WL) graph isomorphism test[9][10]. This limitation presents itself as an

inability of MPNNs to learn large-scale structures such as closed walks or related subgraphs, thereby

limiting the extent to which link prediction can be successful. While methods are being actively

developed to address this shortcoming, see for example[7][11], both approaches and related ones suffer

from computational limits induced by either the size of the adjacency matrix itself or the number of

smaller scale subgraphs in the network. Moreover, the role that statistical properties of a network play,

such as its degree distribution, has not received as much attention as other factors in graph learning

problems, though see[12] which explores the role of preferential attachment[13]  in assessing the fairness

of link predictions in social networks.

Thus, in this work, assuming our graph is bipartite so that we are modelling link prediction between two

well-de�ned classes, we present a number of analytic and statistical approaches to help better

understand how MPNNs behave and are able to accurately predict linkage. In order to characterize scales

in our networks, we look at counting the number of simple walks of arbitrary length in a network. We

ultimately develop a number of metrics related to the largest singular value of the adjacency matrix of the

network graph. Through asymptotic analysis we develop, we couple graph structure to the value of the

largest singular value, thereby helping to provide interpretability and insight into otherwise large

networks. Moving to the other limit of small scales, to quantify the size of small subgraphs in our

network, we extend results in[14] and again develop a heuristic asymptotic formalism for determining the

longest simple walk in our network. This then lets us show that the largest singular value is a reasonable

estimate for distinguishing between small and large scale subgraphs in  . These methods then give us a

way of appreciating in advance where MPNNs might struggle and hopefully point the way towards better

methodology. We study our methods on two bipartite data sets. The �rst consists of the classes

“playlists" and “tracks" which come from the Spotify Million Song Challenge[15]. The other is the

Amazon-book data set used in[16]  consisting of classes “users" and “items". We are able to show that

while the Spotify and Amazon data sets are of similar node and edge counts, the small subgraph counts
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are orders of magnitude apart. Further, we anticipate markedly longer simple walks in the Spotify data

which in principle should confound MPNNs.

We then present methods developed in[17]  for determining whether a network has a power-law degree

distribution and therefore most likely developed according to preferential attachment (PA)[13], i.e. a “rich

get richer" process. Aside from being a foundational insight into the nature of a network, as we show, this

also appears to be a critical issue in our characterisation of how MPNNs perform. Most interestingly, we

see that the Spotify data only has a power-law distribution when looking at how playlists attach to

tracks, but not in the reciprocal direction. In contrast, the Amazon network clearly is described by a

power-law distribution in both directions. Thus, while we show that the Spotify data has more small and

large scale structure than the Amazon data, one can also distinguish in a statistically meaningful way the

difference between playlist and track nodes at every scale in comparison to the Amazon data set.

To illustrate the impact of this difference and also explore the role that varying subgraph scales play in

the learning process, we look at using three typical MPNNs to perform link prediction in both data sets.

These three are Light-GCN[16], GraphSage[18], and Chebnet[4]. We also look at a variant of the Bayesian-

Personalized Ranking Loss (BPRL)[19]  and likewise explore the role of different levels of negative

sampling in our methods. As shown in[7], all three MPNNs should in principle do no better than a 1WL

test, though Chebnet has certain instances where it can transcend this limitation. Likewise, looking at

experimental results in[7], we would generally anticipate Chebnet performing best, all other things being

equal. This result holds up over the Spotify data set where Chebnet clearly outperforms the other MPNNs.

However, our numerical experiments show that while every method performs well as a class

discriminator, as measured by Area-Under-the-Curve (AUC) scores, when we look at Recall-at-K (ReK)

scores, the scale-free nature of the Amazon-book network lowers ReK scores but also makes GraphSage

and Chebnet perform in virtually identical ways with suf�cient negative sampling. So while Chebnet is

best at navigating the multiscale structure of the network, we posit that learning via MPNNs is more

challenging in a PA network since scale becomes less useful for discrimination, thereby making

GraphSage and Chebnet perform in nearly identical ways. To address this issue fully is a question for

future research.

The structure of the paper is as follows. In Section 2, we present our methods for analysing large bipartite

graphs and present our results on power-law distributions. In Section 3, we present our results on using

MPNNs to perform link prediction. In Section 4, we discuss conclusions and future work. This is followed

by Acknowledgments and �nally, an Appendix that collects proofs of technical theorems and lemmas in
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the body of the paper. Note, in order to aid the reader by making concepts more concrete, we routinely

refer to the classes in our bipartite networks as “playlists/users" and “tracks/items".

2. Determining Scales in Large Bipartite Graphs

The bipartite structure of the playlist/track or user/item data means the af�liated adjacency matrix   of

the graph can be written as 

where we take    to be    (i.e. number-of-playlists/number-of-users by number-of-

tracks/number-of-items). We denote the set of nodes in    as    and the edges as  . If we de�ne the

number of  -cycle (non-simple) walks in the graph to be  , it is a classic result then that 

. Thus, from studies of    alone, we can develop some quantitative

understanding of the number of different scales in a network.

2.1. Singular-Value Analysis for Counting Walks in Large Bipartite Graphs

The most straightforward way to compute   for   is via the following lemma.

Lemma 1. For bipartite graph   with adjacency matrix  , we have 

where   are the singular values of  .

Proof. We readily see that 

so 

Given that   for   and  , we see that 

Likewise, if we have the SVD of   so that  , then 
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Note, per convention, we order the singular values such that  , where 

. As we see from this result, if  , then we can anticipate there being long walks, and

thus long scales, in  . Therefore, as a �rst pass at assessing the presence of larger scales in our graph, we

would like methods for estimating    which provide both quantitative estimates and also help us

understand how particular values of   come about from subgraph structure.

To do this, we see that 

where    is the    diagonal matrix of track/item degrees, say  , and    is the symmetric

matrix with zero-diagonal entries and off-diagonal entries 

so   is the number of playlists/users shared between the   and   track/item. Note, we could have

just as well written 

and from hereon we provide results derived from either   or  .

To wit, we immediately get that 

From this, we get the simple bound 

which provides an easy test to determine if   and thus if we should expect growth in   as 

 increases.
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 Then we see that the maximum-row-sum norm of   is 

Therefore, we have 

which we note must be the same for  . While convenient, this bound is not especially useful in

practice. We can get a better variational estimate of   by noting that 

so that 

Proceeding in the same fashion gives us the immediate improvement 

To get an even more re�ned estimate of the largest singular values, a perturbative approach can help

provide yet more insight into the way the graph structure in�uences the magnitudes of the  . We prove

Theorem 1. If for 

then for 

where   depending on which term de�nes  .

Please see the Appendix for the proof. As can be seen from Theorem 1, if the maximum number of shared
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≤ + ,   = tr( ).σ2
1 d−

M || ||B2h F || ||B2h
2
F B2

2h

≤ min{ + , + }σ2
1 d−

M || ||B2h F d+
M

∣∣∣∣B
~

2h∣∣∣∣F

σj

j ≠ k

min{ , } = ϵ ≪ 1,
(maxj,k B+

2h)jk

d+
M

(maxj,k B−
2h)jk

d−
M

/ ≫ ϵd
(ch)
j d

(ch)
M

= + + ⋯σ2
j d

(ch)
j ∑

l≠j

1

−d
(ch)
j d

(ch)
l

( )( )B
(ch)
2h lj

2

ch = ± ϵ

qeios.com doi.org/10.32388/074O28 6

https://www.qeios.com/
https://doi.org/10.32388/074O28


  are the track degrees, with the next correction coming from the weighted overlap between tracks

relative to their difference in degrees. Thus, we get a clear sense now that the singular values encode

larger scale structure and, in turn, that larger scale structures determine the singular values.

From these results, we get several useful comparisons between our data sets. For the Spotify data, we

restrict   so that every node has a minimum degree, say  . Going below this threshold causes

later learning approaches to become overwhelmed with what amount to anecdotal cases, leading to

over�tting, thereby allowing for little meaningful generalization. In concrete terms, then, for the Spotify

data, we have   and   so that   and  . We plot the �rst

500 numerically approximated singular values of   in Figure 1.

Figure 1. Plot of singular values   of   from the Spotify data set for  .

As we �nd,  , and thus   as  . Our upper bound on   from Equation

[varapprox] gives us  . We see then how the in�uence of the interacting tracks and playlists

gives rise to such a relatively large value of   and thus the potential for large closed walks within  .
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For the Spotify data set, with  ,  , so unfortunately, we cannot expect our result in Theorem 1

to provide a good approximation. Nevertheless, as we see in Figure 2, the expansion gives meaningful

insight into the �rst nine singular values, with the quality of the approximation improving by  . This

gives us yet more analytic insight into singular values and how their magnitudes relate to the

neighborhood structure within the graph.

Figure 2. Plot of singular values   of   and their approximations using Theorem 1 for   for

the Spotify data set.

To get a graph of comparable size, we �x the minimum degree of   for the Amazon data to  . In

this case, we get  ,  , so that   and  . We immediately see

that the overall connectivity of the Amazon data is markedly lower than that of the Spotify data set.

Computing the singular values, we get  , showing that the reduced connectivity of the Amazon

data set directly relates to the magnitude of the maximum singular value. We likewise �nd that, with 

,    This again helps quantify the marked reduction in connectivity in the Amazon data

ch = − ϵ ≈ .49

j = 9

σj B 1 ≤ j ≤ 8
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| | = 9103N+ | | = 9766N− |N | = 18869 |E| = 539347
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relative to the Spotify data set. As expected then, looking at our perturbative approach from Theorem 1 in

Figure 3, we see a closer approximation of the curves.

Figure 3. Plot of singular values   of   and their approximations using Theorem 1 for 

 for the Amazon data set.

All of these results then give a strong indication that larger-scale subgraphs exist within each  .

Moreover, we expect even more large-scale structure in the Spotify data set. We now examine why that is

and provide analytic formulas to better quantify which structures are present.

2.2. Quantifying Multiscale Network Structure via Counting Small Subgraphs

Returning to the quantity  , we note that this value includes signi�cant counting of closed paths

over small subgraphs. For example, every   long closed walk necessarily includes   paths. To account

for this and thus determine a more accurate count of the large-scale structures within  , following[14],

de�ning the number of homomorphic images (i.e. surjective homomorphisms) of a simple  -cycle walk

to a subgraph   to be   and the number of subgraphs isomorphic to   by  , then 

σj B

1 ≤ j ≤ 14

G

(2k)nwlk

2k 2|E|

G

k

H (H)ck H (H)nG

qeios.com doi.org/10.32388/074O28 9

https://www.qeios.com/
https://doi.org/10.32388/074O28


Thus, the number of simple   length walks in our bipartite graph, say   is given by 

where by   we mean every subgraph (up to isomorphism) of  -nodes. For example then, the authors

of[14] show that 

where   is the number of edges and   is the number of connected 3 node sequences (i.e. a graph

with nodes  ,  ,   and edges   and  ). This is illustrated in Figure 4, which also shows the other

subgraphs that we can compute    in closed form as shown in[14]. Note, we have kept the notation

of[14] for ease of cross-referencing.

Figure 4. Subgraphs with closed form counting formulas for   from[14].

We can extend the closed form formulas in[14] using the following lemmas. The proofs are found in the

Appendix.

Lemma 2. For  , 
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Lemma 3. For  , 

Lemma 4. For  , 

Performing some relatively straightforward counting to address the cases not proved above, we then �nd 

We plot all of the relevant counts for the Spotify data in Figure 5 and for the Amazon data in Figure 6. For

the Spotify data,   and thus it dominates the counts of all other subgraphs.   also is

the largest count for the Amazon data, but it is now  , again re�ecting the lower degree of

connectivity in the Amazon data. Likewise,    is closer in magnitude to  , so we have more

small-scale clustering in the Amazon data compared to the Spotify data. These results echo what we

expect from our singular-value analysis of  , and so while there must be some internal maximum for 

, we can expect that it is very large for relatively large values of  . Thus, we expect that large-scale

structure is rampant throughout  , indicating that long chains of playlists to tracks and back again are

present in the Spotify data set.
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Figure 5. Semi-log plot of the counts of   using formulas from[14] for the Spotify data set.(H)nG
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Figure 6. Semi-log plot of the counts of   using formulas from[14] for the Amazon data set.

Aside from their immediate utility, we also see that longer simple closed walks over subgraphs ultimately

balance the count of all walks found via the trace formula. For example, we see that 

 while  . Thus, these terms in part balance the growth from  , and

show how we �nally achieve a maximum possible simple closed walk in  . Said yet another way, we see

how surjective homomorphisms onto subgraphs de�ne a notion of maximal scale in  .

To see this matter more explicitly, we prove

Theorem 2. For  , we have 

where 

Proof. We label   via the sequence  . This naturally separates into   even-index labels and 

 odd-index labels. For a   walk, if we start at   we generate, for   odd, the sequence 
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and for   even 

In either case, counting shows that this generates   possible sequences.

We now suppose    is absent in every odd entry of the above sequence. Denoting the number of these

sequences as  , we �nd that 

De�ning   via the formula 

we see then that  . In turn then, we �nd that 

For  , we then have the result. 
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This is strictly increasing in  , and thus we should get   as close to   as possible before compromising the

validity of our asymptotic approximations. We thus let  ,   with the idea that we should later

let   in order to get an estimate on the maximal simple walk length.

Keeping  , we expect to get   when 

Using the expansion   where  , we get 

and thus we get the estimate for the critical simple walk, say  , of 

For the Spotify data, letting  , by choosing    we get  . Choosing    we �nd 

. Pushing our luck, as it were, and trying    gets us  . For the Amazon data, 

, for  , we get  , for  , we get  , and for  , we get  .

Thus, while getting a de�nitive answer would require more sophisticated methods, we can conclude in

both cases that simple cycles longer than   are present in relatively small numbers if they are there

at all. Thus,   gives us a good estimate for the number of nodes that distinguish small and large scale

subgraphs in  . We also point out that more general-purpose algorithms for counting simple cycles exist,

cf. [20], and exploring their use in this context is a question for future work.

2.3. Preferential Attachment and Scale-Free Networks

Beyond counting subgraphs, we can also look at    from a statistical point of view. Letting the degree

distribution of   be  , we see in Figures 7 and 8 that the log-log plots of   appear to be linear. A

typical conclusion then would be to see if  , or if the distribution followed a power law. The

consequences of this, as �rst shown in the now seminal work of[13]  are that we can then suppose a

preferential-attachment (PA) model, i.e., a “rich get richer" process, generates the network and, moreover,

that we expect the network to exhibit scale-free behavior; see also[1]. Of course, the term scale-free should

be understood in an appropriate limit since the results of the prior section clearly show that both

networks exhibit large numbers of small-scale subgraph structures with distinguished scales. Thus, the

results of this section should be understood over subgraphs with node counts larger than  . Moreover,
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as explored in detail in[17], while many distributions appear to follow a power law, whether that is a

statistically meaningful observation requires appropriate analysis.

Figure 7. Log-log plot of the degree distribution for the Spotify data with the power-law MLE

estimate for  . The p-value for the KS test is  , and thus we reject the null

hypothesis.

γ = 2.18 2.19 × 10−5
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Figure 8. Log-log plot of the degree distribution for the Amazon data with the power-law MLE

estimate for  . The p-value for the KS test is  , and thus we keep the null hypothesis.

To that end, if we suppose that  , we �rst note that by construction we �x  . To

normalize the distribution, we �nd   to be 

From[17], we can �nd the maximum-likelihood estimate (MLE) of   to be 

Likewise, we use the Kolmogorov–Sinai (KS) test to determine whether the null hypothesis of the data

being distributed according to the MLE approximation of    is valid or should be rejected. Following

standard practice, we reject if the computed p-value is less than  .

Returning then to the results in Figure 7, while the Spotify data does not seem to deviate signi�cantly

from the MLE �t, the p-value for the KS test is well below the   rejection threshold, giving a very strong

γ = 2.6 .69
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∞ 1
( + ddc )γ

γ

γ ≈ 1 + |N |( ln )∑
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indication that the data is not well explained by the MLE power-law distribution. To help illustrate the

issue, we generate synthetic data using the MLE distribution, and as can be seen in Figure 7, the tails do

deviate signi�cantly, thereby explaining the rejection of the null hypothesis in the KS test. So while to the

eye, and even somewhat intuitively, we might imagine that tracks and playlists form via PA to generate a

scale-free network following a power-law distribution, that is not the case. In contrast, for the Amazon

data, we readily pass the KS test with a p-value of  . This gives us a very strong indication that the

Amazon graph follows a power-law distribution and thus should be well explained via PA.

However, given that    is bipartite, it is natural to ask about the differences between the af�liated

distributions generated by   and  . Looking �rst at  , which we can describe as how playlists/users

attach to a given track/item, for the Spotify data, we see in Figure 9 similar results to those seen in Figure

7. In this case, though, we just pass the KS test and keep the null hypothesis. Thus, how playlists attach to

tracks can be explained via PA. This intuitively makes sense since a track's popularity means more

playlists should link to it. Moreover, if we look at the tails in Figure 9, the discrepancy between the

measured and synthetic data is not as pronounced, helping explain why we can better explain the data

through the MLE power-law distribution approximation.

.69

G

B BT BT
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Figure 9. Log-log plot of the degree distribution for   for the Spotify data with power-law MLE

estimate for  . The p-value for the KS test is  , and thus we keep the null hypothesis.

In contrast, examining    for the Spotify data in Figure 10, we see that high-degree nodes cause even

more extreme deviations away from power-law predictions. Thus, while PA can explain how tracks

attach to playlists, this is not happening in a symmetric way to how playlists attach to popular tracks.

How large playlists are then generated clearly follows a different generative mechanism from PA.

BT

γ = 1.95 .055

B

qeios.com doi.org/10.32388/074O28 19

https://www.qeios.com/
https://doi.org/10.32388/074O28


Figure 10. Log-log plot of the degree distribution for   for the Spotify data with power-law MLE

estimate for  . The p-value for the KS test is  , and thus we reject the null hypothesis.

While we see a strong disparity in the attachment mechanisms in the Spotify data, looking at Figures 11

and 12, we see that the Amazon network does not exhibit as pronounced a dichotomy in how users attach

to items and vice versa. Moreover, the null hypothesis is kept in both KS tests, even though one can see

the distribution in Figure 12 does show some of the bending seen in Figure 10.

B

γ = 2.35 .006
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Figure 11. Log-log plot of the degree distribution for   for the Amazon data with power-law MLE

estimate for  . The p-value for the KS test is  , and thus we keep the null hypothesis.

BT

γ = 2.69 .72
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Figure 12. Log-log plot of the degree distribution for   for the Amazon data with power-law MLE

estimate for  . The p-value for the KS test is  , and thus we keep the null hypothesis.

In all, then, PA is clearly a reasonable mechanism for explaining the Amazon data set, whether we look at

it from a user/item or item/user perspective. This is not the case for the Spotify data set, though, which

shows a strong distinction in how tracks attach to playlists relative to the other direction. This

fundamental inhomogeneity leads to struggles for the learning strategies we employ, a point we explore

in the next section.

3. Link Prediction over Multiscale Networks

Using the template presented in[1], graph learning via MPNNs can be broadly explained via the following

steps:

�. Separate   into a ‘message-passing’ graph   and a ‘supervising graph’  . The nodes are the same

in both graphs, but the set of edges in   is a strict subset of those in  .

�. Choose an initial, weight-dependent, embedding  .

B

γ = 2.51 .47

G GM GS

GM GS

: N →h0 R
Nf

qeios.com doi.org/10.32388/074O28 22

https://www.qeios.com/
https://doi.org/10.32388/074O28


�. At the  -stage, for each node, say  , �nd the received messages  where

where   denotes the neighborhood, relative to  , of node  .

�. Find   via the formula

To update the weights in the embeddings, we use the recall score between playlist/user   and track/item  ,

say   where 

These ‘positive’ scores are computed over  . For the  -playlist/user, we also sample some 

  ‘negative’ samples, i.e., tracks/items which do not share an edge with playlist/user    in  . This

generates    negative scores  . We then use a variant of the Bayesian-Personalized Ranking Loss

(BPRL), cf. [19], denoted by  , in which we compute the average log-likelihood of the sigmoidal response

of the form 

where    denotes the number of tracks/items in a neighborhood, de�ned relative to  , of

playlist/user  . As we found, using    in place of the more typical    in effect helped �x a local

coordinate system to the    playlist, thereby greatly enhancing training and ultimately generalized

learning.

What distinguishes MPNNs is how AGGREGATE and UPDATE are implemented. As shown in[6], most (if

not all) existing approaches can be written in the convolutional form 

 where   is the matrix formed from the separate node embeddings,   is a convolution matrix,   are

trainable weights, and    is a sigmoidal response function. For example, the Light Graph Convolutional

Network (LGC) method sets   and   is given by 
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For the Chebyshev spectral �lter[4], or Chebnet, one chooses   and then de�nes convolutional �lters

via the recursive formulas 

where the graph Laplacian   with   the diagonal matrix of degrees so that 

and   is the maximum eigenvalue of  . The last example that we look at is GraphSage[18], which can be

recast as a two-step �ltration process in which   and  .

As shown in[7], any MPNN can be proven to be equivalent to some version of the k-Weisfeiler-Lehman

Test (kWLT); see[10]  for further discussion and historical citations. While powerful, any kWLT is only a

necessary condition for isomorphism, and counterexamples exist for all  [21]. This is due to each kWLT

being, in effect, a graph-coloring scheme over  -tuples of the nodes, i.e., coloring on  . In the 1WLT, the

coloring of each node is altered by the colors of its neighbors. Each higher-order test then looks at

longer-scale relationships between nodes to identify the particular color of any one node, thereby giving

any kWLT, for  , greater discriminatory power for larger k but also introducing a fundamental

limitation due to the �nite value of  . Perhaps somewhat frustratingly,[7]  proves that generically LGC,

GraphSage, and Chebnet are no more powerful than the 1WLT, though Chebnet can distinguish any two

graphs that have different maximum eigenvalues of their respective Laplacians. This is used to explain

the signi�cant performance difference over the EXP dataset[22]  as shown in[7]. However, while related,

the question of whether an MPNN can accurately count subgraphs is not identical to its kWLT

equivalence; again, see[7]. Likewise, the role that the preferential-attachment/scale-free property plays in

link prediction problems has not, to the best of our knowledge, been explored.

3.1. Results

In response to these issues, we look at how LGC, GraphSage, and Chebnet perform on both the Spotify

and Amazon data sets. The results in Figures 5 and 6 suggest that all three MPNNs will struggle due to a

basic inability to capture the small-scale connected structures which appear in such large quantities

throughout each network. That said, we would also anticipate that each MPNN would struggle less over

the Amazon data. But this ignores the effect that PA, potentially appearing on subgraphs larger than  ,

plays in the learning process. As we show, the absence of PA in the Spotify data helps the learning process

Nstps

= I,   = L − I,   = 2 − ,  1 ≤ s ≤ ,C1 C2
2
λM

Cs C2Cs−1 Cs−2 Nstps

L = D − A D

D = ( ) ,D+

D−

λM L

= IC1 = AC2 D−1

k

k N
k

k ≥ 2

k

σ1

qeios.com doi.org/10.32388/074O28 24

https://www.qeios.com/
https://doi.org/10.32388/074O28


by essentially providing insight into important large-scale structure by way of there being a statistical

distinction between the node classes.

In our numerical experiments, we �x the embedding dimension  , the number of times we iterate

through layers to  , and the learning rate of the ADAM optimizer to  . Variations of these values

were explored, and results were either unchanged or worse. For the Chebnet cases, on the Spotify data, we

set    while we found improved performance on the Amazon data when we set  . The

data sets are separated into   of edges being used in training,   for validation, and   for testing.

We measure the success of our predictions through both Area under Curve (AUC) and Recall-at-K (ReK)

measurements. For the Spotify data, we set  , representing    of the total tracks. To generate

comparable results, we set   for the Amazon data, again representing   of the total items. For

all cases, we compare using    to  . In all cases, we train for 300 epochs across ten

experiments for each case.

The results of our experiments are presented in Figures 13, 14, 15, and 16. For the Spotify data, the AUC

scores shown in Figure 13, which in this case measure the classi�cation problem of determining whether

an edge exists between a particular playlist and track, clearly show every model is markedly better than

random classi�cation. Chebnet, in particular, stands out in this regard, with GraphSage performing the

worst, though it is close to LGC’s results modulo the higher standard deviation. Light-GCN is also

distinguished by having the smallest standard deviation around the mean, especially when  .

Likewise, we see Chebnet reaches a slightly higher overall AUC with   and also exhibits a small

reduction in the standard deviation of the AUC score.
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Figure 13. Comparison of AUC for Light-GCN (LGC), GraphSage, and Chebnet with

negative samples set to   and   for the Spotify data set. Chebnet is

trained with  . The vertical bars represent the standard deviation around the

mean computed over ten trials.

= 1Nneg = 10Nneg

= 4Nstps
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However, the predicted ReK for LGC, GraphSage, and Chebnet shows strong distinctions, with Chebnet

performing much better than its peers. Given the results in Figure 5, we posit that the differences in sub-

graph counting ability probably best explain the overall performance in learning. First, we note that

Light-GCN, despite being no better or worse than a 1WLT, cannot do better than guessing after training.

GraphSage is able to outperform LGC, but it exhibits signi�cant spreads in its predictive power, especially

when only one negative sample is used. In contrast, we see Chebnet is able to get both the best predictive

performance with minimal spread in predictive outcome, especially when we use  . Thus, while

increasing the exposure to negative samples does not necessarily create large improvements in ReK

scores, we see that it plainly has an effect on the graph learning process that works in conjunction with

the extent to which each MPNN is able to navigate the vast scales of subgraphs in the Spotify data.

= 10Nneg
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Figure 14. Comparison of Recall-at-  performance for Light-GCN (LGC), GraphSage,

and Chebnet with negative samples set to   and   for the Spotify data

set. Chebnet is trained with  . The vertical bars represent the standard

deviation around the mean computed over ten trials.
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The AUC scores for the Amazon data shown in Figure 15 show much the same behaviour as over the

Spotify data. We note, though, that there is much less distinction in performance across the MPNNs. LGC

continues to underperform, but the overall spread among the three methods is less, and GraphSage and

Chebnet are almost indistinguishable. We note for    that the performance of both is slightly

improved, so increased exposure to negative sampling still improves training. In all, though, we see each

MPNN is generally as strong a classi�er over the Spotify data as the Amazon data.

= 10Nneg
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Figure 15. Comparison of AUC for Light-GCN (LGC), GraphSage, and Chebnet with

negative samples set to   and   for the Amazon data set. Chebnet is

trained with  . The vertical bars represent the standard deviation around the

mean computed over ten trials.X
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Looking at ReK, though, shows how different the graph learning process is on the Amazon data. First, we

note that by including more negative samples, while GraphSage is now the best-performing MPNN, its

distinction from Chebnet is nominal. We also see in this regard that the exposure to more negative

samples has a dramatic effect on predictive power. We also observe that LGC cannot compete at link

prediction, at least for the parameter choices we have made. This, then, is clearly a consequence of the

large numbers of small-scale graphs as shown in Figures 5 and 6. Finally, we see the overall predictive

power of all of the MPNNs is reduced on the Amazon data set, despite scaling our ReK criteria to be the

same across both data sets.
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Figure 16. Comparison of Recall-at-  performance for Light-GCN (LGC), GraphSage,

and Chebnet with negative samples set to   and   for the Amazon data

set. Chebnet is trained with  . The vertical bars represent the standard

deviation around the mean computed over ten trials.
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4. Conclusion and Future Directions

As expected and as shown in the Spotify data set, the presence of large numbers of smaller scale

subgraphs makes Chebnet the most competitive choice among the MPNNs studied in this work. Given

that the subgraph counts are smaller (compare Figures 5 and 6) in the Amazon data, one might have

imagined, keeping the discussion of kWL tests in mind, that the ReK scores would have presented

themselves differently than they did. However, it appears that the fact that the Amazon data follows a

power-law distribution with its attendant scale-free property causes all of the MPNNs to struggle. Upon

further re�ection, this makes sense. The question of predicting a track/item relative to a playlist/user

would bene�t from some strong distinction between the two classes. Clearly then, given that the Spotify

data has such a strong asymmetry in the distributions of tracks-to-playlists versus playlists-to-tracks,

cf. Figures 10 and 9, the Chebnet �lter is clearly able to learn some part of this distinction and leverage it

for enhanced predictive power.

Future work would �rst address the issue of PA degrading the performance of MPNNs. For the task of link

prediction, the presence of PA most likely demands at a minimum adding graph attributes to help with

distinguishing node type and improving link prediction, especially if it is done in a uni-directional way,

e.g., strictly for item to user. Likewise, developing MPNNs that can cope with the large number of small

scale subgraphs is already an area of active research, and the results of this work clearly motivate

continued endeavour in this direction.

Appendix: Proofs of Theorems

Proof of Theorem 1

Theorem 1. If for  ,

then for 
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Proof. Without loss of generality, we suppose that  . Rescaling by  , we then have the

perturbation problem 

where    and  . Note, through permutation, we order the values in 

 in descending order to match that of the singular values.

To �nd  , we use the expansions 

At leading order, we get    where    is an arbitrary constant and  . The next order

corrections are all of the form 

Then, at every order, we get the solvability requirement 

Note, we have tacitly chosen our inhomogeneous solutions to be orthogonal to the kernel so that 

 for  .

De�ning the diagonal matrix 

we likewise �nd 

Stepping through these formulas up to second order, at  , we get 

where we get zero since  , and 
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Setting    and returning to our original scaling, we see that the singular values    have the

expansion 

Proofs for Counting Simple Closed Walk Homomorphisms

Lemma 2. For  ,

Proof. Labeling the vertices of   as (a,b,c), a   long sequence starting at   would look like 

That gives    total paths, and we subtract the sequence    for a total of    valid

homomorphisms. We would get the same number if we started the sequence from  . If we started from  ,

we would get   valid sequences where we subtract the 2 sequences having only   or  . 

Lemma 3. For  ,

Proof. The closed walk    generates a balanced binary tree. We label the vertices with  ,  ,  ,    in

sequential order, and we �rst start the tree at  . Thus, for    positions,    of them can be either    or  ,

while   of them can be   or  , i.e. we generate sequences of the form 
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are then   sequences with no   not counting the sequence with only   again. Likewise, there are 

  sequences with no    not counting the sequence with only    again. Thus, starting from  , we

have   surjective homomorphisms. Given the symmetry of the labeling, we see we would

get the same result starting from  ,  , and  , thus we get the �nal result. 

Lemma 4. For  ,

= − .σj,2

⟨ , ⟩(˜D − )σj,0
−P

B
~

uj,0 B
~

uj,0

⟨ , ⟩uj,0 uj,0

c = 1 σ2
j

= + + ⋯σ2
j d−

j ∑
l≠j

1

−d−
j d−

l

( )( )B2h lj

2

□

k ≥ 2

( ) = − 4.c2k H2 2k+1

H2 2k a

a,  b,  a/c,  b,   ⋯ ,  a/c,  b.

2k−1 a, b,a, b, ⋯ ,a, b − 12k−1

c b

− 22k a c □

k ≥ 2

( ) = 4( − + 2).c2k C4 22k−1 2k+1

C4 a b c d

a 2k k b d

k − 1 a c

a,  b/d,  a/c,  b/d,   ⋯ ,  a/c,  b/d.

22k−1 2k c a

− 12k−1 b a

− 12k−1 d a a

− + 222k−1 2k

b c d □

k ≥ 2
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Proof. Following the method used thus far, if we start at  , we can trace out all possible sequences as 

This gives a total of    possible sequences. There are then    sequences with no    and 

  sequences with no    not counting the sequence with only    again. This gives a total of 

, and we see we get the same result starting from    or    for a total of 

  surjective homomorphisms. If we start from  , this gives us 

 surjective homomorphisms. Adding gets the �nal result. 
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