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Effectively modeling the interaction between human hands and objects is challenging due to the

complex physical constraints and the requirement for high generation ef�ciency in applications. Prior

approaches often employ computationally intensive two-stage approaches, which �rst generate an

intermediate representation, such as contact maps, followed by an iterative optimization procedure

that updates hand meshes to capture the hand-object relation. However, due to the high computation

complexity during the optimization stage, such strategies often suffer from low ef�ciency in

inference. To address this limitation, this work introduces a novel diffusion-model-based approach

that generates the grasping pose in a one-stage manner. This allows us to signi�cantly improve

generation speed and the diversity of generated hand poses. In particular, we develop a Latent

Diffusion Model with an Adaptation Module for object-conditioned hand pose generation and a

contact-aware loss to enforce the physical constraints between hands and objects. Extensive

experiments demonstrate that our method achieves faster inference, higher diversity, and superior

pose quality than state-of-the-art approaches. Code is available at

https://github.com/wuxiaofei01/FastGrasp.
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Figure 1. FastGrasp provides extensive realistic grasping of dexterous hands synchronized with human

poses.

1. Introduction

The problem of modeling hand-object interactions[1][2][3][4][5][6]  has attracted increasing research

interest recently, with important applications in virtual reality[7], human-computer interaction[8][9], and

imitation learning in robotics. A key task in hand-object interaction modeling is to predict various ways a

human hand can grasp a given object. Unlike robot grasping with parallel jaw grippers, the task of

predicting human grasps is particularly challenging due to two reasons: First, human hands have more

degrees of freedom, resulting in more intricate contact patterns; Moreover, the generated grasp must be

not only physically plausible but also appear natural, re�ecting the typical ways that humans handle

objects.

Previous methods for synthesizing human grasping postures often rely on a two-stage process[10][11][12]

[13]. Such a process typically �rst uses a generative model, e.g., Conditional Variational AutoEncoder

(CVAE)[14], to generate a series of intermediate representations, including contact maps[13]  and/or parts

maps[12], based on the point cloud representation of interacting objects. The second stage then uses those

intermediate representations to estimate the hand parameters, aiming to produce a natural and

physically plausible hand pose. To achieve this, most methods formulate the estimation as an

optimization problem and adopt an iterative procedure to search the target hand pose. Despite their

promising results, such two-stage methods often suffer from two drawbacks: First, the iterative

optimization procedures are computationally intensive, leading to a low inference ef�ciency and time-
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consuming generation; Second, the quality of generated hand poses highly relies on the intermediate

representations from the �rst stage and prone to accumulated errors.

To address those limitations, we propose an ef�cient one-stage generation method, named FastGrasp, to

directly generate grasping poses without producing intermediate representations like contact maps,

while maintaining the diversity of generated poses. To achieve this, we leverage the latent diffusion

model framework[15]  to learn a contact-aware representation for hand poses in a latent space and a

diffusion-based generation process, capable of better encoding the physical constraints and capturing

the object-conditioned hand-pose distribution.

Speci�cally, FastGrasp �rst learns a low-dimensional latent representation of hand pose parameters based

on an AutoEncoder (AE) network. It then encodes the object with a Point-Net and builds a diffusion model

in the latent space conditioned on the object representation. Subsequently, to incorporate the physical

constraints on hand-pose interaction, FastGrasp introduces an adaptation module, which re�nes the

diffusion-generated latent representation based on the object contact information. Finally, the contact-

aware hand-pose presentation is decoded into the MANO[16] parameters of the grasping hand pose with

the AE decoder.

We validate our approach through extensive experiments on three hand-object interaction benchmarks:

HO-3D[17], OakInk[18], and Grab[19]. Experimental results demonstrate that our method achieves low

latency in inference and generates higher-quality grasping poses with more plausible physical

interactions and higher diversity than recent state-of-the-art approaches.

In summary, our contributions are as follows:

We introduce FastGrasp, a diffusion-based one-stage model for generating grasping hand pose

without requiring expensive iterative optimization.

We propose an adaptation module to effectively incorporate physical constraints into a latent hand

representation.

Our approach achieves fast inference and outperforms previous state-of-the-art methods on a range

of metrics.
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2. Related Work

2.1. Hand-object Interaction

Generating whole-body interactions, such as approaching and manipulating static[20][21]  and dynamic

objects[22], is a growing topic. The task of synthesizing humans interacting with dynamic objects is

explored using �rst-person vision[23]  in skeleton-based datasets. However, numerous studies begin to

explore hand-object interactions across diverse settings[24][25][26][4]. Most current efforts focus on

synthesizing these interactions in the domains of computer graphics[27][28][29], computer vision[30][31][32]

[33][34][35][36], and robotics[37][38][39]. To perform hand-object pose estimation, Tekin et al.[40] proposes a

3D detection framework that predicts hand-object poses using two output grids without explicitly

modeling their interaction. In contrast, Hasson et al.[41] utilize hand-centric physical constraints to model

hand-object interactions and prevent penetration. Recently, research shifts towards generating plausible

hand grasps for objects, with signi�cant contributions including:[42][19]. GanHand[42]  generates grasps

suitable for each object in a given RGB image by predicting a grasp type from grasp taxonomy and its

initial orientation, then optimizing for better contact with the object. GrabNet[19]  represents 3D objects

using Basis Point Set to generate MANO[16] parameters. The predicted hand is re�ned using an additional

model to enhance contact accuracy. Our diffusion-model-based pipeline directly generates the grasping

pose for a given object point cloud, eliminating the need for additional models.

2.2. Grasp Synthesis

Grasp synthesis receives extensive attention across robotic hand manipulation, animation, digital human

synthesis, and physical motion control[21][43]. In this work, we focus on realistic human grasp

synthesis[10][19][11][12][13], aiming to generate authentic human grasps for diverse objects. The key

challenge is achieving physical plausibility and generation ef�ciency. Most existing approaches employ

CVAE to generate hand MANO parameters[19][13][18]  or hand joints[11]. Liu \etal.[12]  propose learning

intermediate representations followed by iterative optimization in two stages. This method weakens the

spatial information of objects, causing intersection penetration and displacement, and requires

signi�cant time for optimization in the second stage. In contrast, we develop an one-stage generation

model that supervises the spatial geometry of objects and adaptively learns the physical constraints of
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hand-object interaction. Such model architecture effectively accelerates generation speed and reduces

hand-object penetration volume.

Figure 2. Model training architecture. We divide the training process into two parts. In the �rst part, we use a

latent diffusion model to generate grasping poses from object point clouds. However, the diffusion model

struggles to directly learn the physical constraints between the hand and object, leading to issues such as

penetration and displacement. To address this, the second part involves training an Adaptation Module to

re�ne the grasping gestures by aligning them with the physical constraints of hand-object interactions,

resulting in more natural and feasible poses. In training stage one, only the solid arrow path is utilized. In

stage two, both the solid and dotted arrow paths are used.

2.3. Denoising Diffusion Probabilistic Models

Denoising diffusion models[44][45][46][47][48]  utilize a stochastic diffusion process that incrementally

introduces noise into a sample from the data distribution, adhering to thermodynamic principles. They

then generate denoised samples through a reverse iterative procedure. However, directly training DDPMs

on high-resolution point clouds and sampling from them is computationally intensive. Latent diffusion

models address this issue by encoding high-resolution images into a low-dimensional latent space[49][50]

[15] before training DDPMs. Our approach follows this paradigm: we �rst train an autoencoder in the data

space, and then train a DDPM using the encoded samples. Additionally, we designe an Adaptation

Module(AM) to adjust the input to the decoder, incorporating hand-object physical constraints into the

diffusion model.
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3. Fast Grasping Hand Pose Generation

3.1. Method Overview

Given an object, usually represented by a point cloud, our purpose is to generate a human hand pose for

grasping this object. The generated grasping hand pose should be natural and physically correct, securely

holding the object in a physically plausible manner. Unlike the existing methods that usually adopt a

two-stage design with high computation cost, we propose FastGrasp, a fast grasping hand pose

generation pipeline without estimating intermediate representations and iterative optimizations.

FastGrasp is a one-stage generation framework consisting of two main modules for generating the

grasping hand pose. The �rst module is based on a latent diffusion model to preserve the diversity of

hand poses when intermediate representations like contact maps are absent. Given the latent hand

representation generated from the diffusion model, we introduce an adaptation module to enforce the

physical constraints of hand-object interaction. This design allows the model to directly learn the spatial

relationship between the hand and object point clouds without iterative optimization, resulting in a fast

generation of high-quality hand poses.

To learn the entire model, we adopt a simple yet effective two-step training strategy. The �rst step trains

the latent diffusion model, which generates an initial representation of the hand poses. Next, we train the

adaptation module to re�ne the hand representation to strengthen the physical constraints of the hand-

object interaction. After training, our generation requires only one pass of network inference, thus

signi�cantly accelerating grasping hand generation.

Below we will �rst introduce the latent diffusion model module in Sec.  3.2, followed by the adaptation

module in Sec. 3.3. Finally, the model inference pipeline will be detailed in Sec. 3.4.

3.2. Latent Diffusion Model for Hand Pose

Latent Hand Representation

To build our Latent Diffusion model[50] for hand pose, we �rst train an auto-encoder that maps the input

hand representation to a latent space. This allows us to reduce the data dimensionality for the diffusion

process and improves the modeling ef�ciency. In contrast to the original latent diffusion model, where

the input and output are exactly the same, we employ an asymmetric design in the auto-encoder for the

subsequent conditional generation process.
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Speci�cally, the input to our auto-encoder is the vertices of the hand mesh,  , which is �rst

processed by a PointNet[51] and then fed into the encoder block. This design maintains the spatial shape

information of the input hand in feature extraction, which can be more easily integrated with the object

representation in the later stage. The obtained latent vector is converted to MANO[16]  parameters

representation   instead of the vertices by the decoder block. The MANO parameters have far less

freedom than those of vertices, thus improving the regularization in learning the decoder. The hand

mesh vertices   is �nally reconstructed from   by a differentiable MANO layer[16].

The training objective of the AutoEncoder combines a hybrid reconstruction loss and a set of physical

constraints. The reconstruction loss measures the difference between the reconstructed hand mesh and

the ground truth, which includes two terms:

where   indicates mean squared error loss between predicted   and GT hand MANO parameters 

,   measures chamfer distance between the predicted hand vertices   and the GT hand vertices 

.   and   are the weight balancing coef�cients.

To learn a hand representation that adheres to physical constraints, we also employ the following three

loss functions from[13]:

where   denotes the object mesh that we aim to grasp,   aims to make the contact region of the

predicted hand mesh on the object consistent with that of the GT hand mesh on the object.   ensures

that the hand mesh generated by the model maintains contact with the object.   prevents the hand

mesh and objects from penetrating the physical volume. We refer the reader to the Supplementary for

details of those loss functions.

Our total loss function for training the auto-encoder (the left part in Fig. 2) can be written as:

where   are weight parameters for balancing the physical constraint loss terms. By integrating

physical and reconstruction losses, our model is able to learn the hand mesh and the physical constraints
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involved in the interaction between the hand and the object. This approach ensures that our auto-

encoder effectively encodes the hand vertices and maintains the physical plausibility of the generated

mesh.

Figure 3. Model inference architecture. We start by inputting Gaussian noise and the object’s point cloud into

the model. The diffusion model then generates hand representations in latent space. The Adaptation Module

re�nes these representations, which are then decoded into MANO parameters. Finally, we construct the hand

mesh using the MANO layer.

Diffusion Model for Hand Representations

We adopt a diffusion model to learn the distribution of the latent hand representation produced by the

auto-encoder. The model gradually denoises a normally distributed random variable, which corresponds

to learning the reverse process of a �xed Markov Chain[44][52]. Here we train a denoising U-Net to predict

the added noises in the diffusion process, as shown in the right part of Fig. 2.

Speci�cally, the input of the diffusion model consists of three parts:    and  .    be the

feature output of the encoder    when the input is  . The input object point cloud  , is used as the

conditioning information for our diffusion model. It is transformed into an embedding using

PointNet[51], facilitating controllable generation.   denotes the time step in the diffusion model training

process. The loss function for training the diffusion network can be written as:

where   denotes the conditional denoising U-Net used for training, where   ranges from 1

to  , the input   is the   mixed with  , the   denotes the PointNet[51]. Through training, the diffusion

model learns to reconstruct the hand mesh from Gaussian noise by denoising and decoding.
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3.3. Physical Constraints Alignment

During the training of the diffusion model, directly incorporating physical loss and reconstruction loss

lead to oscillations and hampers convergence. We attribute this issue to the diffusion model’s dif�culty in

simultaneously learning the distribution of the   output and capturing the physical constraints between

the hand and the object. Therefore, the generated hand mesh and object may exhibit signi�cant physical

penetration and displacement. To address this problem, we decompose the entire training process into a

two-step optimization approach. This method not only simpli�es the model’s training complexity but

also helps better capture the physical constraint relationship between the hand and the object.

Speci�cally, after training the diffusion model, we aim to adjust the physical constraints of hand-object

interactions. To retain the knowledge from the previous diffusion model, we introduce an adaptation

module    based on a MLP. The diffusion model’s output  , serves as the input to the adaptation

module. This module aligns the distribution learned by the diffusion model with the physical constraints

of hand-object interactions. The speci�c formula is as follows:

where   , is the output of the adaptation module when given   as input.

The goal of incorporating hand-object physical constraints is to ensure that the resulting hand mesh

achieves natural and realistic grasping postures. However,    and    do not accurately represent the

quality of hand-object interactions in real physical space. Therefore, we �rst reconstruct   and   back to

the MANO parameters  , and then use the MANO Layer[16]  to reconstruct the hand mesh  : 

Next, we update the adaptation module using the loss function 7 to ensure that the physical constraints

of hand-object interactions are accurately aligned. This training method addresses the challenge of

directly learning physical constraints in diffusion models, resulting in more natural grasping poses and

minimizing unnecessary physical penetration.

3.4. Inference

Fig. 3 illustrates the inference process of our method. During inference, the initial input consists of noise 

 sampled from a Gaussian distribution and an object point cloud  .

E
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First, we generate the prior    for the hand mesh in the latent space through an  -step denoising

process[53]. Next, the adaptation module integrates    with the object point cloud information to

generate  , as shown in Eq. 9. Finally,   and   are combined, and the decoder converts them into MANO

parameters  , which are then used by the MANO layer[16]  to produce the hand mesh  . This process

can be described by the equations 10 and 11.

While using Diffusion Models (DDPM) for generating grasp postures marks a signi�cant advancement

over the previous two-stage model, there is still a need to enhance generation speed to meet practical

requirements. To address this, we employ DDIM[53], which optimizes both speed and quality by adjusting

the step size during the denoising process. This approach enables the rapid generation of grasping poses.

z1 N

z1

z2 z1 z2

hp hm
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4. Experiment

Dataset Details
Penetration

Volume 

Simulation

Displacement 

Contact

Ratio 
Entropy 

Cluster

Size 

OakInk[18]

Baseline CVAE model 13.08 1.78 98 2.81 1.12

Original diffusion model 18.34 1.45 98 2.91 5.24

Original diffusion model with physical

loss
6.31 3.77 71 2.85 1.58

Our whole pipeline 4.37 1.45 94 2.92 4.96

GRAB[19]

Baseline CVAE model 12.33 1.94 98 2.62 0.87

Original diffusion model 15.46 1.80 96 2.87 3.06

Original diffusion model with physical

loss
8.43 5.24 50 2.84 1.26

Our whole pipeline 1.25 1.67 100 2.93 1.87

HO-3D[17]

Baseline CVAE model 23.17 3.12 100 2.64 0.93

Original diffusion model 16.64 2.18 90 2.87 4.04

Original diffusion model with physical

loss
12.73 3.87 62 2.87 1.37

Our whole pipeline 5.23 2.14 98 2.88 3.97

Table 1. Ablation study results on the GRAB, OakInk, HO-3D datasets[19][18][17]. The evaluation of the HO-3D is

an out-of-domain generalization test, where the model is trained using the GRAB dataset.

↓ ↓ ↑
↑

↑
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Figure 4. Qualitative comparison between our method and Ours w/o Adaptation Module (AM). Starting from

the same random Gaussian noise, we visualize the generated grasps by our whole pipeline (�rst row) and ours

w/o Adaptation Module. For each object, we show two different views for visualization (two columns). This

comparison demonstrates that our whole pipeline with AM notably reduces object penetration and produces

more realistic grasp poses.

GRAB[19]

OakInk[18]

HO-3D[17]

In this section, we evaluate the effectiveness and ef�ciency of the proposed framework for object-

conditioned hand pose generation. The structure is organized as follows.

We �rst introduce our benchmarking datasets (Sec. 4.1), evaluation metrics (Sec.  4.2), and

implementation details (Sec. 4.3). Then, we conduct a model analysis to demonstrate the ef�cacy of each

component in the proposed framework (Sec.  4.4). In what follows, we compare our method with the

recent state-of-the-art approaches (Sec. A2). Finally, we assess the perceived quality and stability of the

generated grasping poses through user studies (Sec. 4.6).

For experimental settings, we assess the model’s generalization to new objects using the out-of-domain

dataset[17]. We also evaluate the physical penetration and grasp �rmness of the generated poses with an

in-domain setting on the OakInk and GRAB datasets[18][19].
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4.1. Datasets

Method
Penetration

Volume 

Simulation

Displacement 

Contact

Ratio 
Entropy 

Cluster

Size 

Inference

Time 

GrabNet[19] 15.50 2.34 99 2.80 2.06 0.23s

GraspTTA[13] 7.37 5.34 76 2.70 1.43 6.90s

HALO[11] 25.84 3.02 97 2.81 4.87 10.42s

GF[10] 93.01 - 100 2.75 3.44 32.75s

ContactGen[12] 9.96 2.70 97 2.81 5.04 110.60s

Ours1 5.23 2.14 98 2.88 3.97 0.14s

ContactGen2 14.32 2.41 100 2.84 5.23 110.60s

Ours2 12.30 1.44 100 2.88 4.41 0.14s

Table 2. Comparison with previous methods on the HO-3D dataset[17], where Ours1 indicates our model is

trained on the GRAB[19] dataset following[10][12][11], and Ours2 and ContactGen2 suggests the corresponding

models are trained on the OakInk[18] dataset. Our model achieves state-of-the-art performance on this out-

of-domain dataset, setting new benchmarks with faster inference speeds and the best physical metrics for

generated grasps.

We conduct experiments using the OakInk[18], GRAB[19], and HO-3D[17]  datasets, adhering to the

experimental protocols outlined in[11][12][18]. Speci�cally, in Sec. 4.5, We train the model separately on the

OakInk and GRAB datasets, and then evaluate its generalization ability on the HO-3D dataset. In Sec. 4.5,

we perform both training and evaluation on the OakInk and GRAB datasets.

The OakInk and GRAB datasets[18][19] consist of hand-object mesh pairs with hand models parameterized

by the MANO[16] model. The GRAB dataset includes real human grasps for 51 objects across 10 subjects,

whereas the OakInk dataset features real human grasps for 1,700 objects from 12 subjects. Following[12]

↓ ↓ ↑
↑

↑ ↓
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[19][13], we also evaluate the model’s generalization ability by testing on out-of-domain objects from the

HO3D dataset.

4.2. Evaluation Metrics

Following the prior evaluation protocals[19][10][11][12][13][21], we evaluate the generated grasping poses

using the following criteria: (1) physical plausibility, (2) stability, (3) diversity, (4) generation speed, and (5)

perception score.

Physical Plausibility Assessment. We evaluate physical plausibility by measuring hand-object mutual

penetration volume and contact ratio[10][11][12][13]. The penetration volume is calculated by voxelizing the

mesh into   cubes and computing the overlapping voxels. The contact ratio indicates the proportion

of the grasps in contact with the object.

Grasp Stability Assessment. Following[10][43][21][19][12][13][18], we use a simulator to position the object and

the generated grasps. We then measure the average displacement of the object’s center of gravity due to

gravity.

Diversity Assessment. We assess the diversity of generated grasps following[11][12]. First, we cluster the

grasps into 20 clusters using K-means. Diversity is measured by computing the entropy of cluster

assignments and the average cluster size, with higher entropy values and larger cluster sizes indicating

greater diversity. Consistent with previous work, K-means clustering[11][12]  is applied to 3D hand

keypoints across all methods.

Generation Speed Assessment. We randomly select 128 objects from the dataset, generate grasping

poses for each object, and calculate the average time required to generate a single pose on an NVIDIA A40

GPU.

Perceptual Score Assessment. We conduct a perceptual study, as described in[11][13], with human

participants to evaluate the naturalness of the generated grasps.

4.3. Implementation Details

During training, we use the Adam optimizer, LR =  ,    and bath size = 256.

During training the autoencoder, the loss weights are  .

When training the diffusion model, we freeze the auto-encoder and sample 3000 points from the object

1mm3

1e−4 = 768, = 3000Nz No

= 0.1, = 1, = 1000, = 10, = 10λ1 λ2 λ3 λ4 λ5
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mesh   as the input point cloud  . When training the adaptation module, we use the same input point

cloud and the loss weights are  .

4.4. Ablation Study

In this section, we conduct an ablation study to systematically evaluate the contribution of each module

to the overall framework performance. This approach clari�es the role and impact of each component

before delving into a detailed analysis of the experimental results.

Tab. 1 summarizes the results, showing that while the CVAE model slightly outperforms the diffusion

model in penetration rate, it exhibits weaker generative performance, as indicated by lower entropy and

smaller cluster sizes. Conversely, the diffusion model excels in entropy and cluster size but struggles with

higher penetration, suggesting dif�culties capturing the physical constraints of hand-object

interactions. Integrating a physical loss function directly into the diffusion model decreases performance

by increasing displacement and reducing grasp robustness, underscoring the challenge of aligning hand

representations with physical constraints in latent space. Our Adaptation Module approach effectively

combines the diffusion model with physical constraints, achieving reduced penetration and

displacement, and signi�cantly improving the accuracy of hand-object interactions.

Fig. 4 shows that our Adaptation Module method signi�cantly enhances performance across all three

datasets, reducing penetration volume and improving generalization on the out-of-domain HO-3D

dataset. This improvement further demonstrates the Adaptation Module’s ability to transform

distributions, aligning the generated hand latent vector with natural human expectations.

om op

= 100, = 0.1, = 1000, = 20, = 0.1λd1 λd2 λd3 λd4 λd5
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Dataset Method
Penetration

Volume 

Simulation

Displacement 

Contact

Ratio 
Entropy 

Cluster

Size 

OakInk[18] GrabNet[18] 6.60 1.21 94 1.68 1.22

ContactGen* 4.85 2.01 94 2.88 4.07

Ours 4.37 1.45 94 2.92 4.96

GRAB[19] GrabNet[19] 1.72 3.65 96 2.72 1.93

HALO[11] 2.09 3.61 94 2.88 2.15

ContactGen[12] 2.16 2.72 96 2.88 4.11

Ours 1.25 1.67 100 2.93 1.87

Table 3. Quantitative comparison on the OakInk and GRAB dataset[19][18], where * indicates the model is

trained on the OakInk dataset using the code released by the authors. Our method achieves the best

performance on almost all evaluation metrics.

Figure 5. Qualitative comparisons with state-of-the-art methods on GRAB, OakInk, and HO-3D datasets. Each

pair (two columns) visualizes the generated grasps from two different views. Our method demonstrates a

signi�cant reduction in object penetration compared to other methods.

GRAB[19]

OakInk[18]

HO-3D[17]

↓ ↓ ↑
↑

↑
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4.5. Grasp Generation Performance

Out-of-Domain. We assess the generalization ability of our model using the HO-3D dataset[17]. As

demonstrated in Tab. 2 and Fig. 5, our method achieves the fastest generation speed, superior physical

constraints, and entropy. In comparison, GrabNet[19] matches our method in generation speed but suffers

from signi�cant physical penetration. ContactGen excels in cluster size but has the longest generation

time, making it impractical for real-world applications. Overall, our method outperforms previous

approaches in both physical generalization and generation speed. In-Domain. Tab. 3 and Fig. 5 compare

our method with ContactGen[12]  and GrabNet[19]  on the OakInk dataset. Our method excels in

penetration, contact ratio, entropy, and cluster size. Although displacement is slightly higher than

GrabNet, our method achieves signi�cantly lower penetration volume, demonstrating a better balance

between minimizing physical intrusion and improving grasping effectiveness.

Tab. 3 compares our method with ContactGen[12], Halo[11], and GrabNet[19]  on the GRAB dataset. Our

approach outperforms the others by achieving the lowest penetration and displacement and the highest

contact ratio. Fig. 5 demonstrates that our method produces highly plausible object grasping. Although

ContactGen produces more diverse grasps than our method in terms of cluster size, our method archives

better results with smaller penetration and greater stability. By focusing on detailed geometric spatial

information, our model creates more precise grasping poses. This precision increases entropy for objects

with varied geometries, leading to more diverse hand poses, while similar object geometries result in

more uniform grips and lower cluster sizes.
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Figure 6. User study results. The numbers indicate the percentage of users who rate the

corresponding method as more realistic.

4.6. User Study

We conduct a user study to evaluate the perceived quality and stability of grasps generated by different

methods. We compare grasps generated by GrabNet[19], ContactGen[12], and our method by evaluating 10

objects from the GRAB[19], OakInk[18], and HO-3D[17]  datasets. Each object is tested with 3 grasps from

each method. Ten participants select the best grasp pose based on the naturalness and stability of the

grasp. Fig. 6 shows that our method received the highest number of selections in the experiment,

indicating it generates the most natural and stable grasps.

5. Conclusion

In this paper, we introduce a one-stage framework for rapid and realistic human grasp generation,

eliminating the need for iterative optimization processes common in previous methods. We introduce an

adaptation module that aligns the generative model’s output with physical constraints, re�ning hand

representations in the latent space to enhance the accuracy and realism of generated grasps.

Consequently, our method accelerates grasp generation, improves physical plausibility, and demonstrates

robust generalization across diverse test inputs.
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A. Supplementary Material

Figure 7. To assess the impact of a physically constrained loss function, we compare model performance with

and without it. Each pair of columns shows generated grasps from two distinct views. The �rst row uses only

the reconstruction loss, while the second row presents results from our proposed pipeline. Our method

signi�cantly reduces object penetration compared to using the reconstruction loss alone.

Figure 8. To evaluate the necessity of hand vertices as inputs, we visualize the model’s output using both

hand parameters and hand vertices. Each pair of columns shows generated grasps from two different views.

The �rst row presents results with hand parameter input, while the second row displays results from our

pipeline. Our method enhances performance by capturing hand joint details and improving rotational

accuracy, which reduces object penetration.
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OakInk
Simulation

Displacement 

Penetration

Distance 

Penetration

Volume 

Contact

Ratio 

No-physical-loss 1.91 0.93 4.76 96

Hand param 1.39 0.91 5.91 98

Ours 1.83 0.91 2.39 98

Table 4. We conducted ablation experiments to evaluate the impact of the physical constraints loss function

and hand vertices.

A1. Overview of Material

The supplementary material comprehensively details our experiments, results, and visualizations. Tab. 4

examines the impact of physical constraints during autoencoder training and compares the effects of

hand verts versus hand parameters as inputs. Sec. A2.3 offers additional visualizations to enhance

understanding of our model.

A2. More Autoencoder Experimental Results

In training the autoencoder, we use hand vertices as input and apply both reconstruction and physical

loss functions. Sec. A2.1 and Sec. A2.2 examine the effects of training the model with hand vertices and

reconstruction loss alone versus using MANO parameters with both reconstruction and physical loss

functions in Tab. 4.

A2.1. Training Using Reconstruction Loss

The model is trained using hand vertices   as input and relies solely on the reconstruction loss function,

without incorporating any physical loss function. As shown in Fig. 7, experiments reveal that using only

the reconstruction loss often results in signi�cant penetration and displacement issues in hand-object

interactions. However, as demonstrated in Tab. 4, incorporating a physical constraint loss function

improves the model’s ability to capture these details, reducing physical collisions and enhancing grasp

stability.

↓ ↓ ↓ ↑

hv
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A2.2. Training Using Mano Parameter

The model is trained using hand parameters    as input. Our experiments indicate that using hand

vertices instead of MANO parameters results in less physical volume intrusion. As shown in Fig. 8 and

Tab. 4, this is attributed to the Hand vertices providing a more robust data representation than MANO

parameters, reducing the model’s sensitivity to input variations and thus improving training

effectiveness.

A2.3. Autoencoder Visulization Result

To validate the effectiveness of our autoencoder model, we provide extensive visualizations in Fig. 9 and

10.

Fig. 9 illustrates two grasping poses for randomly selected test objects. This demonstrates that our model

adheres to physical constraints in hand-object interactions for various grasps of the same object. Fig. 10

showcases grasping poses for objects with diverse geometric shapes from the test set, highlighting our

model’s ability to generate effective grasps across different objects consistently.

Figure 9. In the visualization results of the autoencoder, we selected two different grasping poses for each

object, each shown from two different perspectives.

hp
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Figure 10. In the autoencoder visualization results, we randomly selected grasping poses, each shown from

two different perspectives.
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