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In this article, we develop the framework of light-front holographic QCD in the presence of a minimal

length scale by incorporating the Generalized Uncertainty Principle (GUP) into the QCD Lagrangian.

From this modi�ed theory, we derive a GUP-corrected light-front holographic QCD (LFH QCD)

equation and obtain the corresponding hadronic mass spectrum. Our results show that the hadronic

mass spectrum acquires an additional GUP-dependent term that increases the masses. This mass

enhancement leads to signi�cantly improved agreement between the theoretical predictions and

experimental data.
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I. Introduction

Quantum Chromodynamics (QCD) provides a robust framework for describing the strong interactions

governing quarks and gluons, yet its non-perturbative nature at low energies poses signi�cant

challenges for understanding hadron spectroscopy and dynamics. Light-front holographic QCD (LFH

QCD) has emerged as a powerful approach to address these challenges by leveraging the AdS/CFT

correspondence, mapping strongly coupled QCD dynamics in four-dimensional Minkowski space to a

weakly coupled gravitational theory in �ve-dimensional anti-de Sitter (AdS) space[1]. This holographic

framework simpli�es the treatment of con�nement and reproduces key features of the hadronic

spectrum, such as linear Regge trajectories.

At high energies or short distances, quantum gravitational effects become relevant, potentially altering

the fundamental structure of quantum mechanics. The Generalized Uncertainty Principle (GUP)
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introduces a minimal length scale, often associated with the Planck scale, by modifying the Heisenberg

uncertainty principle[2][3][4][5][6][7][8][9][10][11][12][13][14]. This minimal length regularizes ultraviolet (UV)

divergences and impacts the dynamics of quantum �elds, including those in QCD. Incorporating GUP

into the QCD Lagrangian offers a pathway to explore quantum gravitational effects on hadronic bound

states, particularly in the context of LFH QCD, where the holographic coordinate relates to transverse

momentum scales.

In this article, we develop a framework for LFH QCD in the presence of a minimal length scale by

integrating GUP into the QCD Lagrangian. We derive a GUP-corrected light-front holographic QCD

equation, focusing on the effective Schrödinger-like equation for hadronic bound states. The resulting

hadronic mass spectrum includes an additional GUP-dependent term, leading to enhanced masses that

improve agreement with experimental data. Our study suggests that light mesons are particularly

sensitive to GUP corrections, providing insights into the interplay between quantum gravity and strong

interactions. The organization of this article is as follows:

II. Light Front Holographic QCD Theory

The light-front holographic QCD theory connects Quantum Chromodynamics (QCD) to a holographic

framework, speci�cally using the AdS/CFT correspondence, a strongly coupled QCD dynamics is mapped

to a weakly coupled gravitational theory in a higher-dimensional anti-de Sitter (AdS) space. The process

requires several steps to bridge the QCD Lagrangian to the light-front holographic QCD (LFH QCD)

framework. Below, we outline the key steps to derive the relevant equation, focusing on the effective

light-front Schrödinger-like equation for hadronic bound states, which is central to LFH QCD.

A. QCD Lagrangian

The QCD Lagrangian describes the dynamics of quarks and gluons

where   represents quark �elds with mass  ,    is the covariant derivative, with 

  the gluon �eld,    the strong coupling, and    the SU(3) color generators, - 

 is the gluon �eld strength tensor, - The indices   run over

the gluon color degrees of freedom.

The LFH QCD equation is obtained by using the light-front (LF) coordinates, de�ned as

= (iD − )q − ,LQCD q̄̄ / mq
1

4
Ga

μνG
aμν (1)

q mq D = ( − ig )/ γμ ∂μ Aa
μt

a

Aa
μ g ta

= − + gGa
μν ∂μAa

ν ∂νAa
μ f abcAb

μA
c
ν a = 1, … , 8
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where    is the light-front time, and  ,    are spatial coordinates. The light-front quantization

simpli�es the vacuum structure and allows us to focus on the dynamics of physical degrees of freedom.

In light-front quantization, the QCD Hamiltonian is derived from the Lagrangian. The energy-

momentum tensor   gives the light-front Hamiltonian

where    is the conjugate momentum to  , representing the longitudinal momentum. The goal is to

express the dynamics in terms of a light-front Hamiltonian  , which governs the evolution of

the system.

The light-front wave functions (LFWFs) describe the hadronic bound states in terms of their quark and

gluon constituents. The eigenvalue problem for a hadron with mass   is

where  , and    is the total longitudinal momentum. This is a relativistic bound-

state equation, but solving it directly in QCD is intractable due to the complexity of the interactions.

Light-front holographic QCD leverages the AdS/CFT correspondence, which posits a duality between a

strongly coupled gauge theory (like QCD) in 4D Minkowski space and a weakly coupled gravitational

theory in 5D AdS space. The extra dimension in AdS, denoted  , is interpreted as a holographic variable

related to the inverse of the light-front transverse momentum scale.

In LFH QCD, the transverse dynamics of hadrons are mapped to a 5D AdS-like theory. The key idea is to

approximate the strongly coupled QCD dynamics with a semiclassical theory in AdS space, where the

con�ning potential emerges from the geometry or additional �elds.

The AdS metric is

where    is the AdS radius, and    is the holographic coordinate. The AdS/CFT dictionary relates the

boundary ( ) to the UV behavior of the gauge theory and the bulk to the IR (con�nement) dynamics.

To derive the LFH QCD equation, we consider a 5D effective action in AdS space that captures the

dynamics of hadronic modes. For mesons, we typically work with a scalar �eld    in AdS,

representing the meson �eld. The action is

= t + z, = t − z, = (x,y),x+ x− x⊥ (2)

x+ x− x⊥

T μν

= ∫ d ,P − d2x⊥ x−T +− (3)

P − x+

=HLF P −

M

|Ψ⟩ = |Ψ⟩,HLF M 2 (4)

= −M 2 P +P − P2
⊥ P +

z

d = ( d d − d ),s2 R2

z2
ημν xμ xν z2 (5)

R z

z → 0

Φ(x, z)
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where    is the AdS metric,    is the 5D mass, related to the conformal dimension of the boundary

operator via  ,    is a potential encoding con�nement, often introduced via a

dilaton or soft-wall model.

For con�nement, we use the soft-wall model, where the dilaton pro�le modi�es the action

with   setting the con�nement scale (related to  ).

B. Equation of Motion and Light-Front Mapping

Varying the action with respect to  , we obtain the 5D equation of motion. For the soft-wall model,

assuming  , the equation becomes

where   is the 4D invariant mass of the meson.

To connect this to light-front dynamics, the holographic coordinate    is mapped to the light-front

transverse separation  , where  , with    the longitudinal momentum fraction and 

 the transverse separation of constituents. The light-front wave function   is related to   via

Substituting and simplifying, the AdS equation maps to a light-front Schrödinger-like equation

where the effective potential   is

with   the orbital angular momentum,   the total spin,   the con�nement scale.

This is the light-front holographic QCD equation for the meson spectrum. The potential includes a

harmonic oscillator term ( ) for con�nement and a centrifugal-like term ( ) from the AdS

geometry.

S = ∫ xdz [ Φ Φ − − V (Φ)],d4 g√ gMN ∂M ∂N m2
5Φ2 (6)

gMN m2
5

= Δ(Δ − 4)m2
5R

2 V (Φ)

S = ∫ xdz [ Φ Φ − ],d4 g√ e−κ2z2
gMN ∂M ∂N m2

5Φ2 (7)

κ ΛQCD

Φ

Φ(x, z) = ϕ(z)eiP⋅x

[− − + − 2 (2 − 1)]ϕ(z)∂ 2
z ∂̂ z κ4z2 κ2 m2

5R
2

∂̂ z

= ϕ(z),M 2

= ,
1 − 4m2

5R
2

z
∂z

(8)

M 2

z

ζ = x(1 − x)ζ2 b2
⊥ x

b⊥ ψ(ζ) ϕ(z)

ϕ(z) ∼ ψ(z), z ↔ ζ.z−3/2 (9)

[− + (ζ)]ψ(ζ) = ψ(ζ),
d2

dζ2
VLF M 2 (10)

(ζ)VLF

(ζ) = + + 2 (J − 1),VLF κ4ζ2 4 − 1L2

4ζ2
κ2 (11)

L J κ

κ4ζ2 ∼ 1/ζ2
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The eigenvalue   gives the hadron mass squared. Solving the Schrödinger equation with the potential 

, we obtain a Regge-like spectrum

where   is the radial quantum number. This spectrum reproduces the linear Regge trajectories observed

in hadron spectroscopy, a key success of LFH QCD.

The QCD Lagrangian’s non-perturbative dynamics are approximated by the AdS effective action. The

con�nement potential ( ) emerges from the soft-wall dilaton, which mimics the IR behavior of QCD.

The AdS/CFT duality ensures that the boundary conditions and operator dimensions are consistent with

QCD’s UV structure, while the bulk dynamics encode con�nement.

To rigorously derive the LFH QCD equation directly from the QCD Lagrangian without AdS/CFT, one

would need to solve the full light-front Hamiltonian, including all Fock state contributions, which is

computationally infeasible. LFH QCD bypasses this by using the holographic duality to simplify the

problem, capturing essential features like con�nement and chiral symmetry breaking.

The light-front holographic QCD equation for meson bound states is

derived by mapping the QCD dynamics to a 5D AdS effective action with a soft-wall dilaton, then

projecting onto the light-front coordinates with  . The potential    encodes con�nement and

reproduces the Regge spectrum of hadrons.

III. Light front Holographic QCD theory with GUP effects

Incorporating the Generalized Uncertainty Principle (GUP) into the QCD Lagrangian and deriving the

light-front holographic QCD (LFH QCD) equation with GUP corrections is a non-trivial task, as GUP

modi�es the fundamental commutation relations of quantum mechanics, impacting the dynamics at

high energies or short distances. Below, we will extend the previous derivation by including GUP

corrections in the QCD Lagrangian, then proceed to derive the modi�ed LFH QCD equation, focusing on

the effective light-front Schrödinger-like equation for hadronic bound states. The process involves

modifying the QCD Lagrangian, adapting the light-front quantization, and adjusting the holographic

mapping to account for GUP effects.

M 2

(ζ)VLF

= 4 (n + L + ),M 2 κ2 J

2
(12)

n

κ4ζ2

[− + + + 2 (J − 1)]ψ(ζ)
d2

dζ2
κ4ζ2 4 − 1L2

4ζ2
κ2

= ψ(ζ),M 2

(13)

ζ ∼ z (ζ)VLF
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The GUP modi�es the Heisenberg uncertainty principle to account for quantum gravitational effects,

introducing a minimal length scale, often associated with the Planck length. A common form of the GUP-

modi�ed commutation relation is

where   are GUP parameters with dimensions of inverse mass squared (typically  , where 

 is the Planck mass),  .

For simplicity, we adopt the quadratic GUP form ( )

This leads to a modi�ed uncertainty relation

implying a minimal length  .

In the context of QCD, GUP corrections are expected to modify the short-distance (UV) behavior of quark

and gluon interactions, potentially affecting the dynamics of bound states in the holographic framework.

A. QCD Lagrangian with GUP

To incorporate GUP, we need to modify the momentum operators in the Lagrangian of Eq.  (1), as GUP

alters the canonical commutation relations. The GUP-modi�ed momentum operator can be

approximated as

to �rst order in  , ensuring  . This modi�cation affects the derivative terms

in the Lagrangian. For the quark sector, the Dirac operator   becomes

where  . The quark term in the Lagrangian is then

For the gluon sector, the �eld strength    involves derivatives of the gluon �eld. The modi�ed

derivative   introduces higher-order terms

[ , ] = iℏ ( + β + ℏ ),xi pj δij ℏ
2p2δij β ′ pipj (14)

β,β ′ β ∼ 1/M 2
Pl

MPl =p2 pkp
k

= 0β ′

= iℏ ( + β ).δij ℏ
2p2δij (15)

ΔxΔp ≥ (1 + β ),
ℏ

2
ℏ

2(Δp)2 (16)

Δ ∼ ℏXmin β
−−

√

→ = (1 − β ),pi p
∼
i pi ℏ

2p2 (17)

β [ , ] ≈ iℏ( + β )xi p
∼
j δij ℏ

2p2δij

iD = i/ γμDμ

→ = (1 − β ) − ig ,Dμ D
∼
μ ∂μ ℏ

2∂ 2 Aa
μt

a (18)

=∂ 2 ∂λ∂λ

(i − )q =q̄̄ γμD
∼

μ mq

[i ( (1 − β ) − ig ) − ] q.q̄̄ γμ ∂μ ℏ
2∂ 2 Aa

μt
a mq

(19)

Ga
μν

→ (1 − β )∂μ ∂μ ℏ
2∂ 2
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The gluon term becomes

The modi�ed QCD Lagrangian is thus

These higher-derivative terms complicate the dynamics, introducing non-locality at short distances,

consistent with the minimal length scale induced by GUP.

B. Light-Front Quantization with GUP

In light-front coordinates ( ), the Lagrangian is quantized using the light-front Hamiltonian 

, derived from the energy-momentum tensor  . The GUP modi�cation affects the momentum

operators in the light-front framework. The light-front momentum components are

The GUP-modi�ed commutation relations in light-front coordinates are more complex due to the non-

standard metric, but we approximate the transverse momentum operators as

assuming the dominant GUP effects are in the transverse plane, where holographic variables are de�ned.

The light-front Hamiltonian    is modi�ed by the GUP terms in the Lagrangian. The quark

kinetic term, for example, includes

where  . The gluon self-interaction terms are similarly modi�ed, leading to a corrected

Hamiltonian

where   includes higher-derivative interactions.

The eigenvalue problem for hadronic bound states remains

= (1 − β ) − (1 − β )G
∼a

μν ∂μ ℏ
2∂ 2 Aa

ν ∂ν ℏ
2∂ 2 Aa

μ

+g .f abcAb
μA

c
ν

(20)

− .
1

4
G
∼a

μνG
∼aμν

(21)

= [i ( (1 − β ) − ig ) − ] qL
GUP
QCD q̄̄ γμ ∂μ ℏ

2∂ 2 Aa
μt

a mq

− .
1

4
G
∼a

μνG
∼aμν (22)

, ,x+ x− x⊥

P − T +−

= + , = − , = ( , ).p+ p0 p3 p− p0 p3 p⊥ p1 p2 (23)

→ = (1 − β ( + )),p⊥
i p

∼⊥
i p⊥

i ℏ
2 p2

⊥ ( )p− 2 (24)

=HLF P −

i (1 − β )q,q̄̄ γ+∂− ℏ
2∂ 2 (25)

= ∂/∂∂− x−

= + β ,HGUP
LF HLF ℏ

2Hc (26)

Hc

|Ψ⟩ = |Ψ⟩,HGUP
LF M 2 (27)
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but the GUP corrections modify the effective potential and kinetic terms in the light-front wave function

(LFWF) dynamics.

C. AdS/CFT Correspondence and Holographic Mapping with GUP

In LFH QCD, the AdS/CFT correspondence maps QCD dynamics to a 5D AdS space, with the holographic

coordinate    related to the light-front transverse separation  . The GUP introduces a minimal length

scale, which can be incorporated into the AdS framework by modifying the AdS metric or the effective

action to account for UV modi�cations.

We use the soft-wall model, where the action for a scalar �eld   (representing mesons) is given by

Eq. (7). The GUP correction can be modeled by modifying the kinetic term to include higher-derivative

terms, re�ecting the non-locality

where   is the 5D d’Alembertian. The modi�ed action becomes

Alternatively, GUP effects can be incorporated by modifying the AdS metric to include a UV cutoff at 

, or by adding a potential term   that suppresses dynamics at small  . For simplicity, we

proceed with the modi�ed kinetic term.

D. Equation of Motion with GUP

Varying the modi�ed action, the equation of motion for   is

The GUP term   introduces a fourth-order derivative, re�ecting the non-local nature of GUP.

To map this to the light-front framework, we relate  , with  . The transverse kinetic

term in the light-front Hamiltonian is modi�ed as

The resulting light-front Schrödinger-like equation is

z ζ

Φ(x, z)

→ = (1 − β ),∂M ∂
∼

M ∂M ℏ
2
□5 (28)

=□5 gMN ∂M ∂N

= ∫ xdz [ Φ Φ − ].SGUP d4 g√ e−κ2z2
gMN ∂

∼

M ∂
∼

N m2
5Φ2 (29)

z ∼ β
−−

√ (z)VGUP z

Φ(x, z) = ϕ(z)eiP⋅x

[− − +∂ 2
z (1 − β )ℏ

2∂ 2
z

2 1 − 4m2
5R

2

z
∂z κ4z2

−2 (2 − 1)]ϕ(z) = ϕ(z).κ2 m2
5R

2 M 2

(30)

(1 − β )ℏ
2∂ 2

z
2

ϕ(z) ∼ ψ(ζ)z−3/2 z ↔ ζ

− → − .
d2

dζ2

d2

dζ2
(1 − β )ℏ

2 d2

dζ2

2

(31)
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where the potential   retains its form from the non-GUP case

Now, we are required to �nd the solution to the GUP-modi�ed Equation. The GUP term    (and

higher-order terms) complicates the solution. To �rst order in  , we approximate the kinetic term as

The equation becomes

The fourth-derivative term modi�es the UV behavior, effectively introducing a cutoff at small  ,

consistent with the minimal length scale.

Solving this equation analytically is challenging due to the higher-order derivatives. Numerically or

perturbatively, the GUP correction shifts the eigenvalues  . For small  , the mass spectrum is modi�ed

as

where    arises from the GUP term, typically increasing the mass slightly due to the

suppression of short-distance interactions. Using �rst-order perturbation theory, the corrected light

front wavefunction to �rst order in   is

The correction to the eigenvalue is

To estimate this matrix element, note that for harmonic oscillator-like wavefunctions  , we know

[− + (ζ)]ψ(ζ) = ψ(ζ),
d2

dζ2
(1 − β )ℏ

2 d2

dζ2

2

VLF M 2 (32)

(ζ)VLF

(ζ) = + + 2 (J − 1).VLF κ4ζ2 4 − 1L2

4ζ2
κ2 (33)

βℏ
2 d4

dζ4

β

− (1 − 2β ).
d2

dζ2
ℏ

2 d2

dζ2
(34)

[− + 2β +
d2

dζ2
ℏ

2 d4

dζ4
κ4ζ2

+ + 2 (J − 1)]ψ(ζ) = ψ(ζ).
4 − 1L2

4ζ2
κ2 M 2

(35)

ζ

M 2 β

≈ 4 (n + L + ) + δ ,M 2 κ2 J

2
M 2 (36)

δ ∝ βM 2
ℏ

2κ4

β

= + β + O( ).ψn ψ
(0)
n ∑

m≠n

cnmψ
(0)
m β2 (37)

δ = ⟨ | | ⟩ = 2β ⟨ | | ⟩M 2 ψn Ĥ
′
ψn ℏ

2 ψn
d4

dζ4
ψn (38)

(ζ)ψn

⟨ | | ⟩ ∼ (n + L + 1/2)/ ,ψn ζ2 ψn κ2

⟨ |− | ⟩ ∼ (n + L + 1/2).ψn
d2

dζ2
ψn κ2 (39)
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So the fourth derivative roughly scales as

Therefore Eq. (38) becomes

If we now include spin (e.g., via  ), the combination   naturally appears, and the

expression becomes

The GUP correction introduces a minimal length scale, which regularizes the UV divergences in QCD and

modi�es the short-distance behavior of the light-front wave functions. In the holographic context, this

corresponds to a cutoff in the AdS space at small  , consistent with the expectation that quantum gravity

effects become relevant near the Planck scale. The con�nement potential   remains dominant in the

IR, so the Regge-like spectrum is preserved, with small GUP-induced shifts.

IV. Phenomenology

In this section, we present phenomenological results comparing scenarios with and without GUP

corrections. Here, we mainly focus on the mass spectrum given by Eqs. (12) and  (36). First, we show the

effect of the GUP corrections on the mass spectrum by plotting    versus    using Eqs.  (12) and (36).

Figure (1) shows the plot of the hadron mass   versus radial quantum number    for �xed   and 

, comparing results with and without GUP corrections using arbitrary   value. The GUP-corrected

masses increase more rapidly with  , showing the expected shift from the higher-derivative (UV-

suppressing) terms. Let me know if you’d like a similar plot for varying   or different parameters.

⟨ ⟩ ∼
d4

dζ4
κ4(n + L + 1/2)2 (40)

δ ∼ βM 2
n ℏ

2κ4(n + L + 1/2)2 (41)

J = L + S (n + L + S/2)

δ ∼ βM 2
ℏ

2κ4(n + L + )
S

2

2

(42)

z

κ4ζ2

M n

M n L = 1

J = 1 β

n

L
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Meson

 (Pion) 0.135 1.3 1.8 2.1 2.4 2.6

 (Rho) 0.775 1.45 1.7 2.0 2.3 2.5

Table 1. Experimental meson masses (in GeV) used for   and   states up to  , collected from the Particle

Data Group(PDG)[15].

Figure 1. The hadron mass spectrum with and without GUP corrections is plotted as function

of the radial quantum number  . The value of   is set to 0.5, and   is assigned a value of 0.9

GeV , chosen arbitrarily for illustration purposes.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

π

ρ

π ρ n = 5

n κ β

2
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Figure 2. The meson mass spectrum   as a function of the radial quantum number  ,

including experimental data and theoretical predictions with and without GUP corrections.

The values of parameters used are   and   GeV-2.

Figure 3. The meson mass spectrum   as a function of the radial quantum number  ,

including experimental data and theoretical predictions with and without GUP corrections.

The values of parameters used are   and   GeV-2.

M 2 n

κ = 0.5 β = 0.65

M 2−−−√ n

κ = 0.5 β = 0.65
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Next, we �t the mass spectrum—with and without GUP corrections—as a function of the radial quantum

number   to the experimental data for the   and   mesons, and deduce the value of  . All �tting plots are

obtained using a con�nement scale of  . The masses of the    and    mesons are listed in

Table (1), and are taken from the Particle Data Group (PDG)[15]. Figure (2) and Figure (3) show the plots of 

 and   with and with GUP corrections, respectivelly, as function of the radial quantum number  .

Both plots show that the GUP corrected- mass spectrum describes much better the experimental data.

The value of   that corresponds to the best �t is  . Assuming that the GUP corrections are

the only contributions needed to match the experimental data, we �nd that the length scale that

corresponds to the best �t would be approximately  , which is slightly smaller than the

QCD scale. This suggests that light mesons would be particularly sensitive to GUP corrections.

V. Conclusions

In this article, we have developed a novel framework for light-front holographic QCD (LFHQCD) by

incorporating the Generalized Uncertainty Principle (GUP) into the QCD Lagrangian, introducing a

minimal length scale associated with quantum gravitational effects. By modifying the canonical

commutation relations, we derived a GUP-corrected LFHQCD equation, which manifests as a light-front

Schrödinger-like equation with a higher-derivative term. This term, proportional to the GUP parameter 

, alters the ultraviolet behavior of the hadronic wave functions, leading to an enhanced mass spectrum

characterized by an additional contribution  .

Our phenomenological analysis demonstrates that the GUP-corrected mass spectrum signi�cantly

improves agreement with experimental data for light mesons such as    and  . By �tting the modi�ed

spectrum to PDG masses, we determined an optimal  , corresponding to a minimal length

scale of approximately  , which is remarkably close to the QCD scale. This suggests that

light mesons are highly sensitive to GUP-induced modi�cations.

The success of the GUP-corrected LFHQCD framework in reproducing the Regge-like trajectories of light

mesons underscores the potential interplay between quantum gravity and strong interactions at energy

scales accessible to QCD. The preservation of con�nement, driven by the soft-wall model’s harmonic

potential, combined with the UV regularization provided by GUP, offers a compelling approach to re�ning

hadron spectroscopy models.

Future work should focus on extending this framework to baryons and exotic states, incorporating

additional QCD corrections such as one-gluon exchange for hyper�ne splittings, and exploring

n π ρ β

κ = 0.5GeV π ρ

M 2 M n

β β = 0.65GeV−2

1.65 × m10−16

β

δM 2

π ρ

β = 0.65GeV−2

1.65 × m10−16
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alternative GUP formulations (e.g., non-quadratic forms). This study opens a promising avenue for

probing the interface of quantum gravity and hadron physics, encouraging further exploration of

minimal length effects in strongly coupled systems.
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