
1 July 2025, Preprint v2  ·  CC-BY 4.0 PREPRINT

Commentary

Kepler: The Pioneer of Data Science and

AI
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This article examines Johannes Kepler’s pioneering contributions to data-driven scienti�c discovery

and draws parallels with modern advancements in Arti�cial Intelligence (AI). Kepler’s rigorous

analysis of Tycho Brahe’s astronomical data led to the formulation of the fundamental laws of

planetary motion, exemplifying early principles of data science. Contemporary AI techniques—such as

symbolic regression, advanced reasoning neural networks, and explainable AI—can now rediscover

physical laws from large datasets, mirroring Kepler’s methodology but at an unprecedented scale.

Despite technological progress, challenges persist, including data quality, interpretability, and

validation. The synergy between human intuition and machine intelligence holds promise for

accelerating scienti�c breakthroughs across disciplines, extending Kepler’s legacy into the era of big

data and AI-driven discovery.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

Kepler as a Data Scientist

In 1600, Johannes Kepler (1571-1630) began working as an assistant to the Danish astronomer Tycho

Brahe (1546-1601) in Prague. Brahe had compiled one of the most precise astronomical datasets of the

pre-telescopic era through meticulous naked-eye observations. While Brahe excelled in data collection,

Kepler’s genius lay in his analytical rigor. After inheriting Brahe’s observations in 1601, Kepler spent over

a decade identifying mathematical patterns, systematically testing hypotheses until he derived his

revolutionary laws of planetary motion.

Initially, Kepler, an adherent of Copernicus’s heliocentric model, sought evidence that planets orbited the

Sun in perfect circular paths—a re�ection of the prevailing belief in cosmic harmony. However, Brahe’s
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data revealed a groundbreaking truth: planetary orbits were elliptical, with the Sun at one focus. This

discovery became Kepler’s First Law of Planetary Motion, heralding a paradigm shift in astronomy.

Kepler’s three laws of planetary motion are as follows: 1. “The Elliptical Orbit Law”: Planets orbit the Sun

in elliptical paths, with the Sun at one focus; 2. “The Equal Area Law”: A planet’s radius vector (the line

connecting it to the Sun) sweeps out equal areas in equal time intervals; and 3. “The Harmonic Law”: The

square of a planet’s orbital period is proportional to the cube of its semi-major axis.[1]

These laws not only described celestial mechanics with unprecedented mathematical precision but also

established a new scienti�c paradigm: the universe could be understood through empirical data and

quantitative relationships. Unlike Aristotle’s reliance on qualitative deduction, Kepler exempli�ed the

empirical approach that would later de�ne the scienti�c method.

The Role of AI in Scienti�c Discovery

A compelling question arises in the modern era: Could an AI system, given Brahe’s data, replicate Kepler’s

discoveries? The answer is af�rmative. A core objective of science is deriving mathematical models that

accurately describe empirical phenomena. Traditionally, scientists manually construct such models using

domain expertise, �tting them to observational data. Today, however, machine learning enables

automated model discovery from vast datasets.

Cornelio et al.[2] introduced a novel approach combining logical reasoning with symbolic regression to

derive scienti�c principles from both axiomatic knowledge and experimental data. Their method

successfully rediscovered Kepler’s Third Law and other physical laws, demonstrating AI’s ability to

identify governing equations even with limited data by evaluating candidate formulas for empirical

accuracy.

Similarly, Li et al.[3] proposed an Explainable AI (XAI)-driven paradigm for scienti�c discovery, wherein

AI assists in hypothesis generation, data interpretation, and insight extraction. Their work illustrates

how AI can autonomously derive Kepler’s Laws from Brahe’s astronomical data, bridging computational

and experimental methodologies.

Modern machine learning techniques—including neural networks, symbolic regression (SR), and genetic

programming—can uncover complex patterns and even derive physical laws from data. Notable

examples include: “Eureqa” (Wolfram Alpha)[4], which rediscovered the Law of Conservation of Energy

from pendulum motion data; “AI Feynman” (MIT)[5], which reconstructed equations of relativity and
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other physical laws; and “CERN’s AI applications”[6], which assist in detecting new particles in high-

energy collisions.

AI Building the Future: Advancing Discovery and Reasoning

AI is unlocking powerful new ways to uncover the fundamental laws of nature from data. Among these,

symbolic regression stands out as a compelling machine learning approach that extracts interpretable

mathematical expressions directly from datasets [7]. In general, driven by genetic programming, recent

advances have introduced deep learning techniques as a dynamic, data-driven tool for model discovery.

This shift has led to remarkable progress across scienti�c and engineering domains, from theoretical

research to real-world applications.

A particularly promising development is the integration of Kolmogorov-Arnold Networks (KANs) with

symbolic regression  [8]. Rooted in the Kolmogorov-Arnold representation theorem, KANs break down

complex multivariate functions into sums and compositions of simpler univariate functions. This

approach offers enhanced interpretability, high approximation accuracy, and broad modelling �exibility,

making it a powerful framework for revealing hidden mathematical relationships in data. By combining

KANs with symbolic regression, researchers can derive meaningful, transparent models that accelerate

scienti�c discovery.

Beyond mathematical modelling, AI is also making strides in advanced reasoning and metacognition.

Recent work emphasises the possibility of reinforcement learning (RL) enabling AI systems to self-

regulate their cognitive processes, dynamically adjusting their problem-solving strategies for optimal

performance [9]. DeepSeek-R1-Zero, an advanced AI model, learned to allocate processing time adaptively,

prioritizing complex problems while maintaining coherence in reasoning. Rather than relying on rigid,

prede�ned rules, it developed autonomous reasoning strategies guided by incentive structures,

showcasing a shift toward more self-aware AI systems.

As AI continues to evolve, the next generation of model, whether based on symbolic regression, KANs, or

advanced reasoning architectures, will push the boundaries of scienti�c discovery and intelligent

automation. These innovations promise to transform �elds ranging from fundamental research to

industrial applications, paving the way for a future where AI not only assists but also autonomously

advances human knowledge.

qeios.com doi.org/10.32388/0EEG86.2 3

https://www.qeios.com/
https://doi.org/10.32388/0EEG86.2


Despite these successes, AI faces signi�cant challenges: 1. “Data dependency”: Noise or biases in data can

lead to erroneous conclusions; 2. “Interpretability”: Some models detect patterns without explaining

their underlying mechanisms; and 3. “Validation”: Empirical testing remains essential to con�rm AI-

generated hypotheses. Thus, while AI enhances discovery, human intuition and experimental veri�cation

remain indispensable.[10]

Conclusion

Kepler was a pioneer of data science, demonstrating how empirical observation and mathematical

analysis could unveil the fundamental laws of nature. Today, AI ampli�es this capability, enabling

machines to uncover patterns and formulate hypotheses at an unprecedented scale, unlocking powerful

new ways to uncover the fundamental laws of nature from data. Among these AI, symbolic regression

and advanced reasoning stand out as compelling machine learning approaches that extract interpretable

mathematical expressions directly from datasets

The convergence of AI, big data, and mathematical modeling holds transformative potential across

physics, biology, chemistry, and even the social sciences. However, just as Kepler’s creativity and rigor

were essential in interpreting Brahe’s data, the collaboration between human insight and machine

intelligence will remain crucial in unraveling the universe’s mysteries.

Kepler was not merely an astronomical genius—he was a visionary who foreshadowed the era of data-

driven science. His legacy endures, now revitalized by the power of AI.
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