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Improving Stabilizer Approximation
with Quantum Strategy
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We introduce a quantum strategy from nonlocal games to improve the stabilizer approximation we

proposed previously. The resulting approach turns out to be a qubit-by-qubit gauging procedure for

standard stabilizers, which could involve discrete or continuous gauge parameters. We take

examples from many-body physics and quantum chemistry to show such a procedure leads to an

improvement of the performance.
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I. A brief introduction

The famous toric code[1] presents a beautiful connection between a stabilizer code[2] and a quantum

many-body problem: we could use the stabilizers to engineer a Hamiltonian, such that its ground

states constitute exactly the logical subspace, or the stabilized subspace. Reversing the logic, we would

like to get the ground states of some Hamiltonian with stabilizers. For realistic Hamiltonians, we

wouldn’t be so luck to obtain the exact ground states anymore. So we settle for approximate ground

states. For Hamiltonians expressed as sums of Pauli terms, a practical approach would be to select an

appropriate commuting subset of Pauli terms as the stabilizers, such that the subspace they stabilize

would be an approximate ground state. This is the so-called stabilizer approximation that we

proposed in[3]  and developed in[4][5], based on previous studies[6][7]. See[8][9][10]  for related

investigations.

While stabilizer approximation performs rather well in most cases, it could go bad when two non-

commuting terms possess coefficients of close magnitude. In such a situation choosing either

operator as the stabilizer would not be good enough, as discussed in[8]. This in fact should have been
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anticipated. Stabilizer formalism alone is not adequate to handle the Hamiltonian problem, in the

same spirit that Clifford circuits could not provide universal quantum computation[11][12]. To do

better, we need to introduce more “quantumness” into it.

The development of nonlocal games, especially the Clause-Horne-Shimony-Holt  (CHSH) game[13],

gives us a clue for how to achieve a quantum advantage. So we start with the CHSH game, and try to

borrow the proper quantum strategy from it to improve our approximation.

II. The CHSH game

We follow the presentation of the CHSH game in Thomas Vidick’s lecture notes[14]. Two players in the

game are given binary queries   and   respectively, and give also binary answers   and  . They win if

the answers satisfy

where   is logical XOR,   is logical AND. Assuming the queries are uniformly chosen, we could easily

calculate the classical bias and winning probability. To do this, we linearly transform the binary values

of   and   into parity/spin values  , but still use the same labels to denote them. Then, we have

for the bias

and the winning probability

So classically we have at most a chance of   to win the game.

Quantumly, we could do strictly better. We promote   and   into

All of them have eigenvalues  . Now we let the two players share an EPR pair:

and take the values of the respective measurements   as their answers. Therefore, the quantum

bias reads
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The winning probability of the quantum strategy is then

which is indeed greater the classical value. Moreover, it is proved to be the best one.

III. CHSH vs. stabilizer

The CHSH game has a nice interpretation in terms of the stabilizer formalism, as shown in[15]. In

particular, it is shown that one could encode all the information of the game into a single

Hamiltonian, and seek its ground state for the answer. The recipe is as follows. For each question

instance  , one includes a Pauli term into the Hamiltonian, with a   factor for the “0” question, and

a   factor for the “1” question. The expected answer,  , is encoded into the coefficient of the Pauli

term. Explicitly, one transforms it into a spin value, and sets the coefficient as its opposite. Doing so,

we get the CHSH Hamiltonian[15]:

Now we try to approximate its ground state with stabilizer states. We could choose a commuting

subset of terms, say  , as stabilizers. The corresponding stabilizer state is

And the corresponding energy, or expectation value of the Hamiltonian, is  . The previous quantum

strategy inspires us to make the following transformation:

with

Essentially, we are taking the rotation around the   axis by  . Explicitly, this gives

as in eq.(4). Then we could rewrite the Hamiltonian as
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Thus if we choose   as our new stabilizers, we get a lower energy  . In fact, this

is the lowest eigenvalue of  . The corresponding new stabilizer state is simply[15]

It is not difficult to check that    and    indeed stabilize  . Therefore, the quantum

strategy used in the CHSH game helps us improve the stabilizer approximation for the ground state

energy. The essential point behind the strategy is that, for different qubits we could use completely

different sets of Pauli operators to define the stabilizers. In other words, we could gauge the Pauli

operators for each qubit individually, with the single-qubit rotations. I am not sure whether “gauge”

is the proper word here to describe the procedure exactly, but I prefer to use it anyhow.

IV. Gauging stabilizers

A. Individual gauging

Now we apply the above procedure to some realistic problems, to see whether it is of help more

generally. The first example is the Ising model with both longitudinal and transverse magnetic

fields[8]:

When  , it would be difficult to select our stabilizers properly. Taking an extremal

situation,  ,  , we have

At each site, we may choose either   or   as our stabilizer. This gives an energy  , with   the

number of sites. Now we gauge the Pauli operators uniformly as before, and get

Choosing   as the new stabilizer at each site, we get a lower energy  , which is actually the

lowest eigenvalue of  . Similar discussion for the generalized toric code model with external

magnetic fields is done in[9].
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B. Sequential gauging

The above example looks a little bit trivial. Now we give a slightly involved example. Consider the

electronic Hamiltonian of the hydrogen molecule. We transform it into the qubit form with a proper

transformation, say the parity transformation[16]. In the bounding region, the Hamiltonian looks like

this

We could easily select the stabilizers as  , and get the corresponding state

This is a product/Hartree-Fock  (HF) state, and the corresponding energy    is exact. In the

asymptotic region, the correlation/resonating term dominates, and the Hamiltonian looks like:

We would get a single stabilizer  , which gives a degenerate state space with the exact

energy  . In the region in between, the Hamiltonian would be certain combination of the above two,

say

Choosing either the HF stabilizers   or the correlation stabilizer   gives an

energy  . But this is not so satisfying, because either choice ignores completely the contributions

from the alternative side.

To properly include contributions from both sets of stabilizers, we run the following gauging

procedure. First, we gauge    and    as before, and discard  , say, by choosing    as the first

stabilizer. We are left with the reduced Hamiltonian:

Now we gauge   and  , and get

Choosing    as the second stabilizer and discarding  , we obtain an energy  ,

which is significantly lower than the naive stabilizer value  . Still, this is higher than the lowest

eigenvalue of  , which is  .
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C. Continuous gauging

All the previous steps could be generalized by introducing a gauging parameter, which could vary

continuously. This could be easily done with a general rotation    around the    axis. The gauge

transformation would then be given by:

When  , we reproduce the previous special transformation as expected.

Now we could repeat the whole calculation for the hydrogen molecule with the general

transformation. By properly choosing the gauge parameters, we could further lower the energy from 

 to  , even closer to the exact value  .

V. Summary

In this short note we employ the quantum strategy in the CHSH game to improve the stabilizer

approximation for groundstates. The resulting approach turns out to be a gauging procedure for the

Pauli operators  . As expected, it significantly improves the performance when the original

approximation deteriorates. The new stabilizer states in the gauged basis could then provide better

initialization for further quantum algorithms[7][8].

Such an approach also inspires a natural question: could it be enhanced to a universal computation

model in the Heisenberg picture[12]? Perhaps the answer is already hidden in the framework of the so-

called ZX-calculus[17], I guess.
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