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This paper addresses the challenge of fine-grained alignment in Vision-and-Language Navigation

(VLN) tasks, where robots navigate realistic 3D environments based on natural language instructions.

Current approaches use contrastive learning to align language with visual trajectory sequences.

Nevertheless, they encounter difficulties with fine-grained vision negatives. To enhance cross-modal

embeddings, we introduce a novel Bayesian Optimization-based adversarial optimization framework

for creating fine-grained contrastive vision samples. To validate the proposed methodology, we

conduct a series of experiments to assess the effectiveness of the enriched embeddings on fine-

grained vision negatives. We conduct experiments on two common VLN benchmarks R2R and

REVERIE, experiments on the them demonstrate that these embeddings benefit navigation, and can

lead to a promising performance enhancement. Our source code and trained models are available at:

https://anonymous.4open.science/r/FGVLN.

Corresponding authors: Yuhang Song, sgysong10@liverpool.ac.uk

1. Introduction

In recent years, Transformer[1]  based architectures have revolutionized the processing and

comprehension of instruction and path in Vision-and-Language Navigation (VLN) task[2][3][4][5]. For

example, VLNBERT[6], aligning the instruction and path by bringing the embeddings of positive Path-

Instruction (PI) pairs closer while pushing those of negative pairs apart. Prior studies conducted by[6][7]
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[8]  highlight the importance of better encoding in VLN and suggest that better-aligned embeddings

generally result in improved representations of both the navigation instructions and the corresponding

path sequences, which can, in turn, enhance overall VLN task performance. The majority of these

methods improve the learned embeddings by pre-training on external augmented data, while limited

attention has been given to enhancing learned embeddings by improving the quality of contrastive

samples. Nonetheless, research in the domain of contrastive learning indicates that sampling negative

examples can significantly impact the learned embeddings. More specifically, sampling hard negative

examples can potentially enhance the quality of these embeddings[9][10][11], which suggests room for

further enhancement in VLN tasks.
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Figure 1. An illustration of existing strategies for generating instruction-based and

vision-based path-instruction (PI) pairs, where only coarse-grained negative examples

are generated and utilized for vision-based PI samples.   and   denote the instruction

and path,   represents the positive samples, while   denotes the negative samples.

Current VLN approaches[6][7][8] generate negative PI pairs from positive PI pairs by either: (1) altering the

positive instruction to generate instruction negative PI pairs or (2) altering the positive path to generate

vision negative PI pairs. A common method for these alterations involves randomly shuffling the

instruction or path sequences. To further diversify the styles of negative samples and enhance the

learned embeddings, previous studies have explored alternative methods for sampling additional

negative pairs. AirBert[7]  attempted to create additional instruction negative samples using a keyword

replacement method proposed by[12]. These pairs are fine-grained language-based negatives that differ
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from the positive PI pair in instructions with only minor lexical variations, which has been demonstrated

to significantly benefit the model in training. This finding emphasizes the importance of fine-grained

samples. On the other hand, for the vision negative PI pairs, the authors in[6] employed beam search to

collect additional candidate paths for each instruction with a greedy instruction follower model[13]. Paths

that fail to accomplish the instruction are also considered vision negative PI pairs. Unfortunately, unlike

the fine-grained instruction negatives, paths in both random shuffled and beam-searched vision PI

negative pairs significantly differ from the positive path. These vision negative PI pairs can be considered

coarse-grained negatives. Fig.  1 illustrates the sampling methods of negative PI pairs in contemporary

approaches, where only coarse-grained vision negatives are involved.

Generating effective fine-grained vision PI negative pairs can be challenging, particularly when

determining the appropriate key elements to replace in the vision sequence. Considering the

aforementioned challenges and the need to address the difficulty in identifying the most impactful fine-

grained negatives for vision sequences, we propose to utilize Bayesian Optimization (BO). BO-based

methods are well-regarded for their efficiency in exploring search spaces, which is critical in our context

for pinpointing vision negatives. Our proposal draws inspiration from[14], which employs adversarial

examples to identify the weaknesses of a model. Building on this concept, our framework is designed to

generate vision fine-grained negative pairs that refine the model’s vision-language alignment

capabilities. Our BO-based framework iteratively locates the frames that would most significantly impact

the model’s predictions. Replacing these frames to form fine-grained vision negatives in training

facilitates VLN tasks and results in a tailored training set that includes a balanced mix of coarse

negatives, and fine-grained negatives. To sum up, we propose a Fine-grained VLN (FGVLN) framework

that involves a strategic Bayesian-based optimization via adversarial training to integrate BO into our

training process. To validate our framework we evaluate the resulting learned vision embeddings. Our

findings reveal that the encoder trained with our framework captures more fine-grained visual

information. We further perform experiments on the common VLN discriminative benchmark Room-to-

Room (R2R)[2], and adapt our trained backbone into two benchmarks R2R and REVERIE[15] in generative

setting. The results validate the effectiveness of the fine-grained embeddings learned with our method

in enhancing performance in both settings. We further provide an ablation study to validate the BO

design choice. Our contributions are summarized as follows:

We highlight the importance of fine-grained samples for VLN and emphasize that coarse-grained

cross-modal features learned by the encoders result in less accurate PI alignments.
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We find that our method results in encoders with uniform attentions across sequences, capturing

better fine-grained details, which allows the model to form complex decision boundaries.

We incorporate the encoders with enhanced embeddings obtained from our method to the VLN tasks

and improve the performance in both discriminative and generative settings.

II. Related Work

VLN[2] has garnered attention, with a range of follow-up studies in recent years[16][17][18][19][20][15][21][22]

[23][24]. VLN tasks include discriminative and generative settings, described as follows.

Discriminative Vision-and-Language Navigation.

Discriminative navigation considers the navigation problem as a path selection task. In this setup, the

agent is tasked with choosing the most appropriate path from a set of candidates based on a given

instruction[6][7][8][25][26][27][28][29][30][31][32]. The study in[6]  first pre-trained the agent on web image-

caption datasets. Nevertheless, alignment issues persisted due to the out-of-domain nature of the web

image-caption datasets, which are not consistent with downstream tasks. This challenge was tackled by

Airbert[7], which used in-domain Airbnb image-caption pairs for more realistic PI sample generation,

supplemented by tasks such as masked language modeling[33]. Further advancements were made by

Lily[8], a technique that incorporated indoor YouTube video data to enhance the alignment more closely

with actual navigation tasks. Although these methods were effective, existing approaches primarily

focused on improving the learned embeddings by data augmentation. In contrast, our work diverges

from these traditional methods by investigating the impact of fine-grained vision negatives on the

embeddings, and proposes a BO-based method to produce fine-grained vision negatives, which enables

the encoding of more fine-grained path information.

Generative Vision-and-Language Navigation.

In this setting, the agent’s goal is to predict the action distribution given navigation instructions and

observations. Some prior methods predicted actions using sequential models[2][13][26]. To capture cross-

modal relationships, methods based on the Transformer architecture[1] have been proposed and adapted

for agent training[34], with some of them also leveraging Vision-Language pre-training[28][30][35][36][37]

[38][39]. Inspired by BERT[40], several works proposed to use different variants of BERT[40] for large-scale

visio-linguistic pretraining[33][6][7][8][41]. Among them, ViLBERT[33] has been widely adopted and proven
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effective. Our work thus uses ViLBERT as the backbone. We adapt our trained encoders into[41]  to show

that fine-grained vision negatives can improve performance in the generative setup.

III. Preliminaries

Following[6], to train ViLBERT[33] encoders, we formulate the VLN task as a path selection problem, where

the navigation task involves identifying the path that best aligns with the given instructions. Given a set

of candidate paths   and an instruction  , the problem of VLN is defined as finding a trajectory   such

that:

where   is a compatibility function that assesses whether a given trajectory follows the instruction and

stops near the intended goal, which produces a compatibility score  .   is the embedded representation

of the trajectory, and    is the embedded instruction, both encoded by encoders parameterized by  . 

  denotes learned transformations parameterized by  , which maps the embedding into a    of a

given trajectory   with respect to  .   denotes a dot product operation.

According to the formulation in[33], VLN tasks can separately encode visual navigation trajectory patches

and language sequence tokens using two distinct Transformers. Assume a visual navigation trajectory 

, where   denotes the trajectory length (i.e., number of frames  ), and 

 represent the frame dimensions. To align with ViLBERT, the visual trajectory is reshaped such

that each frame comprises   visual region patch nodes  , with   and  . The trajectory input is

thus represented as  . Similarly, given a language

instruction sequence  , where    is the number of tokens and    is the token

dimension, the tokenized text input to the model can be represented as: 

, where   are special tokens. Based on the above

formulation, an aligned positive Trajectory-Instruction pair can be expressed as  , and

the generated negative pair as  . The output embedding at the location of the first 

  and the    is taken as the output of the model for trajectory and instructions, respectively,

which can then be utilized for the two embeddings   and   in Eq. (1).

To concentrate on the contrastive learning aspect, in this work, the pre-training stage of Lily[8]  is kept

unchanged, and the VLN model is fine-tuned in the downstream path ranking (PR) task using a

Bayesian-based optimization framework. PR aims to minimize a contrastive loss given a positive pair
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and several negative pairs  , where   generated negative pairs have either a different

trajectory or a different instruction. The negative pairs can be expressed as    or 

. The PR loss   can then be formulated as follows:

where   denotes the learned transformations on the outputs of the backbone encoders as in Eq. (1).

The objective is to minimize   with respect to model parameters.

IV. Methodology

In this section, we present in Section IV-A of the proposed FGVLN framwork. Section IV-B elaborates on

an encoder synchronization and optimization strategy.

A. Bayesian-based Optimization by Adversarial Training

Figure 2. Overview of the proposed Fine-grained VLN (FGVLN). In the Inner Maximization, the Bayesian

optimizer evaluates different masks   based on  , this process is repeated several iterations (as denoted

by lines in red), and resulting a set of best masks  . In outer minimization procedure, the online model is

updated given the FGN batch generated based on  .

Fig. 2 illustrates the proposed adversarial training framework, named Fine-Grained VLN (FGVLN), which

utilizes BO to generate fine-grained vision negative samples. The framework comprises two

optimization processes: inner maximization and outer minimization. The inner maximization process aims
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to discover the most effective fine-grained vision negatives that maximize  , while the outer

minimization procedure employs these negatives to train our model to minimize  . Specifically, during

each round of outer minimization, an inner maximization process trains a BO-based sampler to identify the

most impactful frames in the positive trajectory for replacement. The outer minimization then utilizes the

trained BO model to sample fine-grained negative PI pairs and optimize the model’s learning based on

these negatives. Since both processes need to assess  , the framework maintains two multilayer

Transformer-based ViLBERT[33]  models for each process: an online model for the outer process,

parameterized by  , and a target model for the inner process, parameterized by  . The target

model is a copy of the online model and is periodically updated by it. The loss from the online model

  is used to update the online model itself, while the loss from the target model   is for

evaluating the discovered fine-grained negatives.

In the inner maximization process, a Tree-structured Parzen Estimator (TPE) based BO model[42]  is first

initialized. Given a positive trajectory, the BO model samples several frames from the positive trajectory.

These sampled frames are then transformed into replacement frames by a fine-grained negative (FGN)

generator, which results in a fine-grained vision negative PI pair that consists of a fine-grained negative

path and a positive instruction. The generated fine-grained negative PI pairs are concatenated with the PI

pairs in the original batch to form a new batch referred to as the FGN batch. This batch is then passed to

the target model to determine their difficulties, quantified through  . This procedure is repeated for

several iterations to optimize the BO sampler, and the result is an optimized BO model employed by the

outer process. During the outer minimization, based on the sampling results from the BO model, the

generated fine-grained negative PI pairs are concatenated with other PI pairs in the batch to form a final

batch, which is employed to train the online model.

1. Inner-Maximization

Defining a fine-grained negative PI pair as  , the framework aims to select   best fine-

grained negative pairs    in conjunction with other negative pairs   to maximize  . A

TPE-based Bayesian optimizer is employed to select the frames for modification. Given an unprocessed

positive path   with   frames, the optimizer samples a mask indicator  .

This binary mask   indicates the frames to be replaced, and   signifies that frame   is to

be replaced. The objective function for this can be written as follows:
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This process is iterated   times to maximize  , after which the optimal   is selected. To produce

the fine-grained negatives, a generation function   replaces the frames indicated by   in the

positive trajectory    with a replacement frame    to produce  . The generation flow for the

replacement frame is discussed in Section V-D. The generation function   is defined as:

where    represents the complement of  . By selecting    optimal masks to obtain a set of masks 

, the objective can be formulated as maximizing   with respect to  :

After iterations, the inner-maximization process eventually results in a set of   optimal masks  .

2. Outer-Minimization

The outer-minimization process receives the result from the inner-maximization process, and utilizes

the generation function in Eq.  (4) to produce    fine-grained negatives  . These fine-grained

negative PI pairs are concatenated with other negative PI pairs    to produce 

. The objective of this process is to minimize   given  , formulated

as:

B. Delayed Updates

Given that the inner optimization process optimizes based on the output from the learned encoders,

which are subsequently updated by the outer optimization stream, employing rapid updates across both

processes could potentially lead to the selection of a suboptimal mask set    as validated later in

Section. V-D. This issue is particularly pronounced during the initial stages of training, where the outputs

of the encoders in both processes may not accurately reflect the desired embeddings. This discrepancy

could affect the direction of gradient descent in the outer optimization stream, and potentially lead to a

feedback loop that detracts from model performance. To mitigate this issue, we propose maintaining a

separate copy of the model parameters within the inner optimization process, i.e.,    and  . These

parameters are updated after a fixed period of time to align with the model in the outer optimization

process every    update steps. This strategy enables the inner optimization process to perform more
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stable and reliable frame selections, which reduces the likelihood of misleading gradients that can

adversely impact the outer optimization process.

V. Experiments

In this section, we present the experiments for addressing three key aspects: (1) evaluating the

effectiveness of the embeddings for fine-grained vision negatives after applying the proposed method in

comparison to the previous approach, (2) determining the extent to which these improved embeddings

enhance the current model’s performance in both discriminative and generative settings, and (3)

exploring the design space of the BO-based sampler by an ablation study.

A. Experimental Setup

Baselines.

To evaluate the navigation performance of the proposed framework, we compare the navigation results

of our framework to the existing works in the discriminative setting that improve learned embeddings

through various types of data augmentations. In the generative setting, we adapt our encoders

into[41] and compare the performance of our framework to the existing end-to-end generative navigation

methods that enrich the embeddings solely through data augmentation. The baselines for these settings

are presented in Tables II, III and IV, respectively.

Benchmark and Metrics.

We first evaluate our proposed method on the common VLN benchmark R2R[2] in discriminative setting,

which contains detailed paired instructions and photo-realistic observations. R2R is based on the

Matterport 3D[43] dataset, containing a total of 21,567 path-instruction pairs from 90 scenes. Following

the standard setting presented in[2], we adopt several representative metrics for evaluating R2R: success

rate (SR), success rate weighted by the ratio between the shortest path length and the predicted path

length (SPL), trajectory length (TL), as well as navigation error (NE). We also adapt our trained backbone

into the generative setting on two benchmarks, R2R and REVERIE. For REVERIE, we use four metrics to

evaluate navigation performance: SR, OSR, SPL, and TL as in[7]. Additionally, we assess object grounding

performance using two metrics: remote grounding success (RGS) and RGS weighted by path length
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(RGSPL). Following standard settings[8]. The REVERIE dataset uses the same data splits as the R2R

dataset, but it additionally requires the agent to select the bounding box of the target object.

Implementation Details.

The framework was implemented using the PyTorch framework and followed a two-stage training

process: pre-training and fine-tuning. For pre-training, we utilized the pre-trained model described in

Lily[8]. During the fine-tuning phase, we adhered to the settings outlined in[8]  to ensure a fair

comparison. This process involved initially training the model with Masked Language Modeling (MLM)

[7]  and Masked Vision Modeling (MVM)[7]  losses. The training was conducted with a batch size of 

  across four NVIDIA Tesla V100 GPUs, and a learning rate of  . Subsequently, the model was

further trained using our framework on  , distributed across eight NVIDIA Tesla V100 GPUs, with a

learning rate of   and a batch size of 16 for 30 epochs until convergence. The models included in

the ablation studies were trained on subsets using the default settings provided in[8], with a batch size of

eight. For adaptation to the generative setting, we followed the methodology outlined in[7]  to adapt

recurrent VLN[41]. Our trained FGVLN model served as the backbone network for the recurrent VLN and

was trained using imitation learning and A2C[44] for 300,000 iterations. This training was conducted on

a single NVIDIA GeForce RTX 4080 GPU, with a batch size of eight and a learning rate of  .

Figure 3. A comparison of the embeddings from the vision encoder trained by different methods.

B. Examination on the Learned Embeddings

We examine the embeddings    from Eq.  (1). These embeddings are derived by the vision encoder

trained by different methods. To demonstrate the impact of our method across different negative PI

pairs, we utilize PI pairs sampled from the R2R validation dataset and plot the embeddings from the
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positive trajectories and the altered negatives. Fig. 3 presents a comparison of the embeddings generated

by Lily[8]  and our FGVLN, in which the red dots represent the embedding entry from the positive

trajectory, while the blue dots denote the embedding of negative samples generated from different

approaches, including random shuffling, beam search, and fine-grained replacement. It can be observed

that the negative embeddings generated by both encoders through random shuffling and beam search

display diverse and distinguishable distributions compared to the embeddings of the original positive

trajectories. However, when encoding fine-grained negative vision-based PI pairs, Lily encodes these

pairs in a manner highly similar to the positive path, which results in a significant overlap of the dots. In

contrast, our method captures subtle differences in information from fine-grained negative paths and

can produce embeddings with better distinguishability.

Encoder

Negative Path Generated by Various Method

Beamsearch RandomShuffle Fine-grained

Lily[8] 13.47 81.44 74.80 22.12 4.72 95.79

Ours 13.32 131.19 43.25 200.18 7.64 47.35

Table 1. Statistical resuts of   distance of embeddings.

Table 1 further presents a statistical analysis based on 1,000 sampled PI pairs of the   distance between

the embeddings of the trajectories encoded by different encoders. The results reveal that negative

embeddings generated by random shuffling diverge the most from the embeddings of the positive

trajectories. Negative embeddings generated through beam search exhibit the second-highest

divergence, while fine-grained negative trajectories show the least divergence. The encoder trained by

our approach captures more subtle differences even after fine-grained alteration.

μ σ μ σ μ σ

L2

L2
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C. Navigation Performance on the R2R Benchmark

Methods

Val Seen Val Unseen

TL NE (↓) SR (↑) SPL (↑) TL NE (↓) SR (↑) SPL (↑)

VLN-BERT[6] 10.28 3.73 70.20 0.66 9.60 4.10 59.26 0.55

Airbert[7] 10.21 3.14 74.12 0.70 9.63 3.95 62.84 0.58

Lily[8] 9.99 3.12 77.45 0.74 9.64 3.37 66.70 0.62

FGVLN (Ours) 10.05 3.08 78.59 0.74 9.79 3.40 67.69 0.64

Table II. Comparison on R2R under the discriminative setting.

Discriminative VLN.

We employ the pre-trained Lily[8] model and fine-tune it with our proposed FGVLN on the complete R2R

benchmark under the discriminative setting. The performance of our model is compared with the

previous baseline models. Table  II presents the results of this comparison. Our FGVLN model

outperforms all the previous models on the validation unseen datasets. In the validation unseen dataset,

our model achieves a    improvement in terms of SR and a    improvement in terms of SPL

compared to the current state-of-the-art (SOTA) Lily model[8]  that does not utilize BO for fine-grained

negative sampling. These results confirm that incorporating challenging fine-grained vision negatives

produced by BO into the training process enhances the performance of VLN models in the discriminative

setting. Fig. 4 illustrates an example of the navigation trajectory determined by our framework compared

to that determined by Lily[8]. It can be observed that with the enhanced embeddings, our framework is

able to determine a trajectory with better alignment to the given instruction, which results in fine-

grained inferencing.

1.48% 3.12%
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Methods

Validation Seen Validation Unseen

TL NE (↓) SR (↑) SPL (↑) TL NE (↓) SR (↑) SPL (↑)

Seq2Seq-SF[2] 11.33 6.01 39 - 8.39 7.81 22 -

Speaker-Follower[26] - 3.36 66 - - 6.62 35 -

PRESS[45] 10.57 4.39 58 55 10.36 5.28 49 45

EnvDrop[13] 11.00 3.99 62 59 10.70 5.22 52 48

PREVALENT[46] 10.32 3.67 69 65 10.19 4.71 58 53

Rec (Airbert)[7] 10.31 2.68 74 66 12.12 4.01 59 54

Rec (FGVLN) 11.42 2.77 73 68 12.74 4.06 61 55

Table III. Comparison on R2R under the generative setting.

Methods

Navigation

RGS RGSPL

SR OSR SPL TL

Random 1.7 11.93 1.01 10.76 0.96 0.56

Rec (OSCAR)[41] 25.53 27.66 21.06 14.35 14.20 12.00

Rec (ViLBert)[33] 24.57 29.91 19.81 17.83 15.14 12.15

Rec (VLN-Bert)[40] 25.53 29.42 20.51 16.94 16.42 13.29

Rec (AirBert)[7] 27.89 34.51 21.88 18.71 18.23 14.18

Rec (FGVLN) 28.71 30.14 22.09 19.10 21.55 14.78

Table IV. Comparison with models with different backbones on REVERIE dataset under generative setting
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Adaptation to Generative VLN.

Following the same adaptation scheme as[7], we further use our trained FGVLN as the backbone of the

recurrent VLN[41] and adapt our model in the R2R and REVERIE under the generative setting. For R2R, we

compare the performance of the models that were only fine-tuned on the original R2R dataset, without

any augmented data from[13]. Table III presents the results of the navigation performance comparison of

our method against the previous baseline approaches. It can be observed that FGVLN achieves the

highest SPL in the validation seen split while maintaining comparable performance in terms of SR. In the

validation unseen split, the proposed FGVLN outperforms all previous models, and achieves the best

performance in both SR and SPL. The superior performance in the generative setting, especially in SPL,

indicates that our encoders produce more aligned embeddings. This alignment assists the agent in

closely following the designated instructions.

Table IV summarizes the navigation performance on the REVERIE dataset in previouse unseen

environments under the generative setting. Our FGVLN approach demonstrates competitive results,

particularly while generating to the unseen environments. Notably, in the validation unseen split, FGVLN

achieves a Success Rate (SR) of 28.71%, and a higher SPL of 22.09%, indicating more efficient navigation

and generalizing ability in unfamiliar environments. This suggests that our method allows the agent to

follow instructions more closely and accurately, despite the complex and unseen scenarios presented by

the REVERIE dataset. These results validate the robustness of our Bayesian Optimization-based fine-

grained negative sampling approach.

Figure 4. An illustration of an example trajectory determined by our framework for a given instruction

compared to that determined by Lily. Each robot starts at position   (marked in blue). Our framework selects a

path (marked in green) that stops at the top of the stairs, while the baseline selects a path (marked in yellow)

that only ascends partway up the stairs before stopping in the middle.

0
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Index Model Name

Bayesian Optimizer Configurations Result (SR%)

3

Iters

5

Iters
Delayed 1FGN 2FGNs

In-

domain

Out-

domain
val_seen val_unseen

1 Baseline Lily[8] - - - - - - - 60.21 51.38

2 FGVLN-Rand - - - - - 60.61 50.11

3
FGVLN-w/o-

delayed
- - - - 60.18 49.52

4
FGVLN-w-

delayed
- - - 57.66 51.02

5
FGVLN-

outdomain
- - - 61.25 52.36

6 FGVLN-add-FGN - - - 63.48 53.14

7 FGVLN-add-iter - - - 61.98 56.45

Table V. Ablation Studies on Bayesian optimization-based sampler.

*Models were tested under various configurations, including (1) -# Iters the different number of BO optimization

iterations, (2) -Delayedthe use of delayed updates (3) -#FGNs the different number of the fine-grained negatives

to sample for in each batch (4) -In-domain/Out-domain the selection of the replacement frame  , which could

be either in-domain, aligning with the positive trajectory, or out-domain.

D. Ablation Study

To determine the optimal configurations for FGVLN, we conducted a series of design space explorations.

We utilized a subset of the original dataset for this exploration to efficiently explore the design space.

Table V presents the comparison of FGVLN under different configurations, with explanations for each

configuration included. This ablation study identifies FGVLN-add-iter as the best configuration, which

outperforms all other settings in unseen environments. As a result, we adopt this configuration for our

FGVLN in all other experiments presented.

✓ ✓

✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

xr
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Effectiveness of Delayed Updates

To validate the effectiveness of the proposed delayed updates as described in Section 4.2, the

comparisons in Table 4 of the main manuscript between the model with delayed updates (index 4) and

another without updates (index 3) show that the model with delayed updates exhibited a 3%

performance improvement on the unseen validation set. This finding supports our hypothesis regarding

the benefits of delayed updates.

Effectiveness of Out-domain Replacement

To evaluate the impact of using different types of replacement frames    to generate fine-grained

negatives, we assessed a strategy to generate the replacement frame by sampling a frame from an in-

domain trajectory, specifically from the same room as the positive path, with results detailed in indices

3-4 in Table 4 of the main manuscript. In contrast, we also tested out-domain replacement frames, which

were sampled from a different room (i.e., index 5). The results revealed that out-domain replacement

frames are more effective. Under this setting, the model achieved a   improvement over the best in-

domain   approach and a    improvement compared to the baseline model. We assume that this is

due to potential overfitting caused by the in-domain replacement, which generates negative samples that

are overly similar to the positive path and thus not sufficiently informative.

Effectiveness of Optimizer & Number of Additional Negatives

We assessed the impact of the number of iterations conducted by the Bayesian optimizer on mask

selection. In particular, the configuration of the optimizer to produce two masks, as presented in index 6

of Table 4 in the main manuscript, resulted in two additional fine-grained negatives and enhanced

performance on both the validation seen and unseen datasets compared to the previous models. This

finding highlights the benefits of multiple fine-grained negatives. In addition, extending the optimizer’s

iterations (i.e., index 7) improved performance in the unseen dataset, which emphasizes the optimizer’s

effectiveness. However, for the seen dataset, the model with three iterations (row 5) performed better.

This suggests that while additional iterations aid generalization in new environments, they may not yield

the same benefits in familiar settings. This indicates a need for balanced optimization strategies tailored

to various environmental complexities. As we focus more on the unseen rooms in VLN, we select the

model setting with the best performance in the unseen dataset for all our experiments, which is referred

to as FGVLN in the main manuscript.

xr

2.6%

xr 1.9%
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Random Mask Selector

We also evaluated the model using a random mask selector under the optimal fine-grained negative

setting (i.e., two additional negatives, using out-domain replacement frames) as presented in index 2 of

Table 4. It can be observed that all models employing the selector based on the Bayesian optimization

with identical fine-grained negative settings (index 6-7) demonstrated superior performance compared

to the random mask selector. This finding confirms the effectiveness of the Bayesian optimization

component.

VI. Conclusion

We propose a BO-based approach for generating fine-grained negatives was introduced by presenting

the FGVLN framework. An analysis of the resulting embeddings of our encoders was provided.

Experimental results demonstrated that the proposed framework is capable of capturing better fine-

grained correspondence between paths and their corresponding instructions. This correspondence

enables the model to make more informed decisions in VLN tasks. The performance of the encoders

trained by our proposed framework was also assessed on the well-established VLN benchmark R2R, in

both discriminative and generative settings, and a significant navigation performance enhancement was

observed. Finally, an ablation study was provided to validate the design decisions.
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