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Information on the spatial variation of soil fertility attributes is an essential

input for precision agriculture and soil management decision-making. In this

study, soil fertility assessment was carried out through the spatial distribution

of thematic maps of individual properties and the subsequent integration into

a digital mapping model of local fertility classes, as fundamental bases for the

implementation of fertilization and amendment plans adjusted to soil status

and crop requirements. For the evaluation of fertility, a systematic surface

sampling was carried out at 70 sites in the "Agronomy" production �eld of the

National University of the Central Plains "Romulo Gallegos", El Castrero sector,

Juan German Roscio municipality, Guárico state, Venezuela. Ten soil variables

were analyzed: pH (1:2.5), electrical conductivity (1:5), organic matter, available

phosphorus, assimilable potassium, available calcium and magnesium, and the

relative amounts of sand, silt, and clay. Soil property maps were produced by

geostatistical analysis and interpolation by ordinary kriging, and arti�cial

intelligence techniques based on an arti�cial neural network classi�cation

system were applied to generate soil fertility classes using the Fuzzy Kohonen

Clustering Network (FKCN) algorithm by interpolating the values of the

membership function for each of the classes. The reliability of the individual

maps of each soil variable was obtained by cross-validation with a reliability

level higher than 90%, with the exception of the variables % Clay and % Silt,

which presented a reliability higher than 85%. The integration of the soil

attribute maps and the combination of the values of belonging to each class

produced a map integrated by �ve soil fertility categories. The �nal model of

digital soil fertility classes presented a reliability equivalent to 86%, which

indicated a high degree of homogeneity within the soil classes obtained for

fertility purposes.
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Introduction

Soil fertility is an important quality resulting from the
interaction between the physical, chemical, biological,
and biochemical characteristics of the soil
environment, which consists of the capacity to provide

all the necessary conditions for plant growth and
development. In turn, knowledge of the spatial
variation of soil fertility in agricultural �elds is a
fundamental aspect for the de�nition of the
establishment of homogeneous productive plots for
site-speci�c management purposes (Srinivasan et al.,
(2022).

One source of information related to fertility is the soil
analyses carried out by laboratories, which provide this
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service in various locations in the country. This source
of data constitutes a contribution of analytical results of
soil properties related to reaction (pH), salinity
(electrical conductivity), granulometry (clay, sand, silt),
organic matter, macro elements (phosphorus,
potassium), secondary elements (calcium, magnesium),
microelements (zinc, copper, iron, and manganese), and
exchangeable acidity (aluminum, hydrogen). Each soil
analysis report for fertility purposes is an integration of
results with the purpose of developing an organic and
inorganic fertilization plan and amendments adjusted
to the soil status and crop requirements, complemented
by the management of climatic factors or irrigation and
agricultural activities.

The spatial analysis of soil fertility facilitates decision-
making when applying agronomic practices in
productive spaces, allowing the appropriate supply of
nutrients to the soil and minimizing the impact on the
soil resource for the bene�t of biodiversity
(Shashikumar et. al, 2022). However, the manual
representation of soil fertility classes requires the
elaboration of individual maps for each of the variables
and the subsequent superimposition of these maps to
obtain homogeneous areas and similar patterns that
facilitate management, which implies biases and low
precision in the �nal result. Therefore, the systematic
organization of soil data in geographical areas or land
units is an opportunity to assess the spatial distribution
of topsoil, to express the spatial variation of soil fertility
through thematic maps, and to give a higher added
value to soil analysis for fertility purposes through
digital mapping products of soil properties and classes
with a higher degree of homogeneity.

Within the spatial analysis techniques, geostatistical
methods play an important role in the prediction of soil
properties, where the interpolation method called
ordinary kriging stands out (Webster y Oliver, 1990).
However, the individual representation of the variables
de�ning soil fertility does not cover the interest and the
need to visualize the joint behaviors of soil fertility.
Spatial analysis makes it possible to assess the variation
of individual soil properties and the formation of soil
classes in order to support decision-making on
homogeneous areas as a basis for site-speci�c
management and for the promotion of precision
agriculture. This information serves as a basis for users
to get a complete picture of the soil nutrient status of a
sector on a single map and also contributes to decision-
making on the most appropriate soil management
(Padua et al., 2018; Shashikumar et al., 2022).

For the generation of soil classes, there are spatial
analysis techniques based on arti�cial intelligence, such

as fuzzy logic and arti�cial neural networks (ANN).
These techniques are well suited to the study of soil
attributes, which vary gradually over space, where the
representation of this gradual variation can result in
obtaining useful information and reducing errors in the
de�nition of appropriate soil unit boundaries (Burrough
et al. 2000). The combination of the potential of fuzzy
sets and ANNs has developed a comprehensive
unsupervised classi�cation technique called the Fuzzy
Kohonen Clustering Network (FKCN) (Lin and Lee, 1996;
Bezdeck et al., 1992), which combines a self-organizing
map (SOM) algorithm (Kohonen, 1982) and the Fuzzy C-
means (FCM) algorithm (Bezdeck, 1981).

There are few research works in the �eld of soil science
that take into account the combination of individual
properties to express them as soil fertility categories. In
this respect, the application of fuzzy-neural networks
has given a great impulse to digital soil mapping both
in the prediction of properties and in obtaining soil
classes. In Venezuela, fuzzy neural networks have been
applied in the area of landscape classi�cation and soil
attribute prediction (Viloria, 2007), in
geomorphological digital mapping (Valera and Viloria,
2009), Valera et al. (2010), Viloria et al. (2012), Valera
(2012), Sevilla (2014), and Viloria et al. (2016), in the
prediction of local soil properties and classes (Valera,
2015; Valera, 2018), in the study of soil and banana crop
yield relationships (Rey et al., 2015), and in the
delimitation of fertility classes (Valera and Orta, 2018).

This paper presents a study of spatial analysis of
fertility classes through the prediction of chemical and
physical properties of the soil obtained in laboratory
analyses by means of geostatistical techniques, and
their subsequent grouping by means of a fuzzy arti�cial
neural network algorithm. To evaluate the spatial
behaviors of soil fertility classes, the "Agronomy"
production �eld of the National University of the
Central Plains "Romulo Gallegos," located in the El
Castrero sector, San Juan de los Morros parish, Juan
German Roscio municipality, Guárico state (Venezuela),
was considered.

Materials and Methods

Study Area

The study area where the digital soil mapping test was
carried out is located in the "Agronomy" production
�eld of the National University of the Central Plains
"Romulo Gallegos," located in the El Castrero sector, San
Juan de los Morros parish, Juan German Roscio
municipality, Guarico state (Figure 1). The study unit is
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framed in an alluvial zone, with a slope of 3 to 5%. The
soils in this area were formed from Quaternary
geological materials, with a moderate pedogenetic
development, and are of moderate fertility.

Figure 1. Relative location of the production �eld

"Agronomy" in the basin of the river El Castrero,

Guarico state, Venezuela.

Soil sampling

For the evaluation of the soils, a systematic sampling
was carried out in the super�cial horizon at a depth of
20 cm, in grids spaced at 30 m, for a total of 70 soil
samples in an area of 6.15 ha (Figure 2). Each sampling
point was georeferenced with the support of a global
positioning system (GPS). The surface samples were
diagnosed for fertility purposes, using the
methodologies of the Soil Analysis Laboratory of the
Soil and Water Research Centre of the Romulo Gallegos
University (CIESA-UNERG). Ten soil variables were
analyzed: pH in water (1:2.5), electrical conductivity in

water 1:5 (EC, dSm-1), organic matter (OM, %), available

phosphorus (P, mgkg-1), assimilable potassium (K,

cmol(+) kg-1), calcium (Ca, cmol(+) kg-1), and available

magnesium (Mg, cmol(+) kg-1), and the relative
amounts of sand, silt, and clay (%).

Statistical analysis

The data of the edaphic variables were subjected to an
exploratory analysis (EDA) with the support of the
statistical package SPSS® (IBM® Statistics, version 20),
in order to determine the descriptive statistics, such as
mean, median, variance, coef�cient of variation,
maximum and minimum values, and the asymmetry
and kurtosis indices. Tukey's (1977) methodology of
external and internal fences was used to detect the

presence of outliers. Additionally, the normality test of
Kolmogorov-Smirnov was performed to evaluate the
distribution of the data.

Figure 2. Distribution of soil sampling sites in the

production �eld "Agronomy".

Interpolation of soil properties

For the interpolation of soil properties, the ordinary
geostatistical kriging method was used, which uses a
semivariogram model to obtain the weights assigned to
each reference point used in the estimation of the value
of the regionalized variables that present spatial
dependence. The semivariogram is de�ned by the
semivariance function [γ(h)], which is estimated with
the following expression (Upchurch and Edmonds, 1991;
Ovalles, 1992):

where N is the number of pairs of points separated by a
given distance h; z(xi) is the value of the variable at a

location x; z(xi+h) is the value that the variable takes at

another location located at a distance h from x (Ovalles
and Rey, 1994). The semivariogram contains the
information concerning the regionalized variable,
whose parameters are: the nugget variance (C0), the

structural variance (C1), the threshold or plateau

(C0+C1), and the range (A1), which indicates the

distance within which there is spatial dependence
(Burrough, 1986; Grunwald et al., 2007). For the
estimation of the empirical semivariogram of soil
properties, the necessary transformations were
performed, and possible trends in the data were
removed. Then, the adjustment to mathematical

γ(h) =
1

2N(h)
∑
N(h)

[z ( ) − z ( )]xi xi+h
2 (1)
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models was carried out with the geostatistical analysis
extension of the ArcGIS software® (ArcMap v. 10.8). The
�tted parameters were used to obtain optimal estimates
of the soil variables at the unsampled sites, through
interpolation using the ordinary kriging method
(Webster and Oliver, 1990). Models of soil variables were
generated from the total data, and the accuracy of the
maps was obtained by cross-validation. Six indices were
used in the evaluation: mean error (ME), mean error
standardized (MES), root-mean square (RMS), root-
mean square standardized (RMSS), average standard
error (ASE), and con�dence level (%CL). The ME
evaluates the systematic error and indicates the
presence of under- or overestimation of the model, and
the SSE shows the deviation of the model obtained. The
RMS assesses the accuracy of the prediction and
measures the amount of error between the measured
and inferred data sets, i.e., it compares a predicted value
and an observed or known value; whereas the RMSS is
more accurate the closer it is to the ideal value of unity
(1). The ASE indicates the variability of predictions,
whose estimates will be more appropriate if their values
are closer to the RMS.

Digital soil fertility class model

The neuro-fuzzy FKCN algorithm, implemented in a
Java environment (Windows) by Viloria (2012), was used
to obtain the representative models of the soil fertility
classes. The architecture of the FKCN neural network
used in the analysis consists of three layers (Figure 3).
The input layer contains the normalized values of ten
(10) soil variables from the prediction models of these
attributes. The distance layer includes the neurons
equivalent to the preset number of digital soil classes,
and the third layer computes the membership function
of each cell to each of the soil classes, based on the
distances computed in the previous layer and the preset
values of the fuzzy coef�cient (ϕ). In the distance layer,
the separation dij existing between an input pattern Xj
and the node weight ωi is computed, with i = 1, 2,..., c,

where c represents the number of classes of the model
to be estimated. Subsequently, the membership layer
plots the distances dij into membership values Uij,

where Uij represents the degree of membership of an

input pattern Xj to a class c. In the learning process, the

feedback from the membership functions layer to the
distance layer occurs in order to adjust the centers of
each class.

The soil variables were grouped in a data matrix for the
application of the FKCN algorithm, which allowed the
evaluation of pixel clustering with different numbers of

classes (2 to 8) and different fuzzy coef�cients (ϕ= 1.1 to
1.6). The fertility classes were assigned pedological
signi�cance through the interpretation of their spatial
distribution, the descriptions of the class centers, and
the matrices of similarity values (degree of belonging to
each class) obtained by the FKCN algorithm, together
with the information from the analysis of the soils in
the area.

Figure 3. Structure of the fuzzy neural network used in

soil class prediction.

Number of soil fertility classes

An inductive approach was used to obtain the best
fuzzy class model, based on the procedure of Odeh et al.
(1992), which relates the Fuzziness Performance Index
(FPI) to the number of classes. These parameters are
obtained using the Fuzzy Kohonen Clustering Networks
(FKCN) algorithm (Lin and Lee, 1996) of the FKCN
program (Viloria et al., 2012). The selection of the
optimal number of classes in FKCN was performed by
repeated clustering for a range of numbers of classes.
The FPI estimates the degree of fuzziness generated by
each speci�c number of classes (Odeh et al., 1992).
Mathematically, it is de�ned as:

where c is the number of classes and F is the partition
coef�cient calculated as:

F is conceptually comparable to the ratio of the set of
within-class variances to the between-class variance
and is close to unity (1) for the most signi�cant
clustering. In the present study, the clustering of soil
property maps in raster format was performed by
previously setting the following parameters: a) number

FP I = 1 − [(cF − 1)/(c − 1)] (2)

F = (1/n)∑
i=1

n

∑
k=1

c

( )μik
2 (3)
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of classes (c = 3 to 10), b) fuzzy exponent ϕ = 1.10 to 1.60
with increments of 0.10; c) a maximum of 300
iterations, and d) stopping criterion (ε = 0.0001). The
calculations used the Mahalanobis metric distance,
which takes into account the correlation between some
soil variables in the area evaluated.

Assessment of the predictive ability of soil

fertility classes

To assess the predictive capacity of the classes obtained
by fuzzy clustering, the �nal model was validated by
means of a cross-validation process, using the
discriminant functions of each class as multivariate
statistics derived from the canonical discriminant

analysis. In the cross-validation process, each case is
classi�ed using the discriminant functions derived
from the rest of the cases. 

Results and Discussion

Statistical analysis

Descriptive statistics indicated that the average values
of the soils correspond to clay loam and clayey textural
groups, with slightly to strongly acid reactions, low to
medium phosphorus, and moderate to high potassium
contents, high availability of calcium and magnesium,
low to medium organic matter contents, and no salinity
problems (Table 1).
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Variable1 Min. Max. Ave. Medium Kurtosis Asymmetry SD Var CV (%)

pH (1:2.5) 4,97 6,40 5,70 5,66 -0,23 0,41 0,32 0,103 5,6

EC (dS m-1) 0,010 0,100 0,036 0,026 0,47 1,12 0,02 0,001 63,6

P (mg kg-1) 4,44 44,48 17,1 16,24 -0,20 0,57 9,83 96,55 57,6

K (cmol (+) kg- 1)  0,31 1,44 0,71 0,67 0,68 0,91 0,26 0,069 37,3

Ca (cmol (+) kg- 1)  0,90 2,40 1,59 1,55 0,63 0,53 0,29 0,082 18,0

Mg (cmol (+) kg- 1)  0,17 1,41 0,88 0,90 0,43 -0,15 0,24 0,060 27,7

MO (%)  0,78 4,17 2,67 2,57 0,85 0,06 0,63 0,400 23,6

Clay (%) 14,00 70,00 41,1 40,48 0,14 0,13 11,23 126,0 27,3

Sand (%)  5,10 74,96 31,5 32,98 1,19 0,33 12,66 160,2 40,2

Silt (%)  5,04 52,40 27,3 29,00 -0,74 -0,17 11,45 131,1 41,9

Table 1. Descriptive statistics of the soil fertility variables of the experimental �eld.

1Number of data: 70, SD: Standard deviation, CV:
Coef�cient of variation, EC: Electrical conductivity, P:
Available phosphorus, K: Assimilable potassium, Ca:
Available calcium, Mg: Available magnesium, OM:
Organic matter. 

Most of the variables show some similarity between the
mean and the median, with the exception of the EC and
K variables. At the same time, the greatest dispersion of
the data is presented by the same variables together
with the granulometry values, due to the expression of
the standard deviation and variance; however, the
coef�cients of variation of the variables as a whole do
not present problems in terms of the existence of
extreme values in the data.

According to the coef�cient of skewness or asymmetry,
the variables pH, %sand, %clay, Ca, Mg, and %OM
comply with the normal probability distribution
function, and geostatistical methods can be applied to
the data. However, for P, K, and EC, it was necessary to
evaluate the data by transformations (normalization)
for the subsequent application of some geostatistical

method to the data. Regarding kurtosis, only the data
for the K variables are concentrated with respect to the
mean (small standard deviation), giving an elongated
plot; while the data for pH, %silt, and P are scattered,
presenting �attened or �attened plots.

The application of the test for external and internal
fences indicated that the variables considered do not
present outliers. Finally, with regard to the normality
test, it was veri�ed that only the variables K and MO
come from normal populations, as the values of the
statistical test are highly signi�cant (p> 0.05). For the
rest of the data, it was necessary to transform them.

Interpolation of soil properties

The estimation of the empirical semivariogram of the
soil variables was �tted to Gaussian, spherical,
exponential, stable, and cylindrical mathematical
models respectively (Figure 4), considering the
isotropic behavior of the variables. The geostatistical
parameters derived from �tting the semi-variograms to
different theoretical models are expressed in Table 2,
and the models for each variable are presented in Figure
5.
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Variables Model C0 C1 A1 C +C01 RN (%)

pH (1:2.5)   Gaussian 0,000 0,110 56 0,11 0,0

EC (dS m-1) Gaussian 0,000 0,000 59 0,00 0,0

P (mg kg-1) Spherical 0,100 82,49 93 82,6 0,1

K (cmol (+) kg-1)  Circular 0,080 0,05 59 0,13 60,4

Ca (cmol (+) kg-1)  J-Bessel 0,016 0,036 59 0,05 30,7

Mg (cmol (+) kg-1)  Stable 0,000 0,058 59 0,06 0,0

OM (%)  Gaussian 0,030 0,410 59 0,40 6,8

Clay (%) Gaussian 0,000 125,64 59 125,6 0,0

Sand (%)  Spherical 78,28 22,06 59 100,3 78,0

Silt (%)  J-Bessel 0,000 137,02 59 137,0 0,0

Table 2. Geostatistical parameters of the composite semivariogram of soil properties.

C0: Nugget  variance, C1: Structural variance, C0 + C1:

Threshold, A1: Range, RN: Relative Nugget  (C0 /C0
+C1)*100), J-Bessel: Cylindrical symmetry function.

Figure 4. Semivariogram of soil variables in the

production �eld "Agronomy".
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Figure 5. Model maps of soil variables in the

production �eld "Agronomy".

Structural analysis of the semivariogram models
indicated that the models of the variables mostly show
strong spatial dependence (<25% random effect or
relative nugget), although the variables K and Ca show
moderate spatial dependence (relative variance
between 25 and 75%), and % sand shows weak spatial
dependence, with a relative nugget >75%. In general, all
semivariograms show structure, with an increase in the
total variance until reaching a maximum average
distance of 59 m. In other words, a spatial dependence
range of 59 m stands out for all models, with the
exception of the semivariogram of the available P
variable, which has a range 1.5 times the average.

Assessing the reliability of prediction models

The results of the validations of the soil variables are
shown in Table 3, where the low values of the prediction
errors, which are very close to zero for the ME, MES,
and ASE indices, can be observed.
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Variable Regression Function 
Index

ME MES RMS RMSE ASE CL (%)

pH (1:2.5) 0,4631 * x + 3,03326 0,00 0,00 0,25 1,08 0,23 99,6

EC (dS m-1) 0,4466 * x + 0,01720 0,00 0,01 0,02 1,30 0,02 100,0

P (mg kg-1) 0,3914 * x + 10,3986 -0,01 0,00 8,63 1,48 5,85 91,4

K+ (cmol kg-1) 0,1555 * x + 0,58614 0,00 -0,01 0,25 0,96 0,26 99,7

Ca+2 (cmol kg-1) 0,4550 * x + 0,84930 0,00 0,00 0,23 0,98 0,23 99,7

Mg+2 (cmol kg-1) 0,2305 * x + 0,67800 0,00 0,01 0,21 0,96 0,22 99,7

OM (%) 0,3167 * x + 1,81928 0,01 0,02 0,55 0,98 0,56 99,2

Clay (%) 0,5668 * x + 18,1189 -0,02 0,00 9,08 1,31 7,19 86,1

Sand (%) 0,3824 * x + 19,4403 -0,41 -0,04 10,4 1,00 10,3 91,4

Silt (%) 0,1880 * x + 21,5820 0,20 0,02 10,8 0,93 11,6 85,1

Table 3. Prediction error of soil variables by cross-validations.

ME: Mean error, MES: mean error standardized, RMS:
root-mean square, RMSS: root-mean square
standardized, ASE: Average standard error, CL:
Con�dence level. EC: electrical conductivity, P: available
phosphorus, K: assimilable potassium, Ca: available
calcium, Mg: available magnesium, OM: organic matter.

It is observed that the models that best �t the data used
meet the requirements of small RMS, small ASE close to
RMS, RMSE close to 1, and a high percentage of
reliability. According to the reliability of the models,
most of them present values higher than 90%, except
for the variables % Clay and % Silt, for which it is
necessary to improve the density of the measurements.
The greatest underestimation was presented by the
physical variables, and the greatest uncertainty is given
by the available phosphorus variable (far from the unit),
which presented a greater variance and somewhat high
variation coef�cients. However, the particle size
variables show ASE values very close to RMS. For all the
cases evaluated, the RMS values are lower than the
standard deviation and are therefore adequate for the
evaluation of the prediction models (Marcheti et al.,
2010).

Generation of the digital soil fertility class model

Number of soil fertility classes

The representation of the variation of the fuzzy
performance index (FPI) as a function of the number of
classes for different coef�cients is shown in Figure 6.
The diagram shows that the most suitable number of
soil classes was obtained with 5 classes, combined with
aϕ of 1.2. The FPI value of 0.36 points to the intersection
point at which there is a minimization of the degree of
fuzziness, which determined the optimal number of
classes, characterized by being less fuzzy and less
internally disorganized for the set of variables related to
soil fertility.
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Figure 6. Variation of the fuzzy performance index

(FPI) as a function of the number of soil classes.

The results of the values of the center of each fertility
class (centroids) are shown in Table 4. This allowed the
following signi�cant aspects to be extracted: Class 1

includes soils of clayey textural classes and slightly
acidic pH and the lowest values of available phosphorus.
Class 2 includes soils of clay loam texture, with

moderately acid reactions and average values for most
of the available chemical elements that characterize it.
Class 3 also includes soils with a clay loam texture and a
moderately acid reaction, but with clay contents close to
40%, and with the highest available calcium and
magnesium contents. Class 4 groups soils with the
highest clay contents (>50%), and the highest levels of
available phosphorus, assimilable potassium, and
organic matter contents. Class 5 involves clay loam
soils with the lowest levels of assimilable potassium,
available magnesium, and organic matter contents, but
with the highest proportions of coarse-grained
materials (sand).

The application of the FKCN algorithm also generated
the membership degree values of each cell (pixel) to
each of the soil fertility classes. The classi�cation
produced vectors of membership values for each model
cell corresponding to each fertility class. These values
were spatially represented, producing individual maps
of class memberships, which re�ect the spatial
variation of membership degrees between 0 (dark
colors) and 1 (light colors), through maps in raster
format expressed in Figure 7.
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Soil Variable
Soil Fertility Classes

1 2 3 4 5

pH water (1:2.5)   5,99 5,52 5,52 5,88 5,70

EC water (dS m-1) 0,02 0,03 0,06 0,03 0,05

P (mg kg-1) 11 17 18 25 22

K+ (cmol kg-1) 0,59 0,71 0,75 0,93 0,57

Ca+2 (cmol kg-1) 1,35 1,58 1,80 1,54 1,77

Mg+2 (cmol kg-1) 0,73 0,99 1,07 0,90 0,68

MO (%)  2,41 2,87 2,73 3,04 2,09

Clay (%) 46,7 36,4 39,5 52,6 26,6

Sand (%)  26,0 31,3 37,5 24,5 47,3

Silt (%) 26,9 33,8 23,0 22,6 23,8

Table 4. Soil fertility classes center obtained with the FKCN algorithm.

EC: Electrical conductivity, P: Available phosphorus, K:

Assimilable potassium, Ca: Available calcium, Mg: Available

magnesium, OM: Organic matter.

Figure 7. Maps of membership function values for

each of the soil fertility classes.

The combination of the spatial distribution models of
the membership values produced the integrated map of
�ve soil fertility classes (Figure 8). To produce this map,
the FKCN algorithm converted the neuro-fuzzy classes
into discrete units, whereby each model cell was
assigned to the class with the highest membership
value. The �nal model corroborated the distribution of
soil fertility classes, where spatial variation patterns
allowed discriminating the dominance of textural
classes with variations in soil reaction and availability
of primary and secondary elements in the East-West
sectors. The �nal model also allowed visualization of
the expression of the boundaries de�ned by the
dominant fertility classes in the surface layer of the
soils. These boundaries facilitate decision-making for
soil management and for the development of
productive plots.
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Figure 8. Soil fertility class distribution model of the

production �eld "Agronomy".

With regard to the surface area of the soil units: class 1
occupies 26.8% of the evaluated sector, class 2 occupies
an area of 25.2%, class 3 represents 23.4% of the studied
area, class 4 corresponds to 12.7% of the study area, and
class 5 corresponds to 11.9% of the production �eld
under consideration.

Assessment of the predictive capacity of the

digital soil fertility classes model

The results of the assessment of the predictive ability of
the soil classes with multivariate statistics are reported
in Table 5. The calculation of the accuracy of the model
yielded values equivalent to 86%, with an uncertainty of
less than 15%. In other words, the validation process of
the soil fertility class model indicated that 86% of the
cases were correctly classi�ed by cross-validation,
based on the ratio of correct reference points (60) to the
total number of true points (70).
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Class
Predicted membership group a

1 2 3 4 5

 1 100,0 0,0 0,0 0,0 0,0

2 5,6 83,3 11,1 0,0 0,0

3 0,0 6,7 93,3 0,0 0,0

4 12,5 12,5 0,0 75,0 0,0

5 0,0 44,4 0,0 0,0 55,6

Table 5. Classi�cation results (%) based on the sizes of the neuro-fuzzy soil fertility class.

a Correctly classi�ed 85.7% of the grouped cases validated

by cross-validation.

The highest degree of uncertainty is given by classes 5
and 2, where some sites in class 5 were classi�ed as part
of class 2, where confusions occur due to neighboring
inclusions, as visualized in the �nal model (Figure 8).
The results of the validation of the FKCN approach
demonstrated that it is an alternative for the generation
of soil fertility classes. These results are slightly higher
than those obtained by various researchers, Zhu et al.
(2008), McKay et al. (2010), and Valera and Orta (2018),
whose research expressed a reliability of 76, 73.7, and
80.1% respectively for the soil maps obtained.

Conclusions

The maps of the variables analyzed showed that there
are gradual soil changes with respect to all attributes,
which showed spatial dependence, and this may affect
the reliability of assessments for research or production
purposes.

The assessed area is not internally homogeneous,
possibly due to the in�uence of soil management and
agronomic practices in the area. This variability has to
be taken into account to avoid a differential effect on
the crops.

The establishment of productive plots should not
exceed the range of spatial dependence of the fertility
attributes, whose mode is 59 m, in order to include the
variability of the assessed soils. Therefore, the area for
the establishment of productive plots that guarantee
the homogeneity of the internal structure of the soils

should not be larger than 1.0 ha to allow the
representativeness of the soil.

The evaluation of the digital neuro-fuzzy model
indicated that the spatial prediction of soil fertility
classes corresponds to what is expected in the studied
sector, as the reliability was equivalent to 86%.

The information provided by the spatial analysis of
individual soil properties and the map of neuro-fuzzy
fertility classes is complementary and can be used as a
basis for soil resource management in the area.
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