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Information on the spatial variation of soil fertility attributes is an essential input in precision

agriculture for soil management decisions. In this study, soil fertility was evaluated through the

spatial distribution of property maps and subsequent integration into fertility classes, as a

fundamental basis for the implementation of fertilization plans and amendments adjusted to crop

requirements. For the evaluation of fertility, a systematic surface sampling was carried out at 70

sites in the "Agronomy" production �eld of Romulo Gallegos University, The Castrero sector,

Roscio municipality, Guárico state, Venezuela. Ten soil attributes were analyzed: pH, electrical

conductivity, organic matter, phosphorus, potassium, calcium, magnesium, and the relative

amounts of sand, silt, and clay. Soil property maps were produced by geostatistical analysis and

ordinary kriging interpolation, and arti�cial intelligence techniques based on an arti�cial neural

network classi�cation system, with the FKCN (fuzzy Kohonen clustering network) algorithm,

were applied to generate soil fertility classes. The reliability of the maps for each variable was

obtained by cross-validation with a reliability of more than 90%. The integration of the maps

produced a map composed of �ve categories. The �nal soil class model presented a reliability

equivalent to 86%, indicating a high degree of homogeneity within the soil classes obtained. This

approach overcomes the limitations of traditional methods by integrating multiple variables into

a coherent model and is capable of generating information that can be used as a basis for the

establishment of experimental plots for research purposes and the speci�c management of

nutrients present in the soil resource of the area under consideration.

Corresponding author: Ángel Rafael Valera Valera, eladioariasrod1956@gmail.com

Introduction

Soil fertility is a critical factor in precision agriculture, as it determines the soil's ability to support
crop growth and optimize agricultural productivity. This quality arises from the interaction of
physical, chemical, and biological soil properties, whose spatial variability can signi�cantly in�uence

agronomic management[1]. Traditionally, fertility assessment has been based on laboratory analyses,
which, although valuable, have limitations by not considering soil spatial heterogeneity. This can
lead to generalized fertilization recommendations that do not re�ect the actual needs of speci�c

areas[2]. In turn, knowledge of the spatial variation of soil fertility in agricultural �elds is a
fundamental aspect for the de�nition of the establishment of homogeneous productive plots, for

site-speci�c management purposes (Srinivasan et al.,[1]). 

One source of information related to fertility is the soil analyses carried out by laboratories, which
provide this service in various locations in the country. This source of data constitutes a contribution
of analytical results of soil properties related to reaction (pH), salinity (electrical conductivity),
granulometry (clay, sand, silt), organic matter, macroelements (Phosphorus, Potassium), secondary
elements (Calcium, Magnesium), microelements (Zinc, Copper, Iron, and Manganese), and

exchangeable acidity (Aluminum, Hydrogen)[3][4]. Each soil analysis report for fertility purposes is an
integration of results with the purpose of developing an organic and inorganic fertilization plan and
amendments adjusted to the soil status and crop requirements, complemented with the
management of climatic factors or irrigation and agro-cultural activities. 

In this context, the spatial analysis of soil fertility facilitates decision-making when applying
agronomic practices in productive or experimental areas, allowing the appropriate supply of
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nutrients to the soil and minimizing the impact on the soil resource for the bene�t of biodiversity.
However, the manual representation of soil fertility classes requires the elaboration of individual
maps for each of the variables and the subsequent superimposition of these maps to obtain
homogeneous areas and similar patterns that facilitate management, which implies biases and low

precision in the �nal result[5]. Therefore, the systematic organization of soil data in geographic areas
or land units is an opportunity to evaluate the spatial distribution of topsoil, express the spatial
variation of soil fertility through thematic maps, and give a higher added value to soil analysis for
fertility purposes through digital mapping products of soil properties and classes with a higher

degree of homogeneity[6][7][8][9].

Currently, the use of remote sensing (RS) and geographic information systems (GIS) technologies has
revolutionized the assessment and monitoring of soil fertility, making it possible to obtain detailed

spatial information and facilitating the identi�cation of large-scale trends and patterns[10]. In this
way, digital soil mapping emerges as an essential tool to characterize the spatial variability of
fertility, allowing the delimitation of homogeneous zones from the fertility point of view, and the
subsequent establishment of experimental plots for an appropriate implementation of site-speci�c
management strategies. These tools, combined with geostatistical methods, have proven to be
highly effective in mapping and tracking the variability of nutrients and other edaphic properties,
contributing to a more sustainable and accurate management of soil resources.

Geostatistical methods play an important role in the prediction of soil properties, where the

interpolation method called ordinary kriging stands out[3][4][11]. However, the individual
representation of the variables that de�ne soil fertility does not cover the interest and the need to
visualize the behavior of soil fertility as a whole. Spatial analysis allows us to evaluate the variation of
individual soil properties and the conformation of soil classes, in order to support decision-making
on homogeneous areas as a basis for site-speci�c management and for the promotion of precision
agriculture.

Recent research has also highlighted the importance of considering the spatial interaction of soil
fertility, since factors such as topography and water dynamics can in�uence nutrient distribution

and availability in different areas of the same �eld[12]. Spatial analysis, supported by statistical
models and arti�cial intelligence algorithms, is thus consolidated as an essential tool for delineating
homogeneous zones and optimizing agronomic management strategies. This information serves as
a basis for users to have a complete idea about the soil nutrient status of a sector on a single map, and

also contributes to decision-making regarding the most appropriate soil management[2][13].

For the generation of soil classes, there are spatial analysis techniques based on arti�cial intelligence,

such as fuzzy logic and arti�cial neural networks (ANN)[14]. These techniques are well suited to the
study of soil attributes, which vary gradually over space, where the representation of this gradual
variation can result in obtaining useful information and reducing errors in the de�nition of

appropriate boundaries of soil units[15]. Techniques such as ordinary kriging and arti�cial
intelligence systems, such as fuzzy neural networks, have proven to be effective in modeling soil

properties and classifying soils into homogeneous categories[16][13]. The combination of the potential
of fuzzy sets and ANNs has developed a comprehensive unsupervised classi�cation technique called

the Fuzzy Kohonen Clustering Network (FKCN)[17][18], which combines a self-organizing map (SOM)

algorithm[19] and the Fuzzy C-means (FCM) algorithm[20][21].

There are few research works carried out in the �eld of soil science that take into account the
combination of individual properties to express them as soil fertility categories. In this regard, the
application of fuzzy-neural networks has given a great impulse to digital soil mapping, both in the
prediction of properties and in obtaining soil classes. In Venezuela, fuzzy neural networks have been

applied in the area of landscape classi�cation and soil attribute prediction[22], in geomorphological

digital mapping[23], Valera et al.[24], Viloria et al.[25][26], Valera[27], Sevilla[28]  and Viloria et al[29], in

the prediction of local soil properties and classes[30][31], in the study of soil and banana crop yield

relationships[32] and in the delimitation of fertility classes[33].

This work presents a study of spatial analysis of fertility classes through the prediction of soil
chemical and physical properties obtained in laboratory analysis by means of geostatistical
techniques, and their subsequent grouping by means of a fuzzy arti�cial neural network algorithm.
To evaluate the spatial behavior of soil fertility classes, the "Agronomy" Production Field of the
National University of the Central Plains "Romulo Gallegos", located in The Castrero sector, Saint
John of the Morros parish, John Germain Roscio municipality, Guárico state (Venezuela), was
considered. The main purpose of the research is the spatial prediction of soil fertility classes through
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the integration of arti�cial neural networks and geostatistical techniques, as a basis for the
generation of basic information required for the development of trials and experimental tests, which
allow a spatial vision of the fertility status, and a better interpretation of the results of the different
treatments to be established, agronomic trials, nutrient management, as well as future �eld research
and evaluations for experimental purposes to be developed in the studied sector.

Materials and Methods

Study Area

The study area where the digital soil mapping test was carried out is located in the "Agronomy"
production �eld of the National Experimental University of the Central Plains "Romulo Gallegos",
located in the Castrero sector, Saint John of the Morros parish, John Germain Roscio municipality,
Guárico state (Figure 1). The study unit is framed within a colluvial-alluvial valley, with a slope of 3 to
5%, dominated by hills and mountains. The soils in this area, belonging to the Saint Elizabeth
Formation (from a geological point of view), are of moderate pedogenetic development (Large soil
group Haplustepts), and are of medium fertility. The predominant vegetation corresponds to yaraguá
grass (Hyparrhenia rufa), mastranto (Mentha suaveolens) and, to a lesser extent, some scattered tree
species of chaparro (Curatella americana). The area has been used in the past for sporadic planting of
crops such as corn and beans for commercial purposes; however, it is necessary to use the land for
research purposes for the development of trials and experiments, after determining management
zones for speci�c sites.

Figure 1. Relative location of the production �eld "Agronomy" in the basin of the river The Castrero,

Guarico state, Venezuela.

Soil sampling

For the evaluation of the soils, a systematic sampling was carried out in the super�cial horizon at a
depth of 20 cm, in grids spaced at 30 m, for a total of 70 soil samples in an area of 6.15 ha (Figure 2).
Each sampling point was georeferenced with the support of a global positioning system (GPS). The
surface samples were diagnosed for fertility purposes, using the methodologies of the Soil Analysis
Laboratory of the Soil and Water Research Center of the Romulo Gallegos University (CIESA-UNERG).

Ten soil variables were analyzed: pH in water (1:2.5), electrical conductivity in water 1:5 (EC, dSm-1),

organic matter (OM, %), available phosphorus (P, mgkg-1), available potassium (K, cmol(+)kg-1),

calcium (Ca, cmol(+)kg-1) and available magnesium (Mg, cmol(+)kg-1 ), and the relative amounts of

sand, silt, and clay (%).
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Figure 2. Distribution of soil sampling sites in the production �eld "Agronomy".

Statistical analysis

The data of the edaphic variables were subjected to an exploratory analysis (EDA) with the support of
the statistical package SPSS® (IBM® Statistics, version 20), in order to determine the descriptive
statistics, such as mean, median, variance, coef�cient of variation, maximum and minimum values,

and the asymmetry and kurtosis indices. Tukey's[34]  methodology of external and internal fences
was used in order to detect the presence of outliers. Additionally, the normality test of Kolmogorov-
Smirnov was performed to evaluate the distribution of the data.

Soil Properties Interpolation

For the interpolation of soil properties, the ordinary geostatistical kriging method was used, which
uses a semivariogram model to obtain the weights assigned to each reference point used in the
estimation of the value of the regionalized variables that present spatial dependence. The
semivariogram is de�ned by the semivariance function [γ (h)], which is estimated with the following

expression[35][36]:

where N is the number of pairs of points separated by a given distance h; z(xi ) is the value of the

variable at a location x; z(xi+h ) is the value that the variable takes at another location located at a

distance h from x[37]. The semivariogram contains the information concerning the regionalized
variable, whose parameters are: the nugget variance (C0), the structural variance (C1), the threshold

or plateau (C0 +C1) and the range (A1), which indicates the distance within which there is spatial

dependence[38][39]. For the estimation of the empirical semivariogram of soil properties, the
necessary transformations were performed and possible trends in the data were removed. Then the
adjustment to mathematical models was carried out with the geostatistical analysis extension of the

ArcGIS software® (ArcMap v. 10.8). The �tted parameters were used to obtain optimal estimates of
the soil variables at the unsampled sites, through interpolation using the ordinary kriging

method[11]. 

Models of soil variables were generated from the total data, and the accuracy of the maps was
obtained by cross-validation. Six indices were used in the evaluation: mean error (ME), standardized
mean error (SME), root mean square error (RMSE), standardized root-mean square error (SRMSE),
average standard error (ASE), and con�dence level (%CL). The ME evaluates the systematic error and

γ(h) =
1

2N(h)
∑
N(h)

[z ( ) − z ( )]xi xi+h
2 (1)
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indicates the presence of under- or overestimation of the model, and the SME shows the deviation of
the model obtained. The RMSE assesses the accuracy of the prediction and measures the amount of
error between the measured and inferred data sets, i.e., it compares a predicted value and an
observed or known value; whereas the SRMSE is more accurate the closer it is to the ideal value of
unity (1). The ASE indicates the variability of predictions, whose estimates will be more appropriate if
their values are closer to the RMSE.

Digital soil fertility class model

The neuro-fuzzy FKCN algorithm, implemented in a Java environment (Windows) by Viloria[25][26],
was used to obtain the representative models of the soil fertility classes. The architecture of the
FKCN neural network used in the analysis consists of three layers (Figure 3). The input layer contains
the normalized values of ten (10) soil variables from the prediction models of these attributes. The
distance layer includes the neurons equivalent to the preset number of digital soil classes, and the
third layer computes the membership function of each cell to each of the soil classes, based on the
distances computed in the previous layer and the preset values of the fuzzy coef�cient (φ). In the

distance layer, the separation dij existing between an input pattern Xj and the node weight ωi is

computed, with i = 1, 2,..., c, where c represents the number of classes of the model to be estimated.
Subsequently, the membership layer plots the distances dij into membership values Uij, where Uij

represents the degree of membership of an input pattern Xj to a class c. In the learning process, the

feedback from the membership functions layer to the distance layer occurs in order to adjust the
centers of each class. 

The soil variables were grouped in a data matrix for the application of the FKCN algorithm, which
allowed the evaluation of pixel clustering with different numbers of classes (2 to 8) and different
fuzzy coef�cients (φ= 1.1 to 1.6). The fertility classes were assigned pedological signi�cance through
the interpretation of their spatial distribution, the descriptions of the class centers, and the matrices
of similarity values (degree of belonging to each class) obtained by the FKCN algorithm, together
with the information from the analysis of the soils in the area.

Figure 3. Structure of the fuzzy neural network used in soil class prediction.

Number of soil fertility classes 

An inductive approach was used to obtain the best fuzzy class model, based on the procedure of

Odeh et al.[40], which relates the Fuzziness Performance Index (FPI) to the number of classes. These

parameters are obtained using the Fuzzy Kohonen Clustering Networks (FKCN) algorithm[17]  of the

FKCN program[25][26]. The selection of the optimal number of classes in FKCN was performed by
repeated clustering for a range of numbers of classes. The FPI estimates the degree of fuzziness

generated by each speci�c number of classes[40]. Mathematically, it is de�ned as:
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where c is the number of classes and F is the partition coef�cient calculated as:

F is conceptually comparable to the ratio of the set of within-class variances to the between-class
variance and is close to unity (1) for the most signi�cant clustering. In the present study, the
clustering of soil property maps in raster format was performed by previously setting the following
parameters: a) number of classes (c= 3 to 10), b) fuzzy exponent φ = 1.10 to 1.60 with increments of
0.10; c) a maximum of 300 iterations, and d) stopping criterion (ε= 0.0001). The calculations used the
Mahalanobis metric distance, which takes into account the correlation between some soil variables in
the area evaluated.

Assessment of the predictive ability of soil fertility classes

To assess the predictive capacity of the classes obtained by fuzzy clustering, the �nal model was
validated by means of a cross-validation process, using the discriminant functions of each class as
multivariate statistics derived from the canonical discriminant analysis. In the cross-validation
process, each case is classi�ed using the discriminant functions derived from the rest of the cases. 

Results and Discussion

Statistical analysis

Descriptive statistics indicated that the average values of the soils correspond to clay loam and clayey
textural groups, with slightly to strongly acid reactions, low to medium phosphorus, and moderate to
high potassium contents, high availability of calcium and magnesium, low to medium organic
matter contents, and no salinity problems (Table 1).

Variable1 Min. Max. Ave. Medium Kurtosis Asymmetry SD Var CV (%)

pH (1:2.5)       4.97 6.40 5.70 5.66 -0.23 0.41 0.32 0.103 5.6

EC (dS m-1) 0.010 0.100 0.036 0.026 0.47 1.12 0.02 0.001 63.6

P (mg kg-1) 4.44 44.48 17.1 16.24 -0.20 0.57 9.83 96.55 57.6

K (cmol (+) kg-1)   0.31 1.44 0.71 0.67 0.68 0.91 0.26 0.069 37.3

Ca (cmol (+) kg-1)   0.90 2.40 1.59 1.55 0.63 0.53 0.29 0.082 18.0

Mg (cmol (+) kg-1)   0.17 1.41 0.88 0.90 0.43 -0.15 0.24 0.060 27.7

OM (%)   0.78 4.17 2.67 2.57 0.85 0.06 0.63 0.400 23.6

Clay (%) 14.00 70.00 41.1 40.48 0.14 0.13 11.23 126.0 27.3

Sand (%)   5.10 74.96 31.5 32.98 1.19 0.33 12.66 160.2 40.2

Silt (%)   5.04 52.40 27.3 29.00 -0.74 -0.17 11.45 131.1 41.9

Table 1. Descriptive statistics of the soil fertility variables of the experimental �eld.

1 Number of data: 70, SD: Standard deviation, CV: Coef�cient of variation, EC: Electrical conductivity, P:
Available phosphorus, K: Available potassium, Ca: Available calcium, Mg: Available magnesium, OM:
Organic matter.

Most of the variables show some similarity between the mean and the median, with the exception of
the EC and K variables. At the same time, the greatest dispersion of the data is presented by the same
variables together with the granulometry values, due to the expression of the standard deviation and
variance; however, the coef�cients of variation of the variables as a whole do not present problems in
terms of the existence of extreme values in the data.

FP I = 1 − [(cF − 1)/(c − 1)] (2)

F = (1/n)∑
i=1

n

∑
k=1

c

( )μik
2 (3)
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According to the coef�cient of skewness or asymmetry, the variables pH, %sand, %clay, Ca, Mg, and
%OM comply with the normal probability distribution function, and geostatistical methods can be
applied to the data. However, for P, K, and EC, it was necessary to evaluate the data by
transformations (normalization) for the subsequent application of some geostatistical method to the
data. Regarding kurtosis, only the data for the K variables are concentrated with respect to the mean
(small standard deviation), giving an elongated plot; while the data for pH, %silt, and P are scattered,
presenting �attened or �attened plots.

The application of the test for external and internal fences indicated that the variables considered do
not present outliers. Finally, with regard to the normality test, it was veri�ed that only the variables K
and MO come from normal populations, as the values of the statistical test are highly signi�cant (p>
0.05). For the rest of the data, it was necessary to transform them. 

Soil Properties Interpolation

The estimation of the empirical semivariogram of the soil variables was �tted to Gaussian, spherical,
exponential, stable, and cylindrical mathematical models respectively (Figure 4), considering the
isotropic behavior of the variables. The geostatistical parameters derived from �tting the semi-
variograms to different theoretical models are expressed in Table 2, and the models for each variable
are presented in Figure 5. 

Variables Model C0 C1 A1 C +C01 RN (%)

pH (1:2.5)       Gaussian 0.00 0.11 56 0.11 0.0

EC (dS m-1) Gaussian 0.00 0.00 59 0.00 0.0

P (mg kg-1) Spherical 0.10 82.4 93 82.6 0.1

K (cmol (+) kg-1)   Circular 0.08 0.05 59 0.13 60.4

Ca (cmol (+) kg-1)   J-Bessel 0.01 0.04 59 0.05 30.7

Mg (cmol (+) kg-1)   Stable 0.00 0.06 59 0.06 0.0

OM (%)   Gaussian 0.03 0.41 59 0.40 6.8

Clay (%) Gaussian 0.00 125.6 59 125.6 0.0

Sand (%)   Spherical 78.3 22.1 59 100.3 78.0

Silt (%)   J-Bessel 0.000 137.0 59 137.0 0.0

Table 2. Geostatistical parameters of the composite semivariogram of soil properties.

C0: Nugget variance, C1: Structural variance, C0 + C1:  Threshold, A1: Range, RN: Relative Nugget (C0/C0
+C1)*100), J-Bessel: Cylindrical symmetry function.
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Figure 4. Semivariogram of soil variables in the production �eld "Agronomy".
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Figure 5. Model maps of soil variables in the production �eld "Agronomy".

The structural analysis of the semivariogram models indicated that the models of the variables
mostly show strong spatial dependence (<25% random effect or relative nugget), although the
variables K and Ca show moderate spatial dependence (relative variance between 25 and 75%), and %
sand shows weak spatial dependence, with a relative nugget >75%. In general, all semivariograms
show structure, with an increase in the total variance until reaching a maximum average distance of
59 m. That is, a spatial dependence range of 59 m stands out for all models, with the exception of the
semivariogram of the available P variable, which presents a range 1.5 times the average. 
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The spatial variability observed in the study area, with a dependence range of 59 m, suggests that
agronomic management should be adapted to scales smaller than 1 ha to ensure plot homogeneity.

This is consistent with the recommendations of Srinivasan et al. [1], who emphasize the importance
of considering local variability, which is an aspect of great importance in the establishment of
experimental plots for research purposes and in the management of variable rates as a basis for
precision agriculture.

Reliability Assessment of Prediction Models 

The results of the validations of the soil variables are shown in Table 3, where the low values of the
prediction errors, which are very close to zero for the ME, SME, and ASE indices, can be observed. 

Variable Regression Function 
Índex

ME SME RMSE SRMSE ASE CL (%)

pH (1:2.5) 0.4631 * x + 3.03326 0.00 0.00 0.25 1.08 0.23 99.6

EC (dS m-1) 0.4466 * x + 0.01720 0.00 0.01 0.02 1.30 0.02 100.0

P (mg kg-1) 0.3914 * x + 10.3986 -0.01 0.00 8.63 1.48 5.85 91.4

K+ (cmol kg-1) 0.1555 * x + 0.58614 0.00 -0.01 0.25 0.96 0.26 99.7

Ca+2 (cmol kg-1) 0.4550 * x + 0.84930 0.00 0.00 0.23 0.98 0.23 99.7

Mg+2 (cmol kg-1) 0.2305 * x + 0.67800 0.00 0.01 0.21 0.96 0.22 99.7

OM (%) 0.3167 * x + 1.81928 0.01 0.02 0.55 0.98 0.56 99.2

Clay (%) 0.5668 * x + 18.1189 -0.02 0.00 9.08 1.31 7.19 86.1

Sand (%) 0.3824 * x + 19.4403 -0.41 -0.04 10.4 1.00 10.3 91.4

Silt (%) 0.1880 * x + 21.5820 0.20 0.02 10.8 0.93 11.6 85.1

Table 3. Prediction error of soil variables by cross-validations.

ME: Mean error, SME: standardized mean error, RMSE: root-mean square error, SRMSE: standardized root-
mean square error, ASE: Average standard error, CL: Con�dence level. EC: electrical conductivity, P: available
phosphorus, K: available potassium, Ca: available calcium, Mg: available magnesium, OM: organic matter.

It is observed that the models that best �t the data used meet the requirements of small RMSE, small
ASE close to RMSE, SRMSE close to 1, and a high percentage of reliability. According to the reliability
of the models, most of them present values higher than 90%, except for the variables % Clay and %
Silt, for which it is necessary to improve the density of the measurements. The greatest
underestimation was presented by the physical variables, and the greatest uncertainty is given by
the available phosphorus variable (far from the unit), which presented a greater variance and
somewhat high variation coef�cients. However, the particle size variables show ASE values very
close to RMSE. For all the cases evaluated, the RMSE values are lower than the standard deviation, and

are therefore adequate for the evaluation of the prediction models[41].

Generation of the digital soil fertility class model

Number of soil fertility classes

The representation of the variation of the fuzzy performance index (FPI) as a function of the number
of classes for different coef�cients is shown in Figure 6. The diagram shows that the most suitable
number of soil classes was obtained with 5 classes, combined with aφ of 1.2. The FPI value of 0.36
points to the intersection point at which there is a minimization of the degree of fuzziness, which
determined the optimal number of classes, characterized by being less fuzzy and less internally
disorganized for the set of variables related to soil fertility.
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Figure 6. Variation of the fuzzy performance index (FPI) as a function of the number of soil classes.

The results of the values of the center of each fertility class (centroids) are shown in Table 4. This
allowed the following signi�cant aspects to be extracted: Class 1 includes soils of clayey textural
classes and slightly acidic pH, and the lowest values of available phosphorus. Class 2 includes soils of
clay loam texture, with moderately acid reactions and average values for most of the available
chemical elements that characterize it. Class 3 also includes soils with a clay loam texture and a
moderately acid reaction, but with clay contents close to 40%, and with the highest available calcium
and magnesium contents. Class 4 groups soils with the highest clay contents (>50%), and the highest
levels of available phosphorus, assimilable potassium, and organic matter contents. Class 5 involves

clay loam soils with the lowest levels of assimilable potassium, available magnesium, and organic
matter contents, but with the highest proportions of coarse-grained materials (sand).

Soil Variable
Soil Fertility Classes

1 2 3 4 5

pH water (1:2.5)       5.99 5.52 5.52 5.88 5.70

EC water (dS m-1) 0.02 0.03 0.06 0.03 0.05

P (mg kg-1) 11.0 17.0 18.0 25.0 22.0

K+ (cmol kg-1) 0.59 0.71 0.75 0.93 0.57

Ca+2 (cmol kg-1) 1.35 1.58 1.80 1.54 1.77

Mg+2 (cmol kg-1) 0.73 0.99 1.07 0.90 0.68

OM (%)   2.41 2.87 2.73 3.04 2.09

Clay (%) 46.7 36.4 39.5 52.6 26.6

Sand (%)   26.0 31.3 37.5 24.5 47.3

Silt (%) 26.9 33.8 23.0 22.6 23.8

Table 4. Soil fertility classes center obtained with the FKCN algorithm.

EC: Electrical conductivity, P: Available phosphorus, K: Available potassium, Ca: Available calcium, Mg:
Available magnesium, OM: Organic matter.
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The application of the FKCN algorithm also generated the membership degree values of each cell
(pixel) to each of the soil fertility classes. The classi�cation produced vectors of membership values
for each model cell corresponding to each fertility class. These values were spatially represented,
producing individual maps of class memberships, which re�ect the spatial variation of membership
degrees between 0 (dark colors) and 1 (light colors), through maps in raster format expressed in
Figure 7.

Figure 7. Maps of membership function values for each of the soil fertility classes.

The combination of the spatial distribution models of the membership values produced the
integrated map of �ve soil fertility classes (Figure 8). To produce this map, the FKCN algorithm
converted the neuro-fuzzy classes into discrete units, whereby each model cell was assigned to the
class with the highest membership value. The �nal model corroborated the distribution of soil
fertility classes, where spatial variation patterns allowed discriminating the dominance of textural
classes with variations in soil reaction and availability of primary and secondary elements in the
East-West sectors. 

The �nal model also allowed visualization of the expression of the boundaries de�ned by the
dominant fertility classes in the surface layer of the soils. These boundaries facilitate decision-
making for soil management and for the development of productive plots. With regard to the surface
area of the soil units: class 1 occupies 26.8% of the evaluated sector, class 2 occupies an area of 25.2%,
class 3 represents 23.4% of the studied area, class 4 corresponds to 12.7% of the study area, and class
5 corresponds to 11.9% of the production �eld under consideration.
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Figure 8. Soil fertility class distribution model of the production �eld "Agronomy".

Assessment of the predictive capacity of the digital soil fertility classes model

The results of the assessment of the predictive ability of the soil classes with multivariate statistics
are reported in Table 5. The calculation of the accuracy of the model yielded values equivalent to
86%, with an uncertainty of less than 15%. In other words, the validation process of the soil fertility
class model indicated that 86% of the cases were correctly classi�ed by cross-validation, based on
the ratio of correct reference points (60) to the total number of true points (70).

Class

Predicted membership group a

1 2 3 4 5

 1 100.0 0.0 0.0 0.0 0.0

2 5.6 83.3 11.1 0.0 0.0

3 0.0 6.7 93.3 0.0 0.0

4 12.5 12.5 0.0 75.0 0.0

5 0.0 44.4 0.0 0.0 55.6

Table 5. Classi�cation results (%) based on the sizes of the neuro-fuzzy soil fertility class.

a Correctly classi�ed 85.7% of the grouped cases validated by cross-validation.

The highest degree of uncertainty is given by classes 5 and 2, where some sites in class 5 were
classi�ed as part of class 2, where confusions occur due to neighboring inclusions, as visualized in
the �nal model (Figure 8). The presence of inclusions between classes highlights the need to increase
the sampling density in future studies to reduce uncertainty. Therefore, it is suggested to explore the
impact of future agricultural research on nutrient dynamics and to increase the sampling density to
improve the accuracy of the models, especially for physical properties such as soil texture.

The reliability of the FKCN model is within the range reported in the literature for arti�cial

intelligence techniques applied to soils. Studies such as Zhu et al.[16] and Valera and Orta[33] obtained

accuracies of 76% and 80.1%, respectively, using fuzzy methods, while McKay et al.[42] reached only
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73.7% with traditional ANNs. This suggests that the integration of fuzzy logic and neural networks
(FKCN) improves classi�cation over purely deterministic approaches. On the other hand, supervised

techniques such as Random Forest[2]  and support vector machine (SVM)[1]  have achieved similar
accuracies (83-89%), but require labeled data, which limits their applicability in areas with sparse
prior information. The advantage of FKCN lies in its unsupervised capability and the interpretability
of fuzzy membership maps, key for decision-making in precision agriculture. The results of the
FKCN approach demonstrated that it is an alternative for the generation of soil fertility classes.

Conclusions

The maps of the variables analyzed showed that there are gradual changes in the soil with respect to
all attributes, which showed spatial dependence, which can affect the reliability of evaluations for
research or production purposes.

The evaluated area is not internally homogeneous, possibly due to the in�uence of soil management
and agronomic practices carried out in the area. This variability must be taken into account to avoid
a differential effect on crops.

The establishment of experimental plots should not exceed the range of spatial dependence of
fertility attributes, whose mode is 59 m, to include the variability of the evaluated soils. Therefore,
the surface area for the establishment of plots that guarantee the homogeneity of the internal
structure of the soils should not exceed 1.0 ha in order to allow its representativeness. This study
provides a scienti�c basis for the implementation of site-speci�c management in the study area,
recommending the establishment of research plots no larger than 1 ha to maintain the internal
homogeneity of the soil.

The combination of ordinary kriging and the FKCN algorithm proved to be a robust tool for soil
fertility classi�cation, with a reliability of 86%. This approach overcomes the limitations of
traditional methods by integrating multiple variables into a coherent model.

The information provided by the spatial analysis of individual soil properties and the map of neuro-
fuzzy fertility classes is complementary and can be used as a basis for the establishment of
experimental plots and the speci�c management of nutrients present in the soil resource of the area.

This work contributes to the advancement of digital soil mapping in Venezuela and highlights the
potential of arti�cial intelligence techniques for sustainable soil management. The results can be
extrapolated to areas of interest with similar edaphic conditions, offering a replicable methodological
framework.
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