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ABSTRACT 

 
Information on the spatial variation of soil fertility attributes is an essential input for precision agriculture and 
soil management decision making. In this study, soil fertility assessment was carried out through the spatial 
distribution of thematic maps of individual properties and the subsequent integration into a digital mapping 
model of local fertility classes, as fundamental bases for the implementation of fertilization and amendment 
plans adjusted to soil status and crop requirements. For the evaluation of fertility, a systematic surface 
sampling was carried out in 70 sites in the "Agronomy" production field of the National University of the 
Central Plains "Romulo Gallegos", El Castrero sector, Juan German Roscio municipality, Guárico state, 
Venezuela. Ten soil variables were analyzed: pH (1:2.5), electrical conductivity (1:5), organic matter, 
available phosphorus, assimilable potassium, available calcium and magnesium, and the relative amounts 
of sand, silt and clay. Soil property maps were produced by geostatistical analysis and interpolation by 
ordinary kriging, and artificial intelligence techniques based on an artificial neural network classification 
system were applied to generate soil fertility classes using the Fuzzy Kohonen Clustering Network (FKCN) 
algorithm by interpolating the values of the membership function for each of the classes. The reliability of 
the individual maps of each soil variable was obtained by cross validation with a reliability level higher than 
90%, with the exception of the variables % Clay and % Silt that presented a reliability higher than 85%. The 
integration of the soil attribute maps and the combination of the values of belonging to each class produced 
a map integrated by five soil fertility categories. The final model of digital soil fertility classes presented a 
reliability equivalent to 86%, which indicated a high degree of homogeneity within the soil classes obtained 
for fertility purposes. 
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INTRODUCTION 
 
Soil fertility is an important quality resulting from the interaction between the physical, 
chemical, biological and biochemical characteristics of the soil environment, which 
consists of the capacity to provide all the necessary conditions for plant growth and 
development. In turn, knowledge of the spatial variation of soil fertility in agricultural fields 
is a fundamental aspect for the definition of the establishment of homogeneous productive 
plots for site-specific management purposes (Srinivasan et al., (2022). 
One source of information related to fertility is the soil analyses carried out by laboratories, 
which provide this service in various locations in the country. This source of data 
constitutes a contribution on analytical results of soil properties related to reaction (pH), 
salinity (electrical conductivity), granulometry (clay, sand, silt), organic matter, macro 
elements (phosphorus, potassium), secondary elements (calcium, magnesium), 
microelements (zinc, copper, iron and manganese) and exchangeable acidity (aluminum, 
hydrogen). Each soil analysis report for fertility purposes is an integration of results with 
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the purpose of developing an organic and inorganic fertilization plan and amendments 
adjusted to the soil status and crop requirements, complemented by the management of 
climatic factors or irrigation and agricultural activities.  
The spatial analysis of soil fertility facilitates decision-making when applying agronomic 
practices in productive spaces, allowing the appropriate supply of nutrients to the soil, and 
minimizing the impact on the soil resource for the benefit of biodiversity (Shashikumar et. 
al, 2022). However, the manual representation of soil fertility classes requires the 
elaboration of individual maps for each of the variables, and the subsequent 
superimposition of these maps to obtain homogeneous areas and similar patterns that 
facilitate management, which implies biases and low precision in the final result. 
Therefore, the systematic organization of soil data in geographical areas or land units is 
an opportunity to assess the spatial distribution of topsoil, to express the spatial variation 
of soil fertility through thematic maps and to give a higher added value to soil analysis for 
fertility purposes, through digital mapping products of soil properties and classes with a 
higher degree of homogeneity. 
Within the spatial analysis techniques, geostatistical methods play an important role for 
the prediction of soil properties, where the interpolation method called ordinary kriging 
stands out (Webster y Oliver, 1990). However, the individual representation of the 
variables defining soil fertility does not cover the interest and the need to visualize the joint 
behaviors of soil fertility. Spatial analysis makes it possible to assess the variation of 
individual soil properties and the formation of soil classes, in order to support decision-
making on homogeneous areas as a basis for site-specific management and for the 
promotion of precision agriculture. This information serves as a basis for users to get a 
complete picture of the soil nutrient status of a sector on a single map, and also contributes 
to decision-making on the most appropriate soil management (Padua et al., 2018; 
Shashikumar et al., 2022). 
For the generation of soil classes there are spatial analysis techniques based on artificial 
intelligence, such as fuzzy logic and artificial neural networks (ANN). These techniques 
are well suited to the study of soil attributes, which vary gradually over space, where the 
representation of this gradual variation can result in obtaining useful information and 
reducing errors in the definition of appropriate soil unit boundaries (Burrough et al. 2000). 
The combination of the potential of fuzzy sets and ANNs has developed a comprehensive 
unsupervised classification technique called the Fuzzy Kohonen Clustering Network 
(FKCN) (Lin and Lee, 1996; Bezdeck et al., 1992), which combines a self-organizing map 
(SOM) algorithm (Kohonen, 1982) and the Fuzzy C-means (FCM algorithm) (Bezdeck, 
1981).  
There are few research works in the field of soil science that take into account the 
combination of individual properties to express them as soil fertility categories. In this 
respect, the application of fuzzy-neural networks has given a great impulse to digital soil 
mapping both in the prediction of properties and in obtaining soil classes. In Venezuela, 
fuzzy neural networks have been applied in the area of landscape classification and soil 
attribute prediction (Viloria, 2007), in geomorphological digital mapping (Valera and 
Viloria, 2009), Valera et al. (2010), Viloria et al (2012), Valera (2012), Sevilla (2014) and 
Viloria et al (2016), in the prediction of local soil properties and classes (Valera, 2015; 
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Valera, 2018), in the study of soil and banana crop yield relationships (Rey et al., 2015) 
and in the delimitation of fertility classes (Valera and Orta, 2018). 
This paper presents a study of spatial analysis of fertility classes through the prediction of 
chemical and physical properties of the soil obtained in laboratory analyses by means of 
geostatistical techniques, and their subsequent grouping by means of a fuzzy artificial 
neural network algorithm. To evaluate the spatial behaviors of soil fertility classes, the 
"Agronomy" production field of the National University of the Central Plains "Romulo 
Gallegos", located in the El Castrero sector, San Juan de los Morros parish, Juan German 
Roscio municipality, Guárico state (Venezuela), was considered. 
 
MATERIALS AND METHODS 
 
Study Area 
The study area where the digital soil mapping test was carried out is located in the 
"Agronomy" production field of the National University of the Central Plains "Romulo 
Gallegos", located in the El Castrero sector, San Juan de los Morros parish, Juan German 
Roscio municipality, Guarico state (Figure 1). The study unit is framed in an alluvial zone, 
with a slope of 3 to 5%. The soils in this area were formed from Quaternary geological 
materials, with a moderate pedogenetic development, and are of moderate fertility. 
 

 
Figure 1. Relative location of the production field "Agronomy" in the basin of the river El Castrero, Guarico 

state, Venezuela. 
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Soil sampling 
For the evaluation of the soils, a systematic sampling was carried out in the superficial 
horizon at a depth of 20 cm, in grids spaced at 30 m, for a total of 70 soil samples in an 
area of 6.15 ha (Figure 2). Each sampling point was georeferenced with the support of a 
global positioning system (GPS). The surface samples were diagnosed for fertility 
purposes, using the methodologies of the Soil Analysis Laboratory of the Soil and Water 
Research Centre of the Romulo Gallegos University (CIESA-UNERG). Ten soil variables 
were analyzed: pH in water (1:2.5), electrical conductivity in water 1:5 (EC, dSm-1), organic 
matter (OM, %), available phosphorus (P, mgkg-1), assimilable potassium (K, cmol(+)kg-

1), calcium (Ca, cmol(+)kg-1) and available magnesium (Mg, cmol(+)kg-1 ), and the relative 
amounts of sand, silt and clay (%).  
Statistical analysis 

The data of the edaphic variables were subjected to an exploratory analysis (EDA) with 
the support of the statistical package SPSS® (IBM® Statistics, version 20), in order to 
determine the descriptive statistics, such as: mean, median, variance, coefficient of 
variation, maximum and minimum values, and the asymmetry and kurtosis indices. 
Tukey's (1977) methodology of external and internal fences was used in order to detect 
the presence of outliers. Additionally, the normality test of Kolmogorov-Smirnov was 
performed to evaluate the distribution of the data. 

 
Figure 2. Distribution of soil sampling sites in the production field "Agronomy". 
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Interpolation of soil properties 
For the interpolation of soil properties, the ordinary geostatistical kriging method was used, 
which uses a semivariogram model to obtain the weights assigned to each reference point 
used in the estimation of the value of the regionalized variables that present spatial 
dependence. The semivariogram is defined by the semivariance function [g (h)], which is 
estimated with the following expression (Upchurch and Edmonds, 1991; Ovalles, 1992): 
 

                                          (1) 
where N is the number of pairs of points separated by a given distance h; z(xi ) is the 
value of the variable in a location x; z(xi+h ) is the value that the variable takes in another 
location located at a distance h from x (Ovalles and Rey, 1994). The semivariogram 
contains the information concerning the regionalized variable, whose parameters are: the 
nugget variance (C0 ), the structural variance (C1 ), the threshold or plateau (C0 +C1 ) and 
the range (A1 ), which indicates the distance within which there is spatial dependence 
(Burrough, 1986; Grunwald et al., 2007). For the estimation of the empirical 
semivariogram of soil properties, the necessary transformations were performed and 
possible trends in the data were removed. Then the adjustment to mathematical models 
was carried out with the geostatistical analysis extension of the ArcGIS software® (ArcMap 
v. 10.8). The fitted parameters were used to obtain optimal estimates of the soil variables 
at the unsampled sites, through interpolation using the ordinary kriging method (Webster 
and Oliver, 1990). Models of soil variables were generated from the total data and the 
accuracy of the maps was obtained by cross-validations. Six indices were used in the 
evaluation: mean error (ME), mean error standardized (MES), root-mean square (RMS), 
root-mean square standardized (RMSS), average standard error (ASE) and confidence 
level (%CL). The MS evaluates the systematic error and indicates the presence of under- 
or overestimation of the model and the SSE shows the deviation of the model obtained. 
The RMS assesses the accuracy of the prediction and measures the amount of error 
between the measured and inferred data sets, i.e., it compares a predicted value and an 
observed or known value; whereas the RMSS is more accurate the closer it is to the ideal 
value of unity (1). The ASE indicates the variability of predictions, whose estimates will be 
more appropriate if their values are closer to the RMS. 
Digital soil fertility class model 
The neuro-fuzzy FKCN algorithm implemented in Java environment (Windows) by Viloria 
(2012) was used to obtain the representative models of the soil fertility classes. The 
architecture of the FKCN neural network used in the analysis consists of three layers 
(Figure 3). The input layer contains the normalized values of ten (10) soil variables from 
the prediction models of these attributes. The distance layer includes the neurons 
equivalent to the preset number of digital soil classes, and the third layer computes the 
membership function of each cell to each of the soil classes, based on the distances 
computed in the previous layer and the preset values of the fuzzy coefficient (f). In the 
distance layer, the separation dij existing between an input pattern Xj  and the node weight 
ωi is computed, with i = 1, 2,..., c, where c represents the number of classes of the model 
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to be estimated. Subsequently, the membership layer plots the distances dij into 
membership values Uij, where Uij represents the degree of membership of an input pattern 
Xj  to a class c. In the learning process, the feedback from the membership functions layer 
to the distance layer occurs in order to adjust the centers of each class.  
The soil variables were grouped in a data matrix for the application of the FKCN algorithm, 
which allowed the evaluation of pixel clustering with different numbers of classes (2 to 8) 
and different fuzzy coefficients (f= 1.1 to 1.6). The fertility classes were assigned 
pedological significance through the interpretation of their spatial distribution, the 
descriptions of the class centers and the matrices of similarity values (degree of belonging 
to each class) obtained by the FKCN algorithm, together with the information from the 
analysis of the soils in the area. 

 
Figure 3. Structure of the fuzzy neural network used in soil class prediction. 

Number of soil fertility classes  
An inductive approach was used to obtain the best fuzzy class model, based on the 
procedure of Odeh et al. (1992), which relates the Fuzziness Performance Index (FPI) to 
the number of classes. These parameters are obtained using the Fuzzy Kohonen 
Clustering Networks (FKCN) algorithm (Lin and Lee, 1996) of the FKCN program (Viloria 
et al., 2012). The selection of the optimal number of classes in FKCN was performed by 
repeated clustering for a range of number of classes. The FPI estimates the degree of 
fuzziness generated by each specific number of classes (Odeh et al., 1992). 
Mathematically, it is defined as: 

                                      (2) 
where c is the number of classes and F is the partition coefficient calculated as: 
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                                                (3) 
F is conceptually comparable to the ratio of the set of within-class variances to the 
between-class variance and is close to unity (1) for the most significant clustering. In the 
present study, the clustering of soil property maps in raster format was performed by 
previously setting the following parameters: a) number of classes (c= 3 to 10), b) fuzzy 
exponentf = 1.10 to 1.60 with increments of 0.10; c) a maximum of 300 iterations, and d) 
stopping criterion (ε= 0.0001). The calculations used the Mahalanobis metric distance, 
which takes into account the correlation between some soil variables in the area 
evaluated. 
Assessment of the predictive ability of soil fertility classes 
To assess the predictive capacity of the classes obtained by fuzzy clustering, the final 
model was validated by means of a cross-validation process, using the discriminant 
functions of each class as multivariate statistics derived from the canonical discriminant 
analysis. In the cross-validation process, each case is classified using the discriminant 
functions derived from the rest of the cases.       
   

RESULTS AND DISCUSSION 
Statistical analysis 
Descriptive statistics indicated that the average values of the soils correspond to clay loam 
and clayey textural groups, with slightly to strongly acid reactions, low to medium 
phosphorus and moderate to high potassium contents, high availability of calcium and 
magnesium, low to medium organic matter contents, and no salinity problems (Table 1). 
 
Table 1. Descriptive statistics of the soil fertility variables of the experimental field. 

 
Variable1 Min. Max. Ave. Medium Kurtosis Asymmetry SD Var CV (%) 

pH (1:2.5)       4,97 6,40 5,70 5,66 -0,23 0,41 0,32 0,103 5,6 
EC (dS m-1) 0,010 0,100 0,036 0,026 0,47 1,12 0,02 0,001 63,6 
P (mg kg-1) 4,44 44,48 17,1 16,24 -0,20 0,57 9,83 96,55 57,6 
K (cmol (+) kg- 1)   0,31 1,44 0,71 0,67 0,68 0,91 0,26 0,069 37,3 
Ca (cmol (+) kg- 1)   0,90 2,40 1,59 1,55 0,63 0,53 0,29 0,082 18,0 
Mg (cmol (+) kg- 
1)   0,17 1,41 0,88 0,90 0,43 -0,15 0,24 0,060 27,7 

MO (%)   0,78 4,17 2,67 2,57 0,85 0,06 0,63 0,400 23,6 
Clay (%) 14,00 70,00 41,1 40,48 0,14 0,13 11,23 126,0 27,3 
Sand (%)   5,10 74,96 31,5 32,98 1,19 0,33 12,66 160,2 40,2 
Silt (%)   5,04 52,40 27,3 29,00 -0,74 -0,17 11,45 131,1 41,9 

1Number of data: 70, SD: Standard deviation, CV: Coefficient of variation, EC: Electrical conductivity, P: 
Available phosphorus, K: Assimilable potassium, Ca: Available calcium, Mg: Available magnesium, OM: 
Organic matter.  
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Most of the variables show some similarity between the mean and the median, with the 
exception of the EC and K variables. At the same time, the greatest dispersion of the data 
is presented by the same variables together with the granulometry values, due to the 
expression of the standard deviation and variance; however, the coefficients of variation 
of the variables as a whole do not present problems in terms of the existence of extreme 
values of the data. 
According to the coefficient of skewness or asymmetry the variables pH, %sand, %clay, 
Ca, Mg and %OM comply with the normal probability distribution function, and 
geostatistical methods can be applied to the data. However, for P, K and EC it was 
necessary to evaluate the data by transformations (normalization) for the subsequent 
application of some geostatistical method to the data. Regarding kurtosis, only the data 
for the K variables are concentrated with respect to the mean (small standard deviation) 
giving an elongated plot; while the data for pH, %silt and P are scattered, presenting 
flattened or flattened plots. 
The application of the test for external and internal fences indicated that the variables 
considered do not present outliers. Finally, with regard to the normality test, it was verified 
that only the variables K and MO come from normal populations, as the values of the 
statistical test are highly significant (p> 0.05). For the rest of the data, it was necessary to 
transform them.  
 
Interpolation of soil properties 
The estimation of the empirical semivariogram of the soil variables were fitted to Gaussian, 
spherical, exponential, stable and cylindrical mathematical models respectively (Figure 4), 
considering the isotropic behavior of the variables. The geostatistical parameters derived 
from fitting the semi-variograms to different theoretical models are expressed in Table 2, 
and the models for each variable are presented in Figure 5.  
Table 2. Geostatistical parameters of the composite semivariogram of soil properties. 

Variables Model C0 C1 A1 C +C01 RN (%) 
pH (1:2.5)       Gaussian 0,000 0,110 56 0,11 0,0 
EC (dS m-1) Gaussian 0,000 0,000 59 0,00 0,0 

P (mg kg-1) Spherical 0,100 82,49 93 82,6 0,1 
K (cmol (+) kg-1)   Circular 0,080 0,05 59 0,13 60,4 

Ca (cmol (+) kg-1)   J-Bessel 0,016 0,036 59 0,05 30,7 

Mg (cmol (+) kg-1)   Stable 0,000 0,058 59 0,06 0,0 

OM (%)   Gaussian 0,030 0,410 59 0,40 6,8 
Clay (%) Gaussian 0,000 125,64 59 125,6 0,0 
Sand (%)   Spherical 78,28 22,06 59 100,3 78,0 
Silt (%)   J-Bessel 0,000 137,02 59 137,0 0,0 

C0: Nugget variance, C1: Structural variance, C0 + C1:  Threshold, A1: Range, RN: Relative Nugget (C0 /C0 
+C1)*100), J-Bessel: Cylindrical symmetry function. 
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Figure 4. Semivariogram of soil variables in the production field "Agronomy". 
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Figure 5. Model maps of soil variables in the production field "Agronomy". 
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Structural analysis of the semivariogram models indicated that the models of the variables 
mostly show strong spatial dependence (<25% random effect or relative nugget), although 
the variables K and Ca show moderate spatial dependence (relative variance between 25 
and 75%), and % sand shows weak spatial dependence, with a relative nugget >75%. In 
general, all semivariogram show structure, with an increase of the total variance until 
reaching a maximum average distance of 59 m. In other words, a spatial dependence 
range of 59 m stands out for all models, with the exception of the semivariogram of the 
available P variable, which has a range 1.5 times the average.  

 

Assessing the reliability of prediction models 

The results of the validations of the soil variables are shown in Table 3, where the low 
values of the prediction errors, which are very close to zero for the ME, MES and ASE 
indices, can be observed.  
Table 3. Prediction error of soil variables by cross-validations. 

Variable Regression Function  
Index  

ME MES RMS RMSE ASE CL (%) 
pH (1:2.5) 0,4631 * x + 3,03326 0,00 0,00 0,25 1,08 0,23 99,6 
EC (dS m-1) 0,4466 * x + 0,01720 0,00 0,01 0,02 1,30 0,02 100,0 
P (mg kg-1) 0,3914 * x + 10,3986 -0,01 0,00 8,63 1,48 5,85 91,4 
K+ (cmol kg-1) 0,1555 * x + 0,58614 0,00 -0,01 0,25 0,96 0,26 99,7 
Ca+2 (cmol kg-1) 0,4550 * x + 0,84930 0,00 0,00 0,23 0,98 0,23 99,7 
Mg+2 (cmol kg-1) 0,2305 * x + 0,67800 0,00 0,01 0,21 0,96 0,22 99,7 
OM (%) 0,3167 * x + 1,81928 0,01 0,02 0,55 0,98 0,56 99,2 
Clay (%) 0,5668 * x + 18,1189 -0,02 0,00 9,08 1,31 7,19 86,1 
Sand (%) 0,3824 * x + 19,4403 -0,41 -0,04 10,4 1,00 10,3 91,4 
Silt (%) 0,1880 * x + 21,5820 0,20 0,02 10,8 0,93 11,6 85,1 

ME: Mean error, MES: mean error standardized, RMS: root-mean square, RMSS: root-mean square 
standardized, ASE: Average standard error, CL: Confidence level. EC: electrical conductivity, P: available 
phosphorus, K: assimilable potassium, Ca: available calcium, Mg: available magnesium, OM: organic 
matter. 

It is observed that the models that best fit the data used meet the requirements of small 
RMS, small ASE close to RMS, RMSE close to 1 and a high percentage of reliability. 
According to the reliability of the models, most of them present values higher than 90%, 
except for the variables % Clay and % Silt for which it is necessary to improve the density 
of the measurements. The greatest underestimation was presented by the physical 
variables and the greatest uncertainty is given by the available phosphorus variable (far 
from the unit), which presented a greater variance and somewhat high variation 
coefficients. However, the particle size variables show ASE values very close to RMS. For 
all the cases evaluated, the RMS values are lower than the standard deviation, and are 
therefore adequate for the evaluation of the prediction models (Marcheti et al., 2010). 
Generation of the digital soil fertility class model 
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Number of soil fertility classes 

The representation of the variation of the fuzzy performance index (FPI) as a function of 
the number of classes for different coefficients is shown in Figure 6. The diagram shows 
that the most suitable number of soil classes was obtained with 5 classes, combined with 
af of 1.2. The FPI value of 0.36 points to the intersection point at which there is a 
minimization of the degree of fuzziness, which determined the optimal number of classes, 
characterized by being less fuzzy and less internally disorganized for the set of variables 
related to soil fertility. 
 

 

 

 

 

 

 

 

 

 

Figure 6. Variation of the fuzzy performance index (FPI) as a function of the number of soil classes. 

The results of the values of the center of each fertility class (centroids) are shown in Table 
4. This allowed the following significant aspects to be extracted: Class 1 includes soils of 
clayey textural classes and slightly acidic pH and the lowest values of available 
phosphorus. Class 2 includes soils of clay loam texture, with moderately acid reactions 
and average values for most of the available chemical elements that characterize it. Class 
3 also includes soils with a clay loam texture and a moderately acid reaction, but with clay 
contents close to 40%, and with the highest available calcium and magnesium contents. 
Class 4 groups soils with the highest clay contents (>50%), and the highest levels of 
available phosphorus, assimilable potassium, and organic matter contents. Class 5 
involves clay loam soils with the lowest levels of assimilable potassium, available 
magnesium and organic matter contents, but with the highest proportions of coarse-
grained materials (sand). 
The application of the FKCN algorithm also generated the membership degree values of 
each cell (pixel) to each of the soil fertility classes. The classification produced vectors of 
membership values for each model cell corresponding to each fertility class. These values 
were spatially represented producing individual maps of class memberships, which reflect 
the spatial variation of membership degrees between 0 (dark colors) and 1 (light colors), 
through maps in raster format expressed in Figure 7.  
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Table 4. Soil fertility classes center obtained with the FKCN algorithm. 

Soil Variable Soil Fertility Classes  
1 2 3 4 5  

pH water (1:2.5)       5,99 5,52 5,52 5,88 5,70  
EC water (dS m-1) 0,02 0,03 0,06 0,03 0,05  
P (mg kg-1) 11 17 18 25 22  
K+ (cmol kg-1) 0,59 0,71 0,75 0,93 0,57  
Ca+2 (cmol kg-1) 1,35 1,58 1,80 1,54 1,77  
Mg+2 (cmol kg-1) 0,73 0,99 1,07 0,90 0,68  
MO (%)   2,41 2,87 2,73 3,04 2,09  
Clay (%) 46,7 36,4 39,5 52,6 26,6  
Sand (%)   26,0 31,3 37,5 24,5 47,3  
Silt (%) 26,9 33,8 23,0 22,6 23,8  
EC: Electrical conductivity, P: Available phosphorus, K: Assimilable potassium, Ca: Available calcium, Mg: Available 
magnesium, OM: Organic matter. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Maps of membership function values for each of the soil fertility classes. 

The combination of the spatial distribution models of the membership values produced 
the integrated map of five soil fertility classes (Figure 8). To produce this map the FKCN 
algorithm converted the neuro-fuzzy classes into discrete units, whereby each model cell 
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was assigned to the class with the highest membership value. The final model 
corroborated the distribution of soil fertility classes, where spatial variation patterns 
allowed discriminating the dominance of textural classes with variations in soil reaction 
and availability of primary and secondary elements in the East-West sectors. The final 
model also allowed to visualize the expression of the boundaries defined by the dominant 
fertility classes in the surface layer of the soils. These boundaries facilitate decision 
making for soil management and for the development of productive plots. 

 
Figure 8. Soil fertility class distribution model of the production field "Agronomy". 

 
With regard to the surface area of the soil units: class 1 occupies 26.8% of the evaluated 
sector, class 2 occupies an area of 25.2%, class 3 represents 23.4% of the studied area, 
class 4 corresponds to 12.7% of the study area, and class 5 corresponds to 11.9% of the 
production field under consideration. 
 
Assessment of the predictive capacity of the digital soil fertility classes model 
 
The results on the assessment of the predictive ability of the soil classes with multivariate 
statistics are reported in Table 5. The calculation of the accuracy of the model yielded 
values equivalent to 86%, with an uncertainty of less than 15%. In other words, the 
validation process of the soil fertility class model indicated that 86% of the cases were 
correctly classified by cross-validation, based on the ratio of correct reference points (60) 
to the total number of true points (70). 

 

Soil Class 
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Table 5. Classification results (%) based on the sizes of the neuro-fuzzy soil fertility class. 

  
Class 

Predicted membership group a 
1 2 3 4 5 

 1 100,0 0,0 0,0 0,0 0,0 

2 5,6 83,3 11,1 0,0 0,0 

3 0,0 6,7 93,3 0,0 0,0 

4 12,5 12,5 0,0 75,0 0,0 

5 0,0 44,4 0,0 0,0 55,6 
                a Correctly classified 85.7% of the grouped cases validated by cross-validation. 

 
The highest degree of uncertainty is given by classes 5 and 2, where some sites in class 
5 were classified as part of class 2, where confusions occur due to neighboring inclusions, 
as visualized in the final model (Figure 8). The results of the validation of the FKCN 
approach demonstrated that it is an alternative for the generation of soil fertility classes. 
These results are slightly higher than those obtained by various researchers, Zhu et al. 
(2008), McKay et al. (2010) and, Valera and Orta (2018), whose research expressed a 
reliability of 76, 73.7 and 80.1% respectively for the soil maps obtained. 
 
CONCLUSIONS 
 
The maps of the variables analyzed showed that there are gradual soil changes with 
respect to all attributes, which showed spatial dependence, which may affect the reliability 
of assessments for research or production purposes. 
The assessed area is not internally homogeneous, possibly due to the influence of soil 
management and agronomic practices in the area. This variability has to be taken into 
account to avoid a differential effect on the crops. 
The establishment of productive plots should not exceed the range of spatial dependence 
of the fertility attributes, whose mode is 59 m, in order to include the variability of the 
assessed soils. Therefore, the area for the establishment of productive plots that 
guarantee the homogeneity of the internal structure of the soils should not be larger than 
1.0 ha in order to allow the representativeness of the soil. 
The evaluation of the digital neuro-fuzzy model indicated that the spatial prediction of soil 
fertility classes corresponds to what is expected in the studied sector, as the reliability was 
equivalent to 86%. 
The information provided by the spatial analysis of individual soil properties and the map 
of nuro-fuzzy fertility classes is complementary, and can be used as a basis for soil 
resource management in the area. 
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