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This study presents an integrated deep learning model for automatic detection and classi�cation of

Gastrointestinal bleeding in the frames extracted from Wireless Capsule Endoscopy (WCE) videos.

The dataset has been released as part of Auto-WCBleedGen Challenge Version V2 hosted by the

MISAHUB team. Our model attained the highest performance among 75 teams that took part in this

competition. It aims to e�ciently utilizes CNN based model i.e. DenseNet and UNet to detect and

segment bleeding and non-bleeding areas in the real-world complex dataset. The model achieves an

impressive overall accuracy of 80% which would surely help a skilled doctor to carry out further

diagnostics.

Corresponding author: Nidhi Kushwaha, nidhi@iiitranchi.ac.in

I. Introduction

Gastrointestinal (GI) bleeding is a pathological condition characterized by hemorrhaging within the

digestive tract. The in�ux of blood into the GI tract poses a spectrum of complications, ranging from

acute risks to chronic rami�cations[1][2]. According to estimates by the World Health Organization

(WHO), GI bleeding contributes to approximately 300,000 deaths globally each year. Over the past

decade, advancements in diagnostic technologies, such as Wireless Capsule Endoscopy (WCE)[3][4]

[5] have signi�cantly enhanced our understanding of GI bleeding within the gastrointestinal (GI) tract.

WCE involves the recording of a video depicting the trajectory of the GI tract using a wearable device

over a duration of 8–12 hours, generating between 57,000–100,000 frames of footage. Presently, the

process of reviewing a single patient’s recorded WCE video via frame-by-frame analysis requires

approximately two to three hours of meticulous examination by a skilled gastroenterologist. However,
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this method is labor-intensive and susceptible to human error. Given the global shortage of

gastroenterologists, there is a pressing need for research aimed at developing state-of-the-art

Arti�cial Intelligence (AI) models that are reliable, interpretable, and widely applicable[6][7].

II. Dataset Description

The MISAHUB team provided both training and testing datasets for the version 2 challenge[8]  in

February 2024. The training dataset comprises 2,618 WCE frames, encompassing instances of bleeding

and non - bleeding, sourced from various internet repositories. The test set provided later on was

divided into two groups: Test set 1 had 49 images with very subtle and in certain cases almost

imperceptible instances of bleeding. Test set 2 had 515 images with varying sizes of bleeding segments.

III. Preprocessing of Dataset

In medical image analysis, achieving deformation and rotation invariance is critical for reliable

outputs. To enhance our model’s robustness, we used data augmentation techniques on the train

dataset from MISAHUB, splitting it 80:20 for training and validation. Leveraging the U-Net

architecture’s adaptability, we employed horizontal and vertical �ips, rotations, and resizing.

Bounding boxes were included for the Detection path. Horizontal and vertical �ips were applied with a

0.5 probability to maintain rotation neutrality. A few other techniques including CLAHE, Erosion, and

Dilation were also used, but only contributed to worsened trained results and were dropped.

IV. Proposed Model

The ColonNet model (as depicted in Fig. 1) consists of two branches: ColonSeg and UNetModel, which

are detailed as follows.

Figure 1. Architecture of Proposed model
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A. ColonSeg

The architecture of ColonSeg has been shown in Fig. 2. It is responsible for the classi�cation and

detection of the bleeding in the GI tract. An input image of size 224x224x3 is passed through a

DenseNet121 block[9], which gives an output of size 7x7x1024. This output is then further passed

through two di�erent branches, responsible for classi�cation and detection each. In the classi�cation

branch the DenseNet output is passed through multiple Dense layers with RELU activation, and a �nal

sigmoid activated layer for output. The Detection block passes the same DenseNet output through

multiple fully connected layers with RELU and ELU activations, and a �nal sigmoid layer for output.
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Figure 2. Architecture of ColonSeg
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B. UNetModel

The Segmentation branch is implemented completely based on the U-Net architecture[10]  with two

di�erent paths, one for downsampling and another for upsampling. The input image is downsampled

while increasing the no. of feature channels; this downsampled image is then upsampled along with

concatenation with its corresponding downsampled output. The �nal segmentation mask is received

through a sigmoid activated layer.The Detection branch was trained �rst using the Mean Squared Error

loss using only bleeding images. Classi�cation branch was trained on all the images, and the trainable

parameters of the DenseNet121 and the Detection branch were frozen. Binary Cross Entropy function

was used as the loss function for training.The U-Net branch was trained separately on all the images,

and the Focal Teversky loss function[11] was used for it.

V. Experimental Settings

Training and testing occurred on a Kaggle platform using a GPU P100. UNet trained for 40 epochs,

detection for 10 epochs, and classi�cation for 20 epochs, consuming 15, 9, and 2 minutes, respectively,

per epoch. Prediction and segmentation on the test dataset took roughly 28 seconds.

Metric   Test Dataset 1 Test Dataset 2

Classi�cation

Accuracy 0.4898 0.8175

Recall 0.4898 0.7448

F1-score 0.8056 0.8213

Detection
Avg. Precision 0.5000 0.8250

IoU Score 0.1254 0.6315

Segmentation
Dice-Coe�cient 0.1767 0.6833

IoU Score 0.2029 0.6128

Table I. Performance Statistics
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VI. Discussion

The �nal results are summarized in Table I. Test dataset 1 mainly contained images with small bleeding

patches, yielding a classi�cation accuracy of around 50%. Fig. 3 illustrates one exemplary prediction

from the test dataset.

Figure 3. Result on test dataset 1

Figure 4. Result on test dataset 2

In contrast, test data set 2 showed a higher variance in image content, including more easily

perceptible bleeding instances, resulting in a markedly improved accuracy of 80%. Moreover, the

segmentation’s Dice coe�cient and Intersection over Union (IoU) score were notably superior in test

dataset 2 compared to test dataset 1. Fig. 4 shows one of the best results obtained from test dataset 2.
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We tried to handle the presence of bubbles and convoluted surfaces withing the GI tract using Erosion,

Dilation, CLAHE, and other techniques, but this resulted in loss of vital information where subtle

bleeding patches were present, resulting in misclassi�cation.

We trained the model with 3 separate backbones: VGG19, ResNet, and DenseNet. Although the VGG19

and ResNet models were marginally better at classi�cation task compared to DenseNet, the latter

outperformed them in the detection task, with very little deprecation in the other task. This led us to

the conclusion that the large feature extraction of the DenseNet model helped in detection task, much

better compared to the other two models.

VII. Conclusion and Future Scope

The model exhibited commendable performance, achieving classi�cation accuracy 80% without any

pre-processing speci�c to the data set. Challenges arose from image with noise and bubbles,

aggravated by pre-processing. The absence of contextual cues led to misinterpretations, di�culty in

detecting smaller bleeding patches, and overlooking multiple bleeding sites, often results in the

bounding box of the largest area.
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