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Abstract 

This is Part 2 of the brief tutorial “Hamiltonian Chaos and the Fractal Topology of 

Spacetime” posted at https://www.qeios.com/read/7ZYVDB 

4. Hamiltonian Chaos in classical gravity 

Given their utility in computational analysis, Poincaré maps are frequently 

used in the study of nonintegrable gravitational systems. A textbook example 

is the Hénon-Heiles model, which describes the motion of stars in the 

galactic disk. The Hamiltonian of the model is given by [11, 18]:  

 2 2 2 2 2 31 1
( )

2 3x yH p p x y x y y= + + + + −  (13) 

https://doi.org/10.32388/0KXQIL

mailto:ervin.goldfain@ronininstitute.org
https://www.qeios.com/read/7ZYVDB


2 | P a g e  

 

Because (13) is conservative, its orbits are confined to a constant energy 

hypersurface ( H E= ). Fig. 5 illustrates the sequence of maps in the ( ,y y ) 

plane as E  (in dimensionless units) is progressively increased. At low 

energies, the orbits lie close to those computed from perturbation theory [18] 

    

 

Fig. 5: Poincaré Maps of the Hénon-Heiles model [ref. 9] 
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The system appears to maintain integrability up to 0.125E= , at which point 

chaotic regions begin to develop along with sparse islands of integrability. 

At 0.166..E= , the chaotic regions are widespread and integrability is almost 

entirely lost. For better visualization of the transition to chaos, Fig. 6 shows 

a color-coded representation of the map at 0.128E= .  

 

Fig. 6: Color coded view of the Poincaré Map at 0.128E=  [ref. 10] 
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In line with assumption A2), similar phase-space behavior occurs in many 

classical field systems displaying transition to chaos under continuous 

tuning of driving parameter(s), see e.g. [19]. 

5. Hamiltonian Chaos and fractal spacetime 

It follows from these examples that a certain generality of Hamiltonian 

dynamics exists, based on the universal nesting of invariant tori and chaotic 

orbits. The distribution of regions containing invariant tori and chaotic orbits 

repeats itself on all scales and depends on the magnitude of the driving 

parameter(s) (K in the Standard Map or conserved energy E  in the Hénon-

Heiles model). 

As chaos sets in above a critical value of the driving parameter(s), analysis 

shows that chaotic orbits repeatedly “stick” to the border of critical tori with 

a power-like distribution of sticking times [12-15]. This effect generates a 

long-time correlation of chaotic orbits and an anomalous diffusion of 

momentum in phase-space. If the driving parameter exceeds a critical value, 
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the diffusion of the mean squared momentum no longer follows (12), but a 

power law relationship of the form [14] 

 2( )p t D t  (14) 

Here, the exponent 1   measures the departure from standard diffusion 

and can be interpreted as continuous dimension associated with the fractal 

topology of phase-space.  

6. Concluding remarks 

Theory and experiment alike indicate that anomalous transport/diffusion is 

a defining feature of many complex systems, as it links to phenomena such 

as fractional dynamics, Levy flights, continuous time random walks and 

fractional Brownian motion, to name a few. As last two decades have shown, 

adequate description of these phenomena requires a radically different 

framework in which [see e.g. 16-17, 20] 
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1) Fractional differential and integral operators replace ordinary calculus on 

smooth manifolds, 

2) Spacetime fractalization makes the transition from discrete to continuous 

spacetime dimensions. 

Given assumptions A1) and A2) and that (nearly) all classical field theories 

amount to Hamiltonian dynamical systems, a couple of natural questions 

arises, namely:  

a) What is the most sensible path that connects low-energy field theory 

and Hamiltonian chaos? 

b) Can the fractal/multifractal topology of spacetime explain some of the 

open issues challenging the Standard Model (SM) and strong 

gravitational physics?    

One recalls that Quantum Field Theory (QFT) lies at the foundation of the 

SM, which is built in compliance with several postulates called consistency 

conditions. It can be said, in fact, that the remarkable success of SM stems 
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from a unitary, local, renormalizable, gauge invariant and anomaly-free 

formulation of QFT. Thus, a reasonable transition from Hamiltonian chaos 

to QFT can only be made via a spacetime having arbitrarily small and 

continuous deviations from four space dimensions, as in   

 
2

2 ]
( )( ) 4 ( ) [ 1

UV

mD O   = − = 


 (15) 

where  is the Renormalization flow scale, ( )m   is a mass parameter and 

UV  the large ultraviolet cutoff of the theory. The expectation is that (15) 

becomes relevant in far-from-equilibrium and fully nonintegrable 

conditions, prone to develop far above the Fermi scale. Aside from the 

fragmentation of phase-space in Hamiltonian chaos, (15) arises from two 

other premises, namely,  

1) Dimensional Regularization of QFT, 

2) Emergence of nontrivial fixed points of the RG equations in statistical 

physics and the -expansion evaluation of critical exponents., 
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Our research reveals that various aspects of ( )   lie behind many unsettled 

features of particle and gravitational physics, such as the multifractal 

geometry of the SM, the repetitive architecture of SM parameters, 

unexplained SM-related observations, the Cantor Dust structure of Dark 

Matter and the thermodynamic interpretation of General Relativity [20]. 
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