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Abstract The empirical description of the evolution of a physical system is the account of
observed changes of state of the system in time, the measure of time being that of the Sys-
teme International. To describe the Sun-Mercury system Einstein proposed a model based
on the assumption that the evolution of the systen, i.e. its relative space-time trajectory de-
scribes a geodesic on space-time endowed with the Schwartzschild metric. The evolution
parameter of a geodesic is, however, an affine parameter or equivalently the proper time.
What this could mean is the subject of this paper.
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1 Introduction

Mathematics distinguish between abstract structure and local coordinates mirroring the struc-
ture without assigning any particular meaning to the coordinates. In physics, however, coor-
dinates acquire a meaning through the operational definitions applied to measure the coor-
dinates. The Systeme International provides a system of units of measurement the meanings
of which, directly or indirectly, are based on a coherent set of operational definitions. To as-
certain the correspondence between the predictions of a model defined in a physical theory
which comprises the physical constants (mass, charge etc.) that serve to identify the system,
and the behavior of the system, the operational definitions must be compatible with the the-
ory, i.e. there must be a one-to-one relation between the coordinates measured by applying
the operational definitions and the choice of coordinates emanating from the mathematical
structure of the theory used in the computations of predictions of models.

The compatibility between the SI operational definitions of spatial distance and tempo-
ral duration for the space-time coordinates of the theory of general relativity is a priori not
obvious though it seems that the time coordinate t is measured using the SI operational defi-
nitions. In fact, with respect to the interpretation of the cosmic redshift and the gravitational
displacement of spectral lines the time coordinate is taken to be the SI time. A conceptual
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problem appears, however, with the introduction of the additional hypothesis that the motion
of a material body, described as a point particle, is a geodesic in space-time. The evolution
parameter is then an affine parameter, i.e. a parameter linearly related to the proper time s
which itself is an affine parameter. Any affine time parameter differs from the coordinate SI
time t. This is the problem discussed in the following by considering the description of the
Sun-Mercury system and its Newtonian approximation.

2 The Sun-Mercury System

The model pictures the Mercury as a body moving along a geodesic in the space-time en-
dowed with the Schwarzschild metric, a solution of the Einstein equation for empty space,
interpreted as the gravitational field produced by the Sun. A comparison with the empirical
data led Einstein to the conclusion that the model describes the precession of the perihelion
of Mercury. The model is defined by [1]
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From the Euler-Lagrange equations it follows that the value of θ = π

2 and L is a constant of
motion. we are then left with the following equations(

1− 2µ

r

)
dt
ds

= k (3)

c2
(

1− 2µ

r

)(
dt
ds

)2

−
(

1− 2µ

r

)−1(dr
ds

)2

− r2
(

dφ

ds

)2

= c2 (4)

r2 dφ

ds
= h (5)

where k and h are constants. From these equations we get(
dr
ds

)2

+
h2

r2

(
1− 2µ

r

)
− 2µ

c2r
= c2 (k2−1

)
(6)

r2 dφ

ds
= h (7)

or alternatively, using that d
ds = k

(
1− 2µ

r

)−1
d
dt ,

k2
(

1− 2µ

r

)−2(dr
dt

)2

+
h2

r2

(
1− 2µ

r

)−1

− 2µ

c2r
= c2 (k2−1

)
(8)

k
(

1− 2µ

r

)−1

r2 dφ

dt
= h (9)

where eqs 6 and 7 are equations of motion in the proper time s, and eqs 8 and 9 are equations
of motion in the coordinate time t. By using that d
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where u =
1
r

, or by differentiating by φ we get the well-known equation

d2u
dφ 2 +u = c2 µ

h2 +3µu2 (11)

When µ = GM
c2 where G is the gravitational constant and M the mass of the Sun, this equa-

tion describes the motion relative to the Sun of any planet in the solar system, including the
residual perihelion precession, i.e. the precession not caused by the gravitational perturba-
tions from the other planets. The residual perihelion precession is associated with the last
term of eq. 11.

3 The Motions

The solution of eq 11 gives the relative distance r between the the Sun and a planet as
a function of the azimuthal angle φ . This relation is, however, a secondary result of the
observation of the relative distance and azimuthal angle over long periods of time which
describe the relative motions in space-time parametrized by the coordinate SI time t. It is
a spatial projection of the space-time trajectory. Let γ̃ : s 7→ γ̃ (s) and γ : t 7→ γ (t) be the
solutions of eqs 6 and 7, and eqs 8 and 9, respectively. Though they both gives the same
spatial projection, they correspond to different motions in space-time. It is well-known that
the curve in space-time traced by γ̃ (t) approximates well the empirical curve; however, this
choice is not admitted since it follows from the eqs 3− 5 that s(t) is a non-trivial function
of t. The question is then if the solution γ (t) = γ̃ (s(t)) traces the enpirical curve; if not, we
can conclude that Einstein’s hypothesis that the motions of material bodies are geodesics in
space-time is untenable.

The answer to this question it is sufficient to consider the Newtonian approximation of
the equations of motion and to inestigate whether the the curve γN (t) corresponds to the
empirical Newtonian curve. The Newtonian equations are obtained by replacing

(
1− 2GM

c2r

)
by 1 which is a good approximation since GM

c2r ≈ 26×10−6 for Mercury. In fact, the relative
motion of any planet can be decomposed to a motion in an elliptical path and the precession
of the perihelion of the ellipse. For example, in hundred years Mercury makes about 415
turns while the perihelion is precessing 574”. Most of the precession is caused by pertur-
bations from the other planets, the residual precession being 44”. The measure of time for
these empirical results being the SI time measure. From equations 6−9 we then get
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However, since t ′ 6= s either the eqs 12 and 13, or eqs 14 and 15 must be taken to describe the
evolution of the system in space-time. To choose s contradicts the empirical results which
are recorded in the coordinate SI time. The choice t ′, on the other hand, is related to the
coordinate time and we are left to estimate relation between them.

The excentricity of the path is ε =
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[2]; thus,
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since l = mh≈ mrv and the average orbital speed of Mercury v = 47×103m/s and√
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mc2 ≈ 0,99335 (18)

The orbital period of Mercury is 87,9691 days as measured in SI time t. Since
√
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0,99335 the orbital period predicted eqs 12 and 13 (or 14 and 15) corresponds to 87,3811
in t ′-days. We can therefore conclude that of the eqs 14 and 15 do not describe the correct
the Newtonian motion of Mercury around the Sun.
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Thus, the orbital period is 88,5550 t ′′-days for the solution of the eqs 19 and 20.
We can therefore conclude that neither of the eqs 14 and 15 nor eqs 19 and 20 describe

the correct the Newtonian motion of Mercury around the Sun.

4 Conclusion

The discussion in sect. 3 shows that only the equations 6 and 7 gives the correct space-
time motion provided we interpret s as the SI measure of time, thus, that γ̃ (t) corrresponds
to the empirical space-time curve; moreover, that the equations 8 and 9 do also fail, they
do nor predict the correct Newyonian motions. We can therefore conclude that Einstein’s
hypothesis that the motions of material bodies follows geodesics in space-time is untenable.
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