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Abstract

The vaccine rush caused by the current pandemic has led to performing fast clinical
trials; in particular, we have observed a wide range of reported efficacy for the
different vaccines from phase III cohort studies. We show that we show that when
performing large cohorts phase III clinical trials near the epidemic peak, the measured
effectiveness represents a strong under-estimate of the vaccine efficacy even in absence
of confounding factors. In particular, we show that the underestimation grows with
the fraction of infectious individuals present in the population during the experiment
and with the severity of the epidemic measured by its basic reproduction number.

Introduction 1

The vaccine rush caused by the COVID19 pandemic has led to perform clinical trials 2

with procedures that reflect the exceptional circumstances [1] and to the establishment 3

of unprecedented public-private partnership [2]. In particular, we have observed the 4

case of vaccines that have reported widely different efficacies [3], varying from the 5

∼ 95% of Pfizer and Moderna (mRNA based), to the ∼ 70% of Astra-Zeneca or the 6

∼ 66% of Johnson & Johnson (viral vector based). While mRNA and viral vectors 7

vaccines use different mechanisms to interact with the cells, both vaccines induce 8

immunity by ”instructing” our cells to produce spike proteins. Thus, it is reasonable 9

to ask whether the heterogeneity of the results could be also influenced from the 10

differences in the experimental environments, both in terms of fraction of infectious 11

and in terms of the presence of variants. In this manuscript, we show how performing 12

efficacy measurements at different times of the evolution of an epidemic can lead to 13

serious underestimates of a vaccine’s efficacy. 14

Vaccine efficacy are defined as one minus some measure of relative risk; according 15

to the risk considered, several measures can be defined: efficacy for susceptibility to 16

disease, for colonization, for progression, pathogenicity, infectiousness, indirect effects, 17

population-level effects etc [4]. These measures require specialised and accurate 18

datasets, sometimes with detailed information on the single contact experienced by the 19

experimental cohorts. We will employ a simpler characterization of the vaccine efficacy 20

ε defined in terms of the transmission rate β of the epidemic. A vaccine of efficacy ε 21
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decreases the transmission rate by a factor δ = 1− ε, i.e. a vaccinated person has a 22

probability δ times lower of getting infected when coming into contact with an 23

infectious individual; δ can be also indicated as the relative risk of vaccinated 24

individuals [4]. Thus, the transmission rate for vaccinated persons lowers from β to 25

βV = δβ [5]. 26

On the other hand, vaccine effectiveness measures the real-world performance of a 27

vaccine [6, 7], in contrast with efficacy that can be defined as the performance of an 28

intervention under ideal and controlled circumstances. Factors concurring in a 29

deviation of effectiveness from efficacy are multifaceted, and the implementation of 30

effectiveness studies (especially troublesome low- and middle-income countries) is 31

affected by several confounding factors like age, socio-demographic factors 32

(ethnicity/religion), geographical location, chronic disease and/or comorbidities and 33

socio-economic status [8]. However, a factor that has been mostly disregarded in large 34

cohort (i.e phase III) studies is the impact of the fraction of infectious individuals 35

during the trial. 36

A key metric for the impact of an epidemic is the basic reproduction number R0, 37

measuring the potential number of people an individual can infect; R0 can be 38

calculated in terms of the transmission probability β and of the average lifetime τ of 39

the infectious state as R0 = τβ [9]. The basic reproduction number allows to estimate 40

the herd immunity threshold (HIT), i.e. the fraction ρ∗ = 1− 1/R0 of immune 41

individuals beyond which no epidemic overburst can happen [9]. The efficacy ε is 42

paramount for estimating the effective fraction of people ρV = ρ∗/ε to reach the HIT: 43

the lower the efficacy, the higher the fraction of individuals to vaccinate. 44

The efficacy is not known a priori, but must be estimated through an experimental 45

procedure. Overestimating ε would underestimate ρV , with the danger of not reaching 46

the HIT at the end of the vaccination campaign. Underestimating ε ensures that the 47

fraction of vaccinated people is beyond the HIT; however, it expands both the costs 48

and the duration of a vaccination campaign and – in extreme cases – it can lead to an 49

estimate of the number of individuals to vaccinate beyond any practical possibility. As 50

an example, if the fraction of kids in a population is ρkids and the vaccine that cannot 51

be administered to kids, ρV cannot be higher than 1− ρkids. 52

Reported efficacies are a measure of the reduction in disease incidence in a 53

vaccinated group compared to an unvaccinated group under optimal conditions in a 54

clinical trial. However, what happens if clinical trials are performed on large cohorts 55

and during an epidemic, so that it is possible that ”optimal conditions” cannot be 56

strictly enforced? As noted by Hallorane et al [10], to avoid that equivalent 57

populations with the same transmission conditions could yield different efficacy 58

estimates, the amount of exposure to infection should be taken into account either by 59

study design or by mathematical modeling. 60

To isolate the effect of pursuing clinical trials during an ongoing epidemic, we will 61

consider the theoretical case where no confounding factors [6, 7] intervene in the 62

effectiveness – measured as the experimental ratio of infected individuals in a 63

vaccinated and a placebo cohort – showing in long trials performed during an ongoing 64

epidemic the effectiveness underestimates the vaccine efficacy ; such underestimation 65

grows both with the fraction of infectious individuals i present in the population 66

during the experiment and with the severity R0 of the infection. 67

Results 68

The effectiveness η of the vaccine is measured by confronting the infections occurring 69

into two observed groups (also called cohorts in the medical language), one that has 70

been vaccinated (cohort V of size NV ) and one that got a placebo (cohort P of size 71
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NP ) [5]. The distribution of the traits (age, census, medical history, etc) of both 72

cohorts must be representative of the whole population; moreover, (i) the individuals 73

of both cohorts should be distributed in the population so not to have contacts among 74

themselves (to avoid spurious correlations), (ii) the observation period T should be 75

long enough to have a statistically significant number of observed cases of infections. 76

Thus, the effectiveness η is estimated as ”the proportion of persons in the placebo 77

group of a vaccine trial who would not have become ill if they had received the 78

vaccine” [5]. Let us indicate with AV and AP the number of cases in the vaccinated 79

and placebo cohorts, respectively, at the end of the study. Suppose that we are 80

analysing a large trial (like a phase III study) where, given the number of participants, 81

it is not possible to have detailed information about their contacts. If we indicate with 82

cP = AP /NP and cV = AV /NV the attack rates (or cumulative incidence), i.e. the 83

fraction of individuals that get infectious during the trial, the vaccine efficacy can be 84

expressed as [4] 85

η = 1− cV
cP

(1)

; however, we must bear in mind that interpreting efficacy estimates is a multifaceted 86

issue [4]. 87

Notice that eq.1 could be a good estimate of the vaccine efficacy if the observed 88

cohorts are under controlled clinical trial conditions [4]; in the case of large phase III 89

studies, this is not the case: in particular, if phase III studies are performed during an 90

epidemic, the measure of η could depend on the fraction of infectious individuals in 91

the population. 92

The effectiveness η aims to be a proxy (in statistical language - an estimator) of 93

the real efficacy ε of the vaccine. In the following, due to the nature of a phase III 94

experiment (large numbers of individuals not subject to clinical trial conditions), we 95

will assume that cohort individuals are in contact with the infected population. Since 96

the number of individuals in the cohorts is much smaller than the population, we will 97

also assume that the individuals in the V , P cohorts are uncorrelated as required from 98

the experimental protocol. Finally, we will assume that the dynamics of the cohorts do 99

not influence significantly the ongoing epidemics: this is true if the size of the group is 100

much smaller than the population and if the observation time is much lower than the 101

total duration of the epidemic. Under such assumption, it is possible to derive an 102

explicit formula (eq. 4) for the final values of the effectiveness η in terms of the 103

relative attack rate c, of the transmission rate β and of the relative risk δ. Since the 104

attack rate can be expressed as c = i T , we can see that the key drivers are the length 105

T of the experiment and the average fraction i of infectious during the period T . 106

In the following, we will show the results for SIR models with parameters in the 107

range of COVID19 estimates; in particular, we will assume that the infectious period 108

is τ = 15 days and R0 is in the range [2.5, 6.0] [11]; however, since eq. 4 does not 109

depend on the details of the dynamics, the results are expected to be robust in respect 110

of the epidemic model employed. 111

In Fig 1, we show how the expected estimates of η (eq. 4) for a real efficacy 112

ε = 0.90 decrease as a function of the attack rate c. The basic reproduction number is 113

fixed to be R0 = 3, while the duration of the trial is fixed to be T = 4τ , i.e. a period of 114

≈ 2 months. Lower values of c correspond to initial and final phases of the epidemics 115

where i� 1, while high values of c correspond to experiments performed near the peak 116

of the epidemic. We observe that η tends to underestimate ε more when the fraction 117

of infectious individuals is high, while η ≈ ε in the initial phases where i� 1; in 118

particular, in this regimes the corrections to η (i.e. the systematic errors introduced by 119

using eq. 1) are small and proportional to the attack rate during the trial (see eq. 5). 120

When the number of individuals is small, the process of getting infected is better 121

described by a stochastic process. We thus perform stochastic simulations of the 122
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Fig 1. Measured effectiveness η (eq. 1) versus the attack rate c. The
epidemic is modelled with a SIR model with basic reproduction number R0 = 3 and
mean infectious period τ = 15 days corresponding to a transmission rate β = 0.2
days−1. The continuous black line corresponds to the expected values of η (eq. 4) for
trials of a duration T = 2 months and real efficacy ε = 0.90. Curves are obtained by
varying the initial time t of the trial; thus, each c corresponds to a period [t, t+ T ].
Lower values of c correspond to initial and final phases of the epidemics where the
fraction of infectious individuals is low, while high values of c corresponds to
experiments performed near the peak of the epidemic. We observe that η is affected
by a systematic error (i.e. η < ε) that makes it underestimate the real efficacy ε; when
the fraction of infectious individuals is high, the error is larger, while when it is low,
η ≈ ε and the error is proportional to β c (see eq. 5). To evaluate the statistical
errors, we model the process of getting infected by a stochastic process (eq. 9) and
simulate possible values of η for cohorts of n = 4× 104 individuals, i.e. of a size of the
same order of the Pfizer trial [12]). As expected, the results of the stochastic
simulations (red dots in the figure) fall in a region with a distance of order 10−2

around the theoretical curve of eq. 4, i.e a region of order ±1/
√
n as expected for a

trial with cohorts of independent, non-interacting individuals.

experiments (see Methods) for cohorts of n = 4× 104 individuals, i.e. of a size of the 123

same order of the Pfizer trial [12]). In Fig 1 we show as red dots the results of 124

stochastic simulations of the trial; the results of the stochastic simulation fall in a 125

region with a relative distance of order 10−2 around the theoretical curve of eq. 4, i.e 126

in a region of order ±1/
√
n as expected for a trial with cohorts of independent, 127

non-interacting individuals. 128

Since the maximum number of infectious individuals is an increasing function of 129

R0 (see eq. 8), the maximum attainable value of c also increases with R0; thus, the 130
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worst estimated effectiveness ηmin (i.e. at the infectious peak) must also be a 131

decreasing function of R0. In Fig 2, we show that this is the case by plotting ηmin as a 132

function of R0 for ε = 0.90, 0.93, 0.96 and for a duration of the experiment of 4τ , i.e. 133

T ≈ 2 months. Notice that, if the vaccine has an higher efficacy ε, then η better 134

estimates it: as an example, for R0 = 3 (a value that has been estimated for COVID19 135

in France [13]), to an efficacy ε = 0.96 corresponds an effectiveness as low as 136

ηmin ≈ 0.90 (i.e. eq. 1 introduces a systematic error up to ∼ 6%), while to an efficacy 137

ε = 0.90 corresponds an effectiveness as low as ηmin ≈ 0.77 (i.e. eq. 1 introduces a 138

systematic error up to ∼ 15%). 139

Fig 2. Minimum efficacy vs basic reproduction number. According to eq. 4,
the measured effectiveness η (eq. 1) reaches a minimum ηmin for clinical trials near
the epidemic peak. The figure reports the theoretical values of the worst effectiveness
estimate ηmin versus the basic reproduction number R0 when modelling the epidemic
with a SIR of mean infectious period τ = 15 days and considering clinical trials of
length T = 2 months. The three curves correspond to a true efficacy of ε = 0.90
(continuous line), ε = 0.93 (dashed line) and ε = 0.96 (dotted line). The curves show
that the lower a vaccine’s efficacy, the worse is its underestimate by the effectiveness
(eq. 1).

Discussion 140

The COVID-19 vaccine rush is pushing governments and developers to set new 141

standards for valid clinical trials in humans, showing that methodological issues in 142

clinical trials can lead to unrepresentative data and communication errors can even 143

fuel vaccine hesitancy [14]. 144

Evaluating vaccine efficacy requires a deep knowledge of the state of the individuals 145
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in the trial and of their contacts; however, this is seldom the case, apart in preliminary 146

phase I and phase II studies where, working with smaller groups in more controlled 147

environments, it is sometimes possible to gain deeper information on the vaccine, both 148

separating the indirect effects of a growing number of infectious in the overall 149

population [15], and eventually discriminating the efficacy in protecting from the 150

disease from the efficacy in dampening the transmission from an infectious vaccinated 151

individual [4]. However, even with a detailed knowledge of the dynamics of the 152

individuals involved in the trial, the statistics of phase I and II is often too low to get 153

accurate enough results. On the other hand, during phase III, large numbers of 154

individuals are enrolled in the trials: thus, statistics is sufficient to reach better 155

accuracy in the estimates, at the price of not being able to have enough detailed 156

information for discriminating various kinds of efficacy, and of being unable to assess 157

the importance of indirect effects. To such an aim, digital contact tracing [16] together 158

with the medical records of the national health service could be paramount to ease all 159

the phases of a pandemic crisis: not only for early detection and isolation of 160

impending outbreaks [17] and for the calibration of pharmaceutical and non 161

pharmaceutical measures [18,19], but also for better phase III estimates for the 162

efficacy of vaccines produced ”on the fly” and for the following phase IV evaluation of 163

side effects after they have started to be distributed in the population [14]. However, 164

we have shown that starting to collect more reliable coarser data – like the fraction of 165

infectious individuals in a population – would greatly help interpreting the results of 166

medical trials. 167

In fact, we have shown how even a coarse knowledge of epidemic data (like 168

estimates of the fraction of infectious versus time) could help to correct phase III (and 169

eventually phase IV) estimates of efficacy from the measured effectiveness. Obviously, 170

more detailed data can help to understand the impact of heterogeneity in 171

contacts [18,20,21] not only on the epidemic dynamics, but also on the estimates of 172

vaccine efficacy and herd immunity thresholds. In particular, digital tracing data 173

would be especially useful for considering the variations of contact patterns due to 174

behavioral data. As an example, vaccinated people may alter their habits if they 175

believe the vaccine is protective; thus, without detailed contact information, the 176

behavioral changes could introduce systematic biases in efficacy trials [10]. In general, 177

human behaviour plays a key role in epidemic spreading, and investigating and 178

quantifying its effects is paramount to effective policies for non-pharmaceutical 179

interventions and vaccination policies [22,23]. 180

Conclusions 181

Many factors impact the efficacy of a vaccine: from population specific genetic 182

characteristics to partial immunity acquired from previous infections, or even the 183

development of variants during the epidemic: something that, given the duration of 184

the still ongoing pandemic period, has occurred for COVID19. However, our study 185

concentrates on the systematic decrease on the estimated vaccine effectiveness in large 186

cohort studies due to the presence of an high number of infectious individuals in the 187

population. Since vaccines have never been produced, tested and experimented in such 188

exceptional circumstances like the one recently occurred during COVID19, such an 189

issue has not been fully addressed before. 190

For the sake of simplicity, we have employed a classical epidemiological model with 191

realistic parameters to understand the order of magnitude of the systematic error in 192

efficacy estimates; however, most models of epidemics do not differentiate between 193

infection and disease, while there are cases where that the relation between the 194

biological efficacy of the vaccine and its efficacy as measured by clinical trials is 195
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complex and multi-factorial [4, 24,25]. Since disease (i.e. observable traits) is what 196

drives behaviour, this is an issue that should be pursued further when modelling 197

epidemics. 198

In the case of COVID19, the age is a key factor respect to the incidence of severe 199

cases and/or mortality; in fact, efficacy estimates in phase III studies consider the 200

effects of age [12,26]. In such a case, we will have that effectiveness will be a larger 201

underestimate of efficacy in the subgroups where the latter is lower. Moreover, since 202

we have experienced that the COVID19 vaccine efficacy is time dependent and 203

depends on the number of the doses [27], longitudinal studies should be planned in 204

advance to detail the history-dependence of vaccine efficacy. 205

Finally, we notice that in the vaccine trials that have occurred it has been observed 206

that antibodies in the vaccinated individuals take time to develop [12,26]; thus, if also 207

the efficacy grows with time, an extra bias could be introduced in efficacy 208

measurements. In particular, if the trial occurs when the number of infectious is 209

growing, the protection is low at the beginning of the trial, when the probability of 210

getting infected is lower; on the contrary, if the epidemic is decreasing, the vaccine 211

protects less at the beginning, i.e. just when the probability of getting infected is 212

higher. Thus, for two trials – one before the epidemic peak, the other after – with 213

identical time-spans and attack rates, we expect a lower estimate of the vaccine 214

efficacy (i.e. a larger systematic error) for the trial in the decreasing phase. 215

Methods 216

Vaccine efficacy 217

When the frequency of infective events in the susceptible individuals depends on the 218

number of already affected individuals [28], the interpretation of the estimates of a 219

vaccine efficacy can vary depending on the assumptions about the underlying 220

dynamics [4]. Let’s assume that, to perform a double-blind evaluation of a vaccine’s 221

efficacy, individuals have been divided into two cohorts V (the ones that have received 222

the vaccines) and P (the ones that have received the placebo). Let’s also assume that 223

the experimental protocol ensures that: (i) the individual in the cohorts are not in 224

reciprocal contact (the ideal case would be that infectious individuals in the cohorts 225

would remain reciprocally uncorrelated during the experiment); (ii) the infectious 226

dynamics of the cohorts does not influence significantly the ongoing epidemics, i.e the 227

size of the group is much smaller than the population and the observation time is 228

much lower than the total time for the epidemic to evolve. Under these assumptions, 229

infections come only from contacts with infectious individuals outside the cohorts. 230

Thus, assuming full mixing, the probability of meeting an infectious individual is 231

proportional to the fraction i of infectious individuals in the whole population, and the 232

evolution of the fraction of susceptible individuals (i.e. not yet infected) in the P , V 233

cohorts can be written as: 234

∂tsP = −βP · i · sP , ∂tsV = −βV · i · sV (2)

where the transmission probabilities are βP = β for the placebo cohort and βV = δ β 235

for the vaccine cohort, where δ = 1− ε . Both equations can be solved yielding the 236

solutions 237

sP = e−β
P ·c , sV = e−β

V ·c (3)

where we indicate with c = i T =
∫ t+T
t

i dτ the attack rate of the infection for the 238

period [t, t+ T ], i.e the cumulative fraction of infectious [9] during the trial. The 239
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corresponding attack rates for the cohorts will be cP = 1− sP and cV = 1− sV ; thus, 240

we can rewrite eq.1 as 241

η =
sV − sP
1− sP

=
e−δβc − e−βc

1− e−βc
(4)

that tells us that the observed effectiveness η will depend on the attack rate relative to 242

the observation period; notice that such expression is in accordance with the results 243

of [29]. For small values of βc, it is possible to expand eq. 4: 244

η = ε

[
1− δ

2
βc+O(β2c2)

]
(5)

that tells us that, even for small values of c (i.e. when the average number of 245

infectious i is small), there is already a negative correction to the estimate of ε by η 246

that is proportional to δ. Also the expansion to the second order 247

η = ε

[
1− δ

2

(
βc+

1− 2ε
6

β2c2
)

+O(β3c3)
]

(6)

retains the same behaviour, since the quadratic term is still negative up to very low 248

efficiency ε = 0.5 and the corrections decrease proportionally to δ: the higher the 249

efficiency, the better the estimate. 250

SIR model 251

To estimate c, it would be necessary to have accurate data on the fraction of infectious 252

individuals during an epidemic, like the one obtained by testing campaigns. In cases 253

like the COVID19 pandemics where data are scarce and the understanding of the 254

epidemic is still an ongoing process, it is useful to rely on mathematical models whose 255

parameters are tuned on the epidemic’s dynamics. For its simplicity and for the few 256

parameters needed, we will use the basic SIR model. In the SIR model the 257

population is divided into three groups S,I,R corresponding to different stages of an 258

infection: S corresponds to susceptible individuals, I to infectious and R to recovered 259

individuals. Indicating with lowercase letters (i.e. s, i, r) the fractions of individuals in 260

a given class, the epidemic is described by the equations 261

∂ts = −βsi , ∂ti = βsi− i/τ , ∂tr = i/τ (7)

where β is the infection rate and τ is the average duration of the infectious period. 262

For the SIR model, since ∂ ln s = −R0r [19], it is possible to derive the closed 263

solution ln s = −R0 r for a free epidemic starting from s(t = 0) = 1, r(t = 0) = 0; thus, 264

since i is maximum when s = 1/R0 and at this value r = lnR0/R0, we can explicitly 265

calculate the value of imax from i+ s+ r = 1 266

imax = 1− 1 + lnR0

R0
(8)

showing that in SIR models the maximum fraction of infectious grows as expected 267

with the basic reproduction number following a simple relation with R0. 268

Stochastic estimates of the efficiency 269

While deterministic equations for epidemic dynamics can be a good approximation 270

when the population is large and as soon as there is an extensive number (even if the 271

fraction is small) of infectious [9], in the case of medical experiments cohorts are 272

seldom large enough to disregard statistical fluctuations in the observations. Apart 273
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from particular cases like systems with critical points [30], relative fluctuations for a 274

system of n individuals are of the order 1/
√
n. Thus, while for equations like SIR’s – 275

describing populations of a size of the order of the inhabitants of a nation – we can 276

disregard fluctuations and we can thus consider i as a good proxy for the evolution of 277

the fraction of infectious, eq.2 does not allow to check for the importance of 278

fluctuations in the experimental setting when the number of cohorts’ patients n is not 279

so large. As an example, cohorts of size n ∼ 10000 are expected to yield relative errors 280

of order ∼ 1%. 281

To estimate such statistical fluctuations, we employ a simplified stochastic 282

approach. Since the V , P experimental cohorts consist of independent and 283

uncorrelated individuals, the infection rates βX i, X ∈ {V, P} of eq. 2 can be 284

interpreted as independent Poisson rates where each individual in the cohorts has a 285

probability −βX i per unit time to become infected. In a time interval ∆t small enough 286

that i can considered constant, the number of infections suffered by a population of 287

SX individuals will thus follow a Poisson distribution of mean βX i SX ∆t; thus, the 288

infectious dynamics for the experimental cohorts can be simulated as 289

SX(t+ ∆t) = SX(t)−PoissRand
(
βX · i(t) · SX(t) ·∆t

)
(9)

where X ∈ {V, P} and PoissRand(x) generates a random integer number Poisson 290

distributed with rate parameter x. Such an approach has been applied to estimate the 291

fluctuations reported in Fig 1. 292
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