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The laws of chance are often subtle and deceptive. This is why games of chance

work. People are convinced that they obey seemingly intuitive laws, while the

underlying mathematical structure reveals a different and more complex reality.

This article is a brief and rigorous journey through the implications that the

mathematical laws governing stochastic processes have on gambling. It addresses

a specific process, the random walk, and analyzes some instances of fair and

unfair games by highlighting the fallacy of many of our intuitions and beliefs. The

paper gradually moves from the analysis of the random walk properties to a

comprehensive description of the ruin problem. The introduction of the idea of

transient and persistent states concludes the discussion. Much emphasis is placed

on concrete examples and on the numerical values, in particular of the involved

probabilities, and the interpretation of the results is always more central than the

demonstrative technical details, which are nevertheless available to the reader.
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1. Introduction

The simplest game of chance between two players is to flip a coin so that one wins

on heads and the other wins on tails. Suppose the two players repeat the toss many

times, and each time one loses, he or she gives the other a dollar. Of course, a player

is considered a winner at some stage of the game if he has won more than he has

lost. Now consider the question: What fraction of the total game time do we imagine

one player will spend in the role of the winner, and what fraction in the role of the

loser?

Most people will probably respond that, being a ’50%-50%’ game, each player will

spend about half the time leading and half the time losing. Indeed, we are more or

less convinced that we will spend part of the time as winners and part of the time as

losers, and that this distribution will be somehow balanced. We also know that we

cannot expect a    and    net split and that there will be some kind of

fluctuation. Maybe we can expect to be in the lead    of the time and our

opponent   of the time, or   against a  . In short, although we do not know

what the exact split will be, we think it is most likely to be around half the playing

time.

In the same way, we are led to think that, if we start to lose, sooner or later we will

break even and regain what we lost. But how many times can we afford to lose and

come back to zero? Are we sure that this can happen as often as we would like?

Furthermore, what if the coin is rigged and it is no longer a fair game? How should

we adjust our expectations? In a sense, in this case, it is easier for us to imagine

50% 50%
55%

45% 48% 52%
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some kind of asymmetric behavior that makes the game more favorable or

unfavorable depending on the point of view.

Let us mention here only one example that will be discussed in the text. Suppose our

strategy is to quit the game when our total winnings reach a certain value  , or,

alternatively, when we completely deplete the budget   that we decide to allocate to

this game. We will see that if even the probability of winning at each step is only 5%

below the 50% which is typical of a fair game, and the probability of losing is 5%

higher, then the probability of winning   before losing all of   is substantially less

than the probability of losing all of    before winning  . Suppose    and    are 3

dollars. Then the probability of losing all our small 3-dollar budget before winning

another 3 dollars would be  , as opposed to   of winning all 3 dollars before

losing them. If it were 10 dollars, this probability would rise to  , and the

probability of losing would go up even more for higher bets.

This article will attempt to shed light on these and some other similar questions and

to show that the issues are more subtle than they appear on the surface. It is

designed for anyone who wants to get a clearer idea of the mechanisms that govern

gambling and games of chance in their mathematical implications, which,

paradoxically, also become psychological. We begin with a seemingly unrelated

problem, counting votes in an election between two candidates, and then describe

the properties of the random walk in the case of a fair game. We then introduce the

ruin problem and compute the probabilities mentioned above in both the fair and

unfair cases. Finally, we conclude with some remarks on the persistence of the

random walker’s return to the origin.

Reading requires a certain amount of patience. The text deliberately aims for

maximum accessibility combined with minimum mathematical rigor, so that there

are no logical or narrative leaps. The mathematics used is essentially combinatorics

and elementary probability. The reader will not find any ’it is clearly seen that’ or ’it

is left to the reader to demonstrate immediately’ except in one or two places at most

where things are really obvious. However, the reader will not find any proofs in the

text. It was simply felt that all proofs should be placed in the appendix, so that the

text is direct and aimed at understanding the ideas rather than analyzing the

demonstrative details. The reader who wants to go deeper is thus directed to the

appendix. Only one proof is kept in the text since it is very instructive.

2. The Ballot Problem

Let us imagine that, during the ballot for the election to an institutional office, there

are two candidates   and   and that the ballot proceeds by examining the voting

records one by one. Of course, during the counting process, one candidate may be

first in the lead and then the other may move ahead, and this switch may occur

several times. The question we want to focus on is: What is the probability that,

throughout the counting, there have always been more votes for   than for  ?

A good way to list the votes for each candidate, at each step    of the counting

process, is as follows. We can mark on a blackboard a   when the vote is assigned

to   and a   when the vote is assigned to  . After   steps, we have a list where we

filled in imaginary cells with a sequence of   or  . The value assigned to each cell

is completely random. We call the empty cells random variables and denote them by 

. We have    random variables that get the value    if the vote is assigned to 

 and the value   if the vote is assigned to  : 

A

B

A B

B A A B

65% 35%
89%

P Q

P Q

n

+1
P −1 Q n

+1 −1

Xi n +1
P −1 Q

= {Xi
+1
−1

if  vote assigned to P
if  vote assigned to Q

(1)
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We are left with a sequence   given by the votes we get from the ballot

at each step. Suppose that in the sequence we have   plus one ( ) and   minus one

( ), and that   is the last step, or, equivalently, that we are interested only in what

happened before step  . Of course, the partial sum 

is the number of votes by which   leads or trails just after the  vote is cast. Clearly,

we have    and    with  ,

for any  . Conversely, an arrangement   of integers satisfying 

 can represent a potential voting record.

Now the idea is to represent such an arrangement by a polygonal line whose  th

vertex has ordinate   and whose  th side has slope  . This line is called a path.

Consider the simple example illustrated in Fig. 1: after the counting of five votes, that

is  , we have  . Therefore,    and  , which

means   and  . The figure represents the path of the counting process, or,

in other terms, of the random process.

Figure 1. A simple example of a possible outcome of the ballot counting.

More generally, a path   from the origin to the point   is a

polygonal line whose vertices are   with   and  .

Since at each of the   steps we have two possible directions, up or down, there exist 

 different paths coming out from the origin in   steps to the end point  , for

an arbitrary, that is not fixed, integer  . If, on the other hand, the value of    is

constrained to be of the type   when   is equal to  , the number of possible

paths is significantly reduced. In fact, if exactly   among the   are   and   are  ,

so that    and  , then the    places in which we can put

the  , can be chosen from the total    available places in 

 different ways. Therefore, this number is equal to 

and   if   and   are not of the form   and  . This means that

there are exactly    different paths from the origin to the point 

. Now, the condition that there have always been more votes

for    than for    is equivalent to the fact that  ,  ,  ,    and 

{ , … , }X1 Xn

p +1 q
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n

=Sk ∑
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k
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, i.e. that the path is always positive. The fraction of all the    paths,

from the origin to the point  , that are always positive is

quantified in a well-known result, named after J. L. F. Bertrand (see  [1]), also called

the Ballot Theorem:

Proposition 2.1. If    and  , i.e.    and  , the expected number of

paths from the origin to the point    that are always positive, i.e. of the kind 

 with   equals 

This lemma provides the probability that, if   is leading at step  , then it has always

led at all previous steps. The complete proof of Proposition 2.1 can be found in the

appendix. Here, we make a few remarks. First, let us consider again the example in

Fig. 1. We said that  , and  , so that   and  . Then there

are    possible paths from    to  , but only 

  paths are always positive, and they are the two sequences 

 and  . Note that   is the slope of the straight line from 

 to   and it is the probability that  has always led at the previous steps if he

or she is leading at step  . In general, the total number of possible paths from

the origin to the point    is multiplied by the mean slope of the polygonal line,

that is, the slope of the straight line from the origin to that point.

A reverse journey. Proposition 2.1 can be re-formulated in an interesting way in

terms of a reversed path. It is, in a sense, a dual formulation of that statement. First of

all, we define a reversed path as the path obtained by reversing the order of the  ’s.

In the example in Fig. 2, the actual sequence of random variables in the blue path 

  is  . The reversed path    is

given by the sequence  .

The reversed path is then described by the partial sums of the  ’s in the reversed

order, that is 

= y > 0Sn Nx,y

(x,y) = (p + q,p − q)

x > 0 y > 0 n > 0 > 0Sn

(x,y)
{ , , … , = y}S1 S2 Sn > 0, ∀i = 1, …nSi

=
p − q

p + q
Nx,y

y

x
Nx,y (4)

P n
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Figure 2. A simple example of a reversed path. The blue line is the path   and the red

line (when not overlapping with  ) is the reversed path  .

As can be seen in Fig. 2, the two paths are congruent, join the same endpoints, and

are obtained from each other by a rotation of  . Now, proposition 2.1 can be re-

formulated in this way. If  , the number of reversed paths 

 joining the point   to   such that   for   is

equal to  . Note that asking for    is equivalent to asking for 

, i.e.  , for  . Explicitly, this means  , 

,  ,  . Geometrically speaking, we can say that the original

version of the theorem is concerned with paths whose left endpoint is the lowest

vertex, whereas the dual version of the theorem is concerned with paths whose right

endpoint is the highest.

Back to the origin. Before concluding this section, we want to make some remarks

about the special case where the endpoint is  , i.e., where the two candidates

receive the same number of votes   after   rounds of voting. This is equivalent

to a path that returns to the origin after its random walk above or below the axis.

Since it is impossible to return to the  -axis in an odd number of steps, or

equivalently, we cannot have an odd vertex on the  -axis, from now on we will

denote this point as   and we will be interested in paths that connect   to a

point   on the  -axis. With this choice,   and  . Of course,

the number of all these paths is  . Let us first define   as the following

number 

Proposition 2.2. The following statements hold

a. The number of paths such that  ,  ,  ,    and    is

equal to  ;

b. The number of paths such that  ,  ,  ,    and    is

equal to  .

Now the question is: Is it truly as easy as it might seem to return to the origin? What

is the likelihood of this happening after a candidate has been in the lead for the

entire ballot count? We will see that such an event is indeed extremely unlikely. To

show this, we move from the problem of a runoff between two candidates to a more

abstract game that reproduces the same conditions.

S
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3. Tossing coins

Let us now focus on a fair game, like flipping a coin to get heads or tails. Imagine

that two friends   and   decide to play the following game for a given period, let’s

say    days. Every day, they toss a coin. If it comes up heads,    wins and 

 loses; if it comes up tails,   loses and   wins. The value of the random variable is

then assigned day by day, and each of the two friends constructs his own random

walk.

Indeed, compared to the votes cast for candidates   and  , in this case, we can make

a a priori assumption about the probability of getting one or the other result. If we

call    and    the two probabilities of getting heads or tails, they will be the same: 

. Suppose we decide that a particular random variable    takes on the

value   if heads comes out and the value   if tails comes out, then we can say that

the probabilities of the random variable taking on either value are given by 

Therefore, we can represent any possible outcome of the    successive tosses of a

coin—and so any possible path followed by the two players in the N days of their

game—by a path of   sides starting at the origin. If we get heads,   goes up and 

 goes down; if we get tails,   goes down and   goes up. Conversely, each such path

can be seen as representing the outcome of   tosses of a coin. We have already said

that the total number of possible paths of this type is  . The set of all these paths is

called sample space. The sample space is the collection    of the    paths 

 starting at the origin. Since we have no reason to think that one of the

paths is preferred over the others, we can attribute probability   to each one.

An event such as   must be interpreted as the

aggregate of all sequences starting with    and  . There are    such

sequences, since the first two steps are predetermined. The probability of the event 

  is then  . More generally, if    there exist

exactly   different paths such that their first   vertices lie on a preassigned path 

.

Now let us imagine the motion of a particle along a vertical axis as an indicator that

shows the cumulative gain at all times of the two players: for  , one unit step

upward if the coin lands on heads, one unit step downward if the coin lands on tails,

and the opposite for  . This particle performs a real random walk, and its path 

  represents the space-time diagram of its motion. In particular, we

shall say that

at time   we have a return to the origin if  ,

at time   we have a first return to the origin if  ,

at time   we have a first passage through   if  .

Since we will be primarily interested in a possible return to the origin, and a return

can occur only at even times, as we said, we set  . The following proposition

lists the probabilities of some possible events we could be interested in.

Proposition 3.1. The following equalities hold: 

P Q

N = 20 P

Q P Q

P Q

p q

p = q = 1
2 Xi

+1 −1
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1
2
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1
2

(6)
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In words: the three events    a return to the origin takes place at time  ,    no

return occurs up to and including time  , and   the path is non-negative between 

 and   have all the same probability  ; whereas, the two events   the first

return to the origin takes place at time  , and    the first passage through 

 occurs at time  , have both the same probability  .

We introduce this notation that will come in very handy in what comes next: 

 which for   becomes 

In this section, we always refer to the specific case in Eq. (8). The probabilities of the

cases  ,  , and    are then exactly    and the probabilities of the cases  , and 

 can be expressed as  .

The proof of this proposition is in the appendix. Here we want to use this result to

analyze one of the main statements of this reading. To do that, we need this

definition: we shall say that the particle that moves according to the random walk

spends the time from   to   on the positive side if the  th side of its path lies

above the  -axis, i.e., if at least one of the two vertices   and   is positive.

Here is our main theorem.

Proposition 3.2. Let   be the probability that in the time interval from   to    the

particle spends   time units on the positive side and   time units on the negative

side. Then 

Again, the reader can find the complete proof in the appendix. By Eq. (8),   can

be given the following equivalent expression 

We want to stress now the importance of this result by means of the following

remarks.

Remark 1. We intuitively feel that the fraction    of the total time spent on the

positive side is most likely close to  , i.e., that the particle spends half its time above

the axis and half its time below it. But will this be true? It may seem paradoxical, but

we will see that it is not, and that the opposite is true.
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In fact, have a look at the following Table 1, which lists the values of the

probabilities   as a function of   for   and at Fig. 3, which represents the

same probabilities for   and  .

 0    2    4    6    8    10    12    14   16   18   20

0.176 0.093 0.074 0.065 0.062 0.061 0.062 0.065 0.074 0.093 0.176

Table 1. Values of the probabilities   that a particle spends a fraction   of its

time on the positive side, as a function of   for  .

Figure 3. Plot of the probabilities   that a particle spends a fraction   of its time

on the positive side, as a function of  , (a) for   and (b) for  .

As we can see, values close to    are the least probable, whereas the highest

probability is assigned to the extreme values   and  . What does it mean?

If we toss a coin    times, the probability    that the particle spends half of its

time on the positive side is  , whereas the probability that the particle

spends all its time on the positive side or all its time on the negative side is 

, three times the previous one. In general, the two extreme probabilities 

 and   are given by 

and their ratio is given by 

p2k,2n 2k 2n = 20
2n = 20 2n = 100

2k

p2k,
2n

p2k,2n k/n
2k 2n = 20

p2k,2n k/n
2k 2n = 20 2n = 100

=k
n

1
2

= 0k
n

= 1k
n

20 p10,20

0.06 = 6%
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We can use an important approximation of the factorials for very large values of  ,

called the Stirling approximation, by which we can observe that 

The ratio between the two extreme probabilities increases with the number of trials

as  , which means, for example, that for    trials, the probability of the

particle spending all of its time on the positive side is ten times the probability of an

equally distributed position above and below the axis. So we begin to realize that if

we start winning, we will keep winning, but also that if we start losing, we will keep

losing! And this with much greater probability than a more or less balanced

alternation of wins and losses! Let us try to restate the same idea in a slightly

different way.

Remark 2. The quantity    returns the probability that the particle spends

exactly    of its time on one side, positive or negative. Now let us consider the

probabilities that the particle spends at most or at least , for a given  , of its

time on one side. The so-called cumulative distribution function ,  , 

 returns this probability, and it is defined as 

It represents precisely the probability that the particle spends up to   time units on

the positive side, i.e., at most   time units on the positive side and at least

  time units on the negative side. For instance, for the previous set of 

 trials, the distribution function   is given in the following Table

2

 0    2    4    6    8    10    12    14   16   18   20

0.176 0.270 0.342 0.408 0.470 0.530 0.592 0.658 0.730 0.824 1.000

Table 2. Values of the cumulative probabilities   as a function of   for 

.

Data in Table 2, and the analogous ones for  , are depicted in Fig. 4.

n

∼ ∼ for n → +∞
p0,2n

pn,2n

πn−−−√
2

n−−√ (13)

n−−√ 2n = 200

p2k,2n

k/n
α/n α ∈ N

P(2k ≤ 2α) α ∈ N

0 ≤ α ≤ n

P(2k ≤ 2α) = = ( )( )∑
k=0

α

p2k,2n ∑
k=0

α 1

22n

2k
k

2n − 2k
n − k

= ( ) =
1

22n

2n
n

∑
k=0

α ( )n
k

2

( )2n
k

p0,2n∑
k=0

α ( )n
k

2

( )2n
k

(14)

2α
2α

2n − 2α
2n = 20 P(2k ≤ 2α)

2α

P

(2k
≤ 2α
)

P(2k ≤ 2α) 2k
2n = 20

2n = 100
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Figure 4. Cumulative distribution function   as a function of   (a) for 

 and (b) for  .

The behavior shown in these plots is not coincidental but represents a very general

property of cumulative probability. In fact, these cumulative distribution functions

follow a recurrent arcsin law, as stated by the following proposition.

Proposition 3.3. For  , the cumulative distribution function    can

be approximated by 

This formula returns, with good approximation, the probability that the time spent

on the positive side is at most, or, equivalently, less than   with  . The

following Fig. 5 compares exact results with results expected by the arcsin model:

Figure 5. Comparison between exact data (red circle points) and arcsin law (blue square

points) (a) for   and (b) for  .

P(2k ≤ 2α) 2k
2n = 20 2n = 100

2n → +∞ P(2k ≤ 2α)

P(2k ≤ 2α) ≈ arcsin
2
π

α

n

−−
√ (15)

2α 0 ≤ 2α ≤ 2n

2n = 20 2n = 100
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Let’s be clear about the meaning of formula (15). Consider the case   and the

value  . The cumulative probability is approximately  . This

is the probability that the particle spends at most  of its time on

the positive side and at least   of its time on the negative

side. In other words, if the particle were a gambler, with a   probability it would

spend no more than   of its time in the game in a winning role. It is a fairly high

probability compared to the small fraction of time he plays as a winner! In this case,

the gambler—let’s say  —would be the less fortunate of the two, spending less than

half of the game time in a winning role, i.e., he would lose more than he wins.

Remark 3. Let us consider the event  {The player    is in the lead less than

 days}. This event can be reformulated as  {  is in the lead for   } where 

  and    are interpreted as fractions of the game time. This event has

probability 

This is the approximate probability that player    spends less time than    in the

positive region above the axis, i.e., in the role of winner. Suppose he is the less

fortunate of the two players, so that  . The same can be said, of course, by

swapping the roles of the two players:  {The player   is in the lead for less than

 days} {  is in the lead for   }. The latter event has the same probability as

the former 

We cannot know a priori who is the unluckiest player. Consider the event 

, that is {One of the players is in the lead for less than  days}. We are

assuming that   is less than half of the playing time, so we are precisely considering

the point of view of the least fortunate player, whoever he or she may be. The

probability of event   is then 

Suppose   and   decide to extend the game for a whole year,   days! During

this year, we don’t know which of the two, but one of the two players is the less

fortunate one and is in the lead for a fraction   of the year. Call this probability 

. We have 

and  , that is the maximum fraction of the year in which the less fortunate player is

in the lead with probability  , is given by 

Let’s try to give some numbers: if  , then 

. This means that, with probability  , i.e.   out

of   cases, the less fortunate player will be in the lead at most for   hours and

the more fortunate player will be in the lead for at least   days and    hours.

There is a not inconsiderable probability that the unluckiest player will be in the lead

for only a tiny fraction of the year! Table 3 collects similar results for  , expressed in

days or hours, for different values of  .

2n = 20
2α = 6 P(2k ≤ 6) ≈ 40%

α/n = 6/20 = 30%
1 − α/n = 14/20 = 70%

40%
30%

P

=E1 P

2α =E1 P ρ ≤ x

ρ = 2k
2n

x = 2α
2n

P( ) = arcsinE1
2
π

x−−√ (16)

P x

x < 1
2

=E2 Q

2α = Q ρ ≤ x

P( ) = arcsinE2
2
π

x−−√ (17)

E = ∪E1 E2 2α
x

E

P(E) = 2 ⋅ arcsin = arcsin
2
π

x−−√
4
π

x−−√ (18)

P Q 2n = 365

x < 1
2

P(E) = p

p = arcsin
4
π

x−−√ (19)

x

p

x = ( p)sin2 π

4
(20)

p = 0.05
x = 0.00154 = 0.5625 d = 13.50 h 0.05 1

20 13.50
364 10.5

x

p
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0.99 0.95 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01

179,6 168,2 154,0 126,1 99,6 75,2 53,5 34,9 19,9 8,9 2,2 13,5 h 2,2 h 0,5 h

Table 3. Values of the probability   as a function of the fraction of the year  , expressed

in days.

For example, there is a   chance that the least lucky player will be in the lead for a

maximum of    days. Let us notice that, when  ,  , and, when  , 

.

Remark 4. What was shown in the previous remark has an interesting implication. It

says that frequently enormously many trials are required before the particle returns

to the origin, or that it takes an enormous number of attempts for the less fortunate

player to at least break even. This means that the path crosses the  -axis very rarely.

If we toss a coin for   times, the number of ties will be proportional to  . It can

be proved that the probability that, within the time  , the particle returns to zero

exactly   times is given by 

In particular,  . For

instance, for  , we have  , 

,  ,  , and 

.

We have hitherto assumed that the two probabilities    and    were equal. This is

indeed the case in a coin toss, but we can imagine a random walk produced by a

process in which the two choices are not equiprobable. We now want to extend our

argument to the case in which   but, in order to do that, we need some further

results about the so-called ruin problem, which is the topic of the next section.

4. The Ruin Problem

In the fair game of the previous section,   and   were interpreted as the probabilities

of getting heads or tails on a coin flip. All in all, this idea is fairly intuitive because

the two events are reasonably equiprobable. In the ballot problem,    and    were

numbers, the number of actual outcomes of a ballot on   repeated trials. However,

the ratios    and    are frequencies, and, if    is large enough, they are the

probabilities of the two different outcomes. From now on,    and    will directly

represent the two probabilities that one of two possible results will come out at each

repeated trial, that is, that a given random variable will symbolically take on the

value   or  . If each draw or roll is independent of the previous one, then in no

way does one result affect the next. Technically, it is said that we have a set of 

independent and identically distributed random variables.

We are now in a position to give a more general and more formal definition of the

classical random walk. The random walk in one dimension is the stochastic process

described by the motion of a particle whose position, at each step, is 

p

x

p x

50%
53 p → 0 x → 0 p → 1

x → 1
2

x

2n 2n−−√
2n

r

(r, 2n) = ( )P0
1

22n−r

2n − r

n
(21)

= (0, 2n) = (1, 2n) > (2, 2n) > (3, 2n) > …u2n P0 P0 P0 P0

2n = 100 (0, 100) = (1, 100) = 7.96%P0 P0

(5, 100) = 7, 17%P0 (10, 100) = 4.84%P0 (20, 100) = 0.73%P0

(30, 100) = 0.014%P0

p q

p ≠ q

p q

p q

N

p/N q/N N

p q

+1 −1

N

= +Sn S0 ∑
k=1

n

Xk (22)
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where   are independent and identically distributed (i.i.d.) random variables such

that   and  , with  . We can assume  ,

without losing anything in our reasoning.

What we’re going to study now is the behavior of the random walk in the presence of

two barriers, that is, two different values of  , let’s say a positive    and a

negative  , so that the random walk stops when it reaches one of these two

values. For example, suppose one of two players   and   stops gambling when he or

she gets   wins or   losses in a two-outcome game. This is called the ruin problem,

and we want to find out the probability of reaching    before    or vice

versa, and the mean duration of this process. We will start with the case 

 which is called unbiased since there is no drift toward the positive values

or the negative values. Then, we will move to the biased, and more general, case, in

which the two probabilities are different,  . In both cases, we will study similar

propositions, but their consequences will be very different.

The unbiased random walk. Let us immediately state the following proposition.

Proposition 4.1. Let  ,    and 

  be the first passage time through    or  .

Then 

The quantity    represents the probability that the random walk reaches 

 before   and similarly for  ;   is the expected mean value of the

time or of the number of steps needed to reach one of the two barriers. Let’s have a

look at Fig. 6, where   and  .

Figure 6. An illustrative example of the ruin problem for an unbiased random walk,

with   and  .

According to Proposition 4.1, the upper barrier at   is reached before the lower one

at    with probability  ; similarly, 

. The expected mean time is   units of time or

steps.

This is a well-known result, and it can be easily extended to the case in which the

particle does not start from    but from a point  , with  . For

instance, the expected duration becomes  .

Xk

P( = 1) = pXk P( = −1) = qXk p + q = 1 = 0S0

Sn y = A

y = −B

P Q

A B

y = A y = −B

p = q = 1
2

p ≠ q

A,B ∈ R A,B > 0
τ = min{n ≥ 0 : = A or  = −B}Sn Sn A −B

P( = A) = , P( = −B) = and E[τ] = ABSτ
B

A + B
Sτ

A

A + B
(23)

P( = A)Sτ

A −B P( = −B)Sτ E[τ]

A = 5 B = 3

A = 5 B = 3

A

B P( = A) = = 37.5%Sτ
3
8

P( = −B) = = 62.5%Sτ
5
8

E[τ] = 10

(0, 0) (0,k) k ∈ [−B,A]
E[τ] = (A − k)(B + k)
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The biased random walk. Now, let us change the game. Suppose we roll a die and we

take one step forward if we get   or   and one step back if we get   or   or   or  , so

that   and  . In technical language, we should say that we are extending

the previous argument to the case of a sequence of Bernoulli trials with probability 

  of success and a probability    of failure, with in general  , i.e.  , 

. In other terms, we have   i.i.d. random variables such that 

and we want to consider the biased random walk defined by 

Let us assume again  . In general, we call a random walk unbiased if   and

symmetric if  . Here now is the extension of Proposition 4.1 to the biased case.

Proposition 4.2. Let    be a biased classical random walk,  ,    and 

  be the first passage time through    or  .

Then we have 

 and 

The proof of Propositions 4.1 and 4.2 is not elementary, and the reader who is not

interested in rather technical details may omit their study. However, we want to

bring attention to a substantial set of consequences, which we gather in the

following remarks.

Remark 5. First, the unbiased random walk is a limiting case of the biased one for 

. This is proved in the appendix.

Remark 6. If    and  , we have  , 

 and  . This means that we get 

  in    steps. Similarly, if    and  , we have  , 

  and  . That is, we get    in 

 steps.

Remark 7. Let’s go back to the   and  . They are given by Eqs.

26, and, written as functions of  , they become 

In the symmetric case, i.e., for  , they are simply 

5 6 1 2 3 4
p = 1

3
q = 2

3

p q p ≠ q p, q ≠ 1
2
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P( = 1) = p P( = −1) = qXk Xk (24)

= +Sn S0 ∑
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n
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q

p
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q
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p

q
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q
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2
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q

p

B

E[τ] = (A + B) ⋅ 1 − B = A

A A q = 1 p = 0 P( = A) ∼ → 0Sτ ( )
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It is easy to show that they are equal only for  ; more generally, their behavior as

functions of   is shown in Fig. 7 for two different values of  .

Figure 7. Plot of the function   in red circle points and of the

function   in blue square points (a) for   and (b) for 

.

The farther the barriers are from the origin, the quicker the change in probabilities.

For instance, for   we need, roughly speaking, a ratio   to be almost

sure not to get the gain at  , whereas for   it is enough to have a ratio 

 to be almost sure not to reach our success at  . Let us stress this point. A

high value of   means that the probability   of a move down predominates. So when 

 is high, it becomes increasingly difficult to win. In fact, if   is about   in the case 

, it becomes practically impossible to win. In the case    a

lower ratio   between   and   is enough to make it practically impossible to win. In

fact, it is reduced to  .

If our strategy is to stop when we win   dollars or when we lose   dollars, then the

probability of reaching the win first before losing our budget becomes very, very

small as soon as the game becomes unfavorable to us. For example, it only takes a 

 to be virtually certain of losing $10 before winning $10! The following Table 4

can give us deeper insight into the numbers involved.

Table 4. Values of the functions   and   for 

 and  .

ρ = 1
ρ A = B

P( = A) =Sτ
1

1+ρA

P( = −A) =Sτ
1

1+ρ−A
A = B = 3

A = B = 10

A = B = 3 ρ = 4
+3 A = B = 10

ρ = 1.5 +10
ρ q

ρ ρ 4
A = B = 3 A = B = 10

ρ q p

ρ = 1.5

10 10

ρ = 2

A = 3 A = 10

P( = 3)Sτ P( = −3)Sτ P( = 10)Sτ P( = −10)Sτ

ρ = 51
49 47% 53% 40% 60%

ρ = 55
45 35% 65% 11% 89%

ρ = 60
40 23% 77% 2% 98%

P( = A) =Sτ
1

1−ρA
P( = −A) =Sτ

1

1+ρ−A

A = 3 A = 10
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As we can see from Table 4, the probability of winning for a gambler in an unfair

game depends on the value of  . Suppose that   also represents the final payout if it

is reached. If  , i.e., if he has only the    more to lose than to win, the

probability of winning   dollars is  , whereas the probability of losing   dollars is 

  but the probability of winning    dollars decreases to  , whereas the

probability of losing   dollars increases to  . This is much more conspicuous if

we reduce the probability of winning by  , that is, for  . In this case, the

probability of winning   dollars is  , whereas the probability of losing   dollars is 

  and the probability of winning    dollars decreases to  , whereas the

probability of losing   dollars increases to  . An imbalance of only   in favor

of the casino counterproduces a collapse in the value of the odds of winning to  !

Figure 8. Values of   as a function of   for three different values of 

: green triangle points  ; (b) blue square points  ; (c) red circle

points  .

It must always be kept in mind that in an unfair game, the probability of losing a

given amount of money is much higher than the probability of winning the same

amount of money, and the larger the amount, the more noticeable the difference

between these probabilities. Fig. 8 clearly shows how the probability of winning

decreases with   for different values of  .

Remark 8. Let us focus now on the expected duration   and study its behavior as

a function of   and of the barrier values   and  . When  , i.e., with a

symmetric barrier, the expected duration becomes 

and Fig. 9 shows its shape as a function of   for three different values of  :

A A

ρ = 51
49

1%
3 47% 3

53% 10 40%
10 60%

10% ρ = 60
40

3 23% 3
77% 10 2%

10 98% 10%
2%

P( = A) =Sτ
1

1−ρA
A

ρ ρ = 51/49 ρ = 55/45
ρ = 40/60

A ρ

E[τ]
ρ = q/p A B A = B

E[τ] = A ⋅
1 + ρ

1 − ρ

1 − ρA

1 + ρA
(30)

ρ A
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Figure 9.   as a function of   for three different values of   in the symmetric case:

green triangle points  , blue square points  , and red circle points  .

It can be observed from the figure–and can also be proved–that each plot has a

maximum for  , i.e.,  , and that its value, as expected, is  . Of course, the

plot has an intercept at the origin at   and goes asymptotically to   as  . In

the asymmetric case, the expected duration takes the form 

The behavior is not very dissimilar to the previous one. The intercept at the origin

still coincides with the value of   and the asymptotic value with the value of  . The

curve attains a maximum at a value of    if    and    if  . The

value of the maximum expected duration grows with   and with  . Let us finally

observe that the value of the expected duration is perfectly symmetric with respect

to an exchange of the values of   and  .

5. Back again to the origin

In the previous discussion, we gained more insight into the biased case, where the

probabilities of winning and losing are generally different. What we want to do now

is to go back to the problem of returning to the origin for a random walk, analyzed in

section 2, in the case  . Studying the return to

the origin of our random particle equals focusing on the event  {The cumulative

number of successes and failures are equal}. Of course, if at the  -th trial the

cumulative numbers of successes and failures are equal, then    must be an even

number,   and   trials must have resulted in success, the other   in failure.

The event   occurs at the  -th trial when  . Moreover, as before, the event 

{The first return to the origin occurs at the  -th trial} is defined by the

aggregate of sequences such that  . In this

case, the probability of the first few terms can be easily found by direct

computation: 

E[τ ] ρ A

A = 4 A = 3 A = 2

ρ = 1 p = q A2

A A ρ → +∞

E[τ] = [A − B ]
ρ + 1
ρ − 1

1 − ρB

1 − ρA+B

1 − ρ−A

1 − ρ−(A+B)
(31)

A B

ρ > 1 A < B ρ < 1 A > B

A B

A B

P( = 1) = p ≠ q = P( = −1)Xk Xk

E =
k

k

k = 2n n n

E 2n = 0S2n

E = 2n
≠ 0, ≠ 0, … , ≠ 0, = 0S1 S2 S2n−1 S2n

P( ≠ 0, = 0) = 2pqS1 S2

P( ≠ 0, ≠ 0, ≠ 0, = 0) = 2S1 S2 S3 S4 p2q2

P( ≠ 0, ≠ 0, … , ≠ 0, = 0) = 4S1 S2 S5 S6 p3q3

P( ≠ 0, ≠ 0, … , ≠ 0, = 0) = 10S1 S2 S7 S8 p4q4

P( ≠ 0, ≠ 0, … , ≠ 0, = 0) = 28S1 S2 S9 S10 p5q5
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and so on. For example, if  , the first step could take us up with probability 

 and down with probability  , but if we want to get back to   immediately, we need a

second step down with probability   or up with probability  , respectively. Summing

up the probabilities of two paths, we get  . It is a useful exercise to attempt to

obtain the other probabilities listed above. Here, we want to generalize Proposition

3.1, which we studied in the unbiased case, to the case  .

Proposition 5.1. The following equalities hold: 

In other words, by Eq. (8)  , the two events   a return to the origin

takes place at time  , and    the first return to the origin takes place at time  ,

have probabilities given by 

For instance, when    and    and we take  , the values of the two

probabilities are    and 

. Let us notice that the last probability is 

 of the first one.

A matter of transient or persistent states. We now want to focus on a subtle issue.

The event   related to a return of the random walk to the origin in any of the  -

trials is interpreted as the fact that we lose all that we gained or, vice versa, we re-

gain all that we lost. This event could happen a number of times after we started the

game. Let us try to formulate the issue in simple words. How many times do we

expect the event   to occur if the number of repeated trials increases? If we imagine

repeating the trials ad infinitum, what can we say about the expected number of

times   will occur? Although it may seem strange, we want to show that the event 

 will occur a finite number of times even if we repeat the trials ad infinitum. The

return to the origin cannot happen infinitely many times.

We now state a theorem. This theorem could appear difficult to understand at first

reading. What is more important to us is the subsequent argument, which is more of

a proof of the theorem and, for this reason, we do not postpone it to the appendix.

Let us denote  ={A return to origin occurs at time  } . Then

Proposition 5.2. The probability that infinitely many events    occur is  , or,

equivalently,  .

We will explain the meaning of this proposition gradually.

In Eq. (8), we defined   which is exactly the probability that a return to the origin

occurs at time  . Here we are interested in a great number of repeated trials, so we

suppose    is big enough. Let us start by using Stirling’s formula  , for 

, in order to write 

= 0S2
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Let us notice that1, if  , then    so that    and    converges

faster than the geometric series with ratio  . When  ,    but 

  diverges as it is asymptotic to a divergent generalized harmonic series.2 In

the first case, when it converges, we can compute the value of the sum of the series.

In fact, by setting   and  , and by using the following combinatorial

identity 

and the classical expansion 

We have 

The last equality is justified by:  . So we have just

proved that, if  ,  , which equals saying 

.

We now invoke a celebrated theorem, named the first Borel-Cantelli Lemma, to draw

our conclusion. The first Borel-Cantelli Lemma says that if the sum of the

probabilities of the events   is finite, then the probability that infinitely

many events   occur is  , or  .

Let us explain the meaning of  . We know that 

. If we consider  , we are taking all the events  , for

any , from the first trial to the ’last’ one, which is infinite. In other words, we are

taking all the possible returns to the origin   from time   to infinite. If we

consider  , we are taking all the events   from time   to infinite. If

we consider  , we are taking all the events    occurred from and after

time  . In this way, we do not consider events that occurred before time 

, that is, we are excluding events in the first stage of our experiment. Of

course, when    increases, the number of events left decreases, and we are

restricting to only the events that happened after such a time. Now let us imagine

that  . There will always be a certain number of events remaining after

time 2N, however great that time may be. These events left are in the intersection of

all the previous sets, obtained for each finite  . The set    is exactly

this intersection, the core of events left after each step in which we increase  .

Formally,  .

Now the probability related to the core of events left after    is given by 

. It is a general law of probability that  .

On the one hand, when    grows to infinity,    becomes our core set, the

intersection of all these sets, and so   becomes  . On

the other hand, when    grows to infinity,    is finite for sure since 

  is finite, as we proved above. This implies that the limit of the

remainder series is  , that is  . Therefore, in light of the

inequality a few lines above, we deduce that also  .

This means only one thing: from a certain point forward, the probability of an event 

  occurring is zero, or equivalently, that it can no longer happen that 

  vanishes. The cumulative sums    will vanish only finitely many times. The
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random walk will return to zero only a finite number of times. When this happens,

i.e., when, like in this case, we have only a finite number of returns to the origin, we

say that the recurrent event  {A return to the origin takes place at time  } is

transient.

What does this theorem tell us about gambling? In gambling terms, it says that after

a finite number of initial fluctuations around    the net gain will be positive and

remain so if   or will be negative and remain so if  .

We now merge everything we have said so far, particularly in section 3, to

demonstrate the probability that the random walk ever re-enters zero. The

probability to reach   before   obtained in Eq. (26) is 

We can adapt this formula to the case in which  ,    and 

 (equivalent to  ,   and  )3: 

As  , the probability that the particle reaches   before   becomes 

Note that when  , the upper bound barrier goes to infinity, that is, it

disappears. The probability that the particle reaches   before   is then 

and, in the limiting case, it becomes 

In a similar way, we can prove that 

Just a few more steps, and we are there. Let us call 

  the probability that the random walk, starting

from a point  , will sooner or later return to the same point. Then 

 If   we have 

 If   we have 
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 In general, we have 

Note that    represents the probability that the random walk, starting from zero,

will sooner or later return to zero. We can conclude that

if   then   and the point   is a transient state,

if   then   and the point   is a persistent state,

This result is very significant. It implies that, if  , the particle will pass a certain

number of times through 0 and then will continue towards constantly positive or

negative values according to the value of   and  . In other words, the probability that

it returns to   more than   times tends to zero. In the case  , the probability that

the particle returns to    more than    times remains equal to    and it will return

infinitely many times to  .

From all this, we conclude that if a game of chance is unfavorable to us, because for

us   is less than  , then after a certain finite number of fluctuations around zero in

the early stages of the game, in which we have now won and now lost, it will

eventually be our fate never to break even again, but to continue losing indefinitely!

Let us note that in the previous remarks, we also proved the following important

relation between   and  . If we compare results in Eq. (35),  ,

and in Eq. (38),  , we find out that 

 Therefore, if    is finite, then   and the passage by the origin is transient; if 

,    diverges, and the passage by the origin is persistent. This result will

remain valid in dimensions greater than one, as discussed in Appendix B.

6. Conclusion

We conclude by summarizing some of the most important lessons about the

unexpected dynamics of gambling that the study of the random walk has revealed

so far.

We first observed that, in a fair game, the probability of spending a very small or

very large fraction of the time on the positive side, that is, in the role of the winner,

is much greater than the probability of spending half the time on that side, as our

intuition might incorrectly suggest. Moreover, the difference between the

probabilities of the extreme cases and that of the   case increases with the

number of trials. It does not grow very fast, but it grows! We found that it grows as 

, where   is the number of trials.

We also learned that there is a probability of   that the less fortunate player will be

in the lead for    minutes at most, over an entire year of play, while the more

fortunate player will be in the lead at least for   days,   hours, and   minutes.

There is a non-negligible probability that the unluckiest player will only be in the

lead for a very, very small fraction of the year. But there is also a   probability that

the unlucky player will be in the lead for only   days out of  .

The probability of a tie is also very low. The hope of returning to    at least once,

which would mean regaining what we lost as less fortunate players, is less than 

= p ⋅ 1 + q ⋅ = 2p = 1 − (q − p)P0
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  cases out of    of repeated attempts, and the hope of returning to a tie several

times becomes smaller and smaller. And all this in a fair game!

When we moved to the unfair games, things got worse, as we might have expected.

For example, we found that if our strategy is to quit the game when we win A dollars

or when we lose our budget of B dollars, then the probability of reaching the win

before losing our entire budget becomes very, very small when the game becomes

even the slightest bit unfavorable to us. For example, it only takes a   ratio to

be virtually certain of losing $10 before winning $10!

Moreover, when, again, the probability of losing is double the probability of winning

and we take   trials, the values of the probability that we break even exactly at the

end of the game is   and the probability that it happens for the first time at the

end of the game is only  . As can be seen, the probability of breaking even at

the end of the game is very low.

Finally, through a nontrivial argument, we proved that in an unfair game, although it

may seem weird, the event related to a return to the origin is transient, that is, it will

occur only a finite number of times even if we repeat the trials ad infinitum. A return

to the origin cannot happen infinitely many times. Only in a fair game is the

probability that the random walk, starting from zero, will ever return to zero equal

to   and we are sure that it will, sooner or later, return to the origin.

Appendix A. Proofs

A.1. Proof of Proposition 1

Let’s take two points    and    in the positive quadrant with 

  and  . By reflection of    on the  -axis, we mean the point 

. An important lemma links the number of paths from   to   to the

number of paths from   to   and plays a crucial role in the proof of Proposition 2.1:

Lemma A.1. The number of paths from   to   which touch or cross the  -axis equals the

number of all paths from   to  .

Figure A1. Paths analyzed in the proof of the lemma

This preliminary idea is called the Reflection Principle.

Proof of the Lemma: consider a path  ,  ,  ,  ,  ,    from 

 to   having one or more vertices on the  -axis. Let   be the abscissa of the first of

such vertices, that is  ,  ,  ,  ,  . Then 
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,  ,  ,  ,  ,  ,  , …,  , is a path leading

from   to   and having   as its first point on the  -axis. There is thus a

one-to-one correspondence between paths from   to   and those from   to  , and

so between paths from   to   and those from   to  .

Proof of the main Proposition:   could be  ; but we are looking for positive paths,

so it must be  . Now, we are at the point   and we want to find out the

number of paths from   to the point   which neither touch nor cross the  -

axis. By the previous lemma, the number of such paths is equal to 

Here is why. Let’s have a look at Fig. A2:

Figure A2. Paths analyzed in the proof of the Proposition

We have

 as the number of all possible paths from   to  ;

 as the number of all possible paths from   to  , which

is the same as the number of paths from   to  ;

 as the number of all possible paths from   to  , which

is the same as the number of paths from   to  .

The set of all the paths from   to   that do touch the  -axis anywhere is in a

one-to-one correspondence with the set of all paths from    to  , since

they have to cross the  -axis at least once. This is established by reflection with

respect to the  -axis of the initial segment of the path at the step where it first

touches the  -axis. This number is given by    and it can be seen if we

change the coordinate axes by moving the origin to  . So, now we have to

subtract from the number of all paths from   to   the number of paths that

start at   and end at   and that touch the  -axis at least once. Coming back

to our language in terms of   and   and being   and  , we have 

 from which 
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and the proposition is proved.

A.2. Proof of Proposition 2

Each path such that  ,  ,  ,   and   must pass through

the point    and the number of paths such that  ,  ,  , 

 equals 

since  ,   and so   and  . This is equal

to    and it proves the first statement. Now let us consider a path joining 

 and  : if  ,  ,  ,  , then all its vertices lie on or

above the line  . Now, translating the origin to  , these paths connect the

point   to   and all their vertices are on or above the  -axis. We have

established a one-to-one correspondence between the paths satisfying  , 

,  ,   and those such that  ,  ,  ,   but with 

  replaced by    because we moved the origin to  . So this number is 

.

A.3. Proof of Proposition 3

Let us consider the space of paths of fixed length  . The total number of paths

from   to  , is  . We proved there exist 

paths from    to  , so the relation a) is proved. We have seen before that

there exist    paths joining    to    such that  ,  ,  , 

. Therefore, there are twice as many paths such that 

  and the corresponding probability is 

  and this gives relation  . The number of paths such

that    is equal to the number of paths such that 

  which is given by    and again we

obtain the probability by dividing by the total number of paths that, in this case, is 

  because after    we could go up or down. So again, we get 

  and    is proved. The probability that no zero occurs up to and

including time   is complementary to the probability that there is a first return to

the origin at any of the even times less than or equal to  . So we have 

  and this proves  . Finally,

the probability that we have paths such that   is complementary

to the probability of paths with a first passage to   at any time less than or equal

to  , and, as before, we get  . Finally, to prove the last equality in   and   we

have to take into account the combinatorial relation 

A.4. Proof of Proposition 4
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particle that stays on the positive side for   time units and on the negative side

for    time units must pass through zero. Let    be the time of its first

return to zero. We can have two cases depending on whether the particle was on the

positive or negative side before  .

1) Up to time    the particle stays on the positive side, and during the interval 

 it spends exactly   time units on the positive side:

Figure A3. Positive path from   to  .

Then there exist   paths of length   which return to the origin for

the first time at  . It is the total number of paths   multiplied by the probability 

  given by point d) of proposition 3.1. Half of these paths keep to the

positive side:  . Furthermore, by definition, there are 

  paths of length    starting at    and having exactly 

 sides above the  -axis. Thus, the total number of paths of length   of the

first type is 

2) From    to    the particle stays on the negative side, and between    and    it

spends exactly   time units on the positive side:

Figure A4. Negative path from   to  .
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Of course, now  , i.e.  . All the    positive intervals are to

the right of  , after  . So we can use the same argument as before but with 

 instead of   and the number of paths is 

It follows that, for  : 

Now let us suppose by induction that    for  .

Then we have: 

A.5. Proof of Proposition 5

Let us observe that, by means of the Stirling’s approximation formula 

So that, if we define the ratio   as 

and 

For  , we recognize the Riemann sum approximating the integral 

By setting   and  , we get 
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and eventually we have 

A.6. Proof of Proposition 6

In probability theory, a sequence of random variables for which, at any given time,

the conditional expectation of the subsequent value is equal to the current one,

regardless of any previous value, is called a martingale. This proof will use some

properties of martingales, and we refer the reader to the text  [2]  for some of the

technical details, particularly in reference to the stopped process and the stopping

time theorem.
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A.7. Proof of Proposition 7
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so that 

which equals 

Finally, we get 

We have also 
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The   may be given a more symmetric expression 

or 

A.8. Proof of the Remark after Proposition 4.2

If   then   and  , and we can consider an expansion of our functions

around  . If we set 

we have that 
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which is equivalent to
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directions - let’s say up, down, right, left. So there are four directions for each step,

and the choice of a direction is random with probability    for each one. We will

consider only finite walks. A given walk of length    is then performed with

probability  . We define loop as a walk that begins and ends at the origin. A walk of

length zero is a trivial loop, and a loop is said to be simple if it is not a concatenation

of two nontrivial loops.

Obviously, a loop has an even length. Let   be the number of loops of   steps.

The probability of a return to the origin in   steps (  includes all the steps in the 

- and  -directions) is then 

A return to the origin is possible only if the number of steps in the positive  - and  -

directions equals those in the negative  - and  -directions, respectively. So if we

divide the   steps into the four classes up, down, right, left and if there are   steps in
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Figure B1. Loop in two dimensions corresponding to the sequence  .

In this way, we have built a bijection between the loops in   and all the couples of
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we have 

the sums being extended over all   and   with  . It is easy to see that it is

equivalent to 

Let us observe that the quantity    represents a trinomial
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move one step each, their mutual distance either remains the same or changes by

two units, and so their distance either is even at all times or else is always odd. In the

second case, the particles can never occupy the same position. In the first case, it is

readily seen that the probability of their meeting at the  -th step equals the

probability of the first particle’s reaching in    steps the initial position of the

second particle. Hence, our proposition states that in one and two dimensions, but

not in three dimensions, the two particles are sure infinitely often to occupy the

same position. If the initial distance of the two particles is odd, a similar argument

shows that they will infinitely often occupy neighboring positions. In one and two

dimensions, the two particles are certain to meet infinitely often, but in three

dimensions, there is a positive probability that they never meet. It has been shown

that    and that this probability decreases with increasing

dimensions over the third one [3].
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Footnotes

1 This is related to the fact that the product of two numbers whose sum is constant is

maximum if the two numbers are equal.

2 Let us observe that    is not a probability distribution since    can be

greater than  . For instance, in our previous example, we have  . Instead,

we can interpret    as the expectation of a random variable which equals    or 

  according to weather a return to the origin does or does not occur at  -trial.

Hence   is the expected number of occurrences of such a return in   trials.

3 Remind that the lower bound is set to   with  .
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