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This paper introduces a new approach to cell clustering using the Variable Neighborhood Search (VNS)

metaheuristic. The purpose of this method is to cluster cells based on both gene expression and

spatial coordinates. Initially, we confronted this clustering challenge as an Integer Linear

Programming minimization problem. Our approach introduced a novel model based on the VNS

technique, demonstrating the efficacy in navigating the complexities of cell clustering. Notably, our

method extends beyond conventional cell-type clustering to spatial domain clustering. This

adaptability enables our algorithm to orchestrate clusters based on information gleaned from gene

expression matrices and spatial coordinates. Our validation showed the superior performance of our

method when compared to existing techniques. Our approach advances current clustering

methodologies and can potentially be applied to several fields, from biomedical research to spatial

data analysis.
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Statement of Need

In high-throughput omics, deciphering the intricate cellular dynamics within tissues is pivotal [1][2]. Cell

clustering is essential for dissecting the mosaic of cellular diversity [3][4]. This analytical approach seeks

to categorize individual cells based on shared molecular signatures, allowing the identification of discrete
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subpopulations within heterogeneous tissues. In exploring cellular behavior and function, cell clustering

emerges as an indispensable tool, providing insights into the subtle nuances of gene expression profiles.

The ability to stratify cells into meaningful clusters not only refines our understanding of tissue

composition but also lays the groundwork for precise insights into disease etiology and potential

therapeutic interventions.

In tandem with cell clustering, spatial transcriptomics  [5][6]  constitutes a revolutionary frontier for

understanding cellular dynamics with their native microenvironments. Beyond the traditional scope of

genomics, spatial transcriptomics integrates the spatial context of cells into the analysis, allowing

researchers to explore how gene expression patterns unfold across complex tissue structures. This

multidimensional approach surpasses the limitations of conventional transcriptomic studies, providing a

spatially resolved perspective that is indispensable for decoding the orchestration of cellular interactions

and the emergence of tissue-specific functions.

In order to contribute to this dynamic landscape, we introduce a novel methodology rooted in the

Variable Neighborhood Search approach [7]. Our innovation seeks to elevate the precision and efficacy of

cell clustering in spatial transcriptomic analyses, promising to reveal hidden facets of cellular

organization and functionality. In this work, we introduce a novel Variable Neighborhood Search (VNS)

approach tailored for cell clustering in spatial transcriptomics. Although our initial investigations

focused on datasets designed for cell-type clustering, it is essential to emphasize that our method's

design accommodates spatial domain clustering as well. Here, we present a synthesis of computational

skills and biological insights aimed at pushing the boundaries of our understanding of the complex cell

interactions within tissues.

Background

Clustering methods from the literature

Many methods in the literature can be used to partition an  -dimensional population into   sets based

on specific rules. In this paper, we focus on some of the most popular clustering methods used in the

field of data analysis, such as  -Means [8], Louvain [9], Leiden [10], and MClust [11]. While these methods

share the goal of grouping data points, they differ in the types of data they are designed for, the principle

they optimize, and the algorithms they are well-suited for.  -Means is a general-purpose clustering
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algorithm, Louvain and Leiden are tailored for community detection in networks, while MClust is a

model-based clustering method. In the following subsections, we briefly describe each of these methods.

-Means algorithm

The  -means algorithm [8] is a partitioning algorithm that divides a dataset into  -clusters based on the

similarity of data points. It starts by establishing   groups, each comprising a singular randomly chosen

point. Points are then added to these groups according to the principle that new points are assigned to the

group whose mean point is the most similar by some rule. After point allocation, the means of all groups

are adjusted to incorporate the influence of newly added points. Consequently, at each stage, the  -means

are reflective of the means of the groups they represent.

While this method is computationally efficient and adeptly handles extensive datasets, it does not

guarantee convergence to an optimal solution. Notably, issues arise from the random initialization of

centroids, leading to unexpected convergence patterns. Moreover, the algorithm requires users to choose

the cluster number beforehand, influencing cluster shapes and susceptibility to outlier effects. However,

it is known that certain special cases of the  -means algorithm exist in the literature where convergence

to an optimal solution is assured.

Louvain algorithm

The Louvain algorithm, developed by V. D. Vondel et al.  [9], is designed for detecting communities in

network or graph data. This algorithm aims to optimize modularity, a measure of the quality of network

division into communities, using two phases: (1) local moving of nodes and (2) aggregation of the

network. In the first phase, individual nodes are moved to the community that yields the largest increase

in the quality function. In the second phase, an aggregation network is obtained based on partitions, with

each community in a partition becoming a node in the aggregate network. These two phases are repeated

until the quality function cannot be increased further. However, the Louvain algorithm can potentially

produce communities with arbitrarily poor connectivity. In the most adverse scenarios, these

communities may become entirely disconnected, particularly during iterative executions of the

algorithm.
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Leiden algorithm

To address the connectivity issues of the Louvain algorithm, V. A. Traag et al. introduced the Leiden

algorithm [10]. The Leiden algorithm guarantees that communities are well connected and, when applied

iteratively, the algorithm converges to a partition where all subsets of all communities are locally

optimally assigned. The Leiden algorithm is partly based on the smart local move algorithm, which itself

can be seen as an improvement of the Louvain algorithm and takes advantage of the idea of speeding up

the local moving of nodes and the idea of moving nodes to random neighbors, the Leiden algorithm

considers these ideas to represent the most promising directions in which the Louvain algorithm can be

improved. The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the

partition, and (3) aggregation of the network based on the refined partition, using the non-refined

partition to create an initial partition for the aggregate network. Thus, this algorithm optimizes a quality

function to identify communities by considering the density of connections within the communities.

MClust

MClust  [11], applied in cell clustering, identifies distinct cell groups based on observed features using

Gaussian mixture models [12]. Unlike other clustering algorithms, MClust accommodates various cluster

shapes, making it suitable for complex situations. It utilizes the Expectation-Maximization [13] algorithm

for parameter estimation, offering robust handling of missing data and complex distributions. This

model-based clustering tool is powerful in uncovering patterns within complex biological datasets, such

as those from single-cell omics technologies. Initially designed for single-cell RNA sequencing data, it

can also be applied to spatial transcriptomic data, its effectiveness depending on data characteristics and

analysis goals.

Embedding methods from the literature

In spatial transcriptomics, where data is organized as a matrix with cells and genes, the high

dimensionality (often exceeding 30,000 genes) and sparsity pose analytical challenges. Dimensionality

reduction methods play key roles in addressing these issues. These techniques help distill meaningful

patterns from the data, facilitating more efficient analyses.

The generation of embeddings, achieved through established literature methods, aims to transform the

high-dimensional gene space into a more manageable form. This process enables a clearer exploration of

spatial relationships, cell heterogeneity, and underlying biological processes. By leveraging validated

qeios.com doi.org/10.32388/0Z3EG4 4

https://www.qeios.com/
https://doi.org/10.32388/0Z3EG4


methods from existing literature, we ensure a scientifically rigorous approach, condensing rich gene

expression profiles into interpretable embeddings while addressing computational complexities.

As mentioned previously, we performed dimensionality reduction using five different embedding

methods: STAGATE [14], Principal Component Analysis (PCA) [15], GraphST [16], Cell Clustering for Spatial

Transcriptomics (CCST) data [17], and STAligner [18].

STAGATE

The STAGATE method  [14]  has been designed for spatial clustering and denoising in spatially resolved

transcriptomics data. This method generates low-dimensional latent embeddings with both spatial

information and gene expressions via a graph attention auto-encoder. Notably, the method adopts an

attention mechanism in the middle layer of the encoder and decoder, which learns the edge weights of

spatial neighbor networks and uses them to update spot representations by collectively aggregating

information from their neighbors.

Principal Component Analysis

PCA [15] is a statistical method for dimensionality reduction and data visualization. It is a mathematical

procedure that transforms a set of correlated variables into a new set of uncorrelated variables known as

principal components. The principal components are linear combinations of the original variables and

are sorted based on how much they account for the variance within the data; i.e., the first principal

component accounts for the highest variance. PCA finds widespread application across domains,

including data analysis, machine learning, and image processing, aiming to streamline intricate datasets

and uncover patterns or associations between variables.

GraphST

GraphST  [16]  is an advanced self-supervised contrastive learning technique designed to maximize the

potential of spatial transcriptomics data. Integrating graph neural networks with self-supervised

contrastive learning, this method acquires spot representations that are both informative and distinctive.

This is achieved by minimizing the embedding distance between spatially neighboring spots

reciprocally.
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Cell Clustering for Spatial Transcriptomics data

CCST  [17]  leverages graph convolutional networks (GCNs) to integrate gene expression data and

comprehensive spatial information from individual cells in spatial gene expression data. The

relationships between variables are captured as a graph, with the adjacency matrix representing

connections among variables and the node feature matrix reflecting variable observations. The GCN

layer is strategically designed to fuse graph (in our case, spatial structure) and node features (gene

expression). Initially, the data is transformed into a graph, where nodes represent cells with gene

expression profiles as attributes, and edges represent neighborhood relationships between cells.

Subsequently, a sequence of GCN layers is used to incorporate graph and gene expression details into cell

node embedding vectors. Concurrently, the graph is perturbed to generate negative embeddings. By

learning the discrimination task, the neural network model is trained to encode cell embeddings derived

from spatial gene expression data, subsequently used for cell clustering.

STAligner

STAligner [18] is a specialized tool for aligning and integrating spatially-resolved transcriptomics data. It

begins by normalizing expression profiles for all spots and creating a spatial neighbor network based on

spatial coordinates. Employing a graph attention auto-encoder neural network, STAligner extracts

spatially-aware embeddings and uses spot triplets to guide the alignment process, fostering similarity

among related spots and distinction among dissimilar ones across slices. The introduction of triplet loss

refines spot embeddings by minimizing the distance from the anchor to positive spots and increasing

the distance to negative spots. This iterative process optimizes triplet construction and auto-encoder

training until batch-corrected embeddings are obtained. Furthermore, STAligner's versatility extends to

integrating spatial transcriptomics datasets, facilitating alignment and concurrent identification of

spatial domains across diverse biological samples, technological platforms, developmental stages,

disease conditions, and consecutive tissue slices for 3D alignment.

Implementation

Mathematical model

Let   represent the set of cells  ,  , and the total number of cells equal  . For each cell 

,  , let    and    represent its    and    coordinates, and let vector 

C = [ ]ci ci i = 1, … ,n n

ci i = 1,   … ,  n cxi c
y
i

x y
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  represent embedding values (   is the total number of embedding values).

Furthermore, let the distance function    be defined as a measure of the similarity

between the cells. In our model, for two cells    and  , the distance    was calculated as follows: 

, where    is the input parameter,    is the cosine similarity between

cell embeddings, and   is the Euclidian distance between cell coordinates:

In our model, we chose   different cells from the set of cells   to represent clusters and called these cells

centroids. Therefore, let the binary variables   ( ) and   be defined in the following way:

The Integer Linear Programming formulation of the clustering problem can be described as follows:

subject to these constraints:

The objective function (1) represents the sum of distances from each cell to its most similar cluster

representative. This function should be minimized. Equation (2) indicates that each cell is assigned to

only one cluster. Before assigning a cell to a cluster, the cluster needs to be defined (3). The total number

of clusters is equal to   (4). All variables are constrained to be binary (5).

The model described with equations (1)-(5) is based on the  -median classification and is presented in a

similar form by Davidović et al. [19].

= [ ,   … ,   ]cemb
i c

emb1
i c

embM
i M

D : C ×  C →  R+

ci cj D

D  = α    +  (1 − α)Dgene Dcoord α Dgene

Dcoord

( ,   ) = cosine ( , ) ,Dgene ci cj ci cj

( , ) = .Dcoord  ci cj +( − )cx
i

cx
j

2
( − )cy

i
cy
j

2
− −−−−−−−−−−−−−−−−−−

√

K C

xij i, j = 1, … ,n yi

= {xij
1,

0,

 if cell   belongs to the cluster represented by centroid ci cj

 otherwise 

= {yi
1,

0,

 if cell   represents the centorid ci

 otherwise 

min D( ,   ) (1)∑
i=1

n

∑
j=1

n

xij ci cj

= 1,  1 ≤ j ≤ n,  (2)∑
i=1

n

xij

≤ ,  1 ≤  i ≤  n,  1 ≤  j ≤  n,  (3)xij qj

= K,  (4)∑
i=1

n

yi

,   ∈ {0, 1} ,  1 ≤  i ≤  n,  1 ≤  j ≤  n.  (5)xij yj

K

p
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Variable Neighborhood Search Method

The VNS method is a well-known metaheuristic method. It starts from one point in the search space,

explores its neighborhoods, and repeats the process until a better solution or stopping criteria are

reached. This method was proposed for the first time by Mladenović  [20]  and later elaborated by

Mladenović and Hansen [21] and Hansen and Mladenović [22].

Before we introduce the VNS method, let us define the set   as the set of all

vectors   that have a difference of the   order from the solution  , and call that set   Neighborhood

to the solution  .

The VNS-based heuristic can be defined in a way that it starts from the initial feasible solution  , shakes

it by creating another solution  , and then applies a local search method to create a better

feasible solution  . If the feasible solution   obtained by the local search procedure is not better than

the current incumbent    ( ), the VNS algorithm repeats the procedure of shaking in the

neighborhood   (i.e.,   is incremented by  ) and local searches within it. It repeats this passage

until   reaches its maximum  . Otherwise, if  ,  becomes   and   becomes  .

The procedure of changing the neighborhood enables the VNS algorithm to get out from the local

minima. The process is repeated until a certain number of iterations or other stop criteria are reached.

Pseudo-code for the basic VNS algorithm is presented as Algorithm 1. Implementations of the functions

InitialSolution(), Shake(), LocalSearch(), and StoppingCondition() defined for our clustering problem are

described in the following subsection.

(X),Nk k = ,   … ,  k{min} kmax

X ′ kth X kth

X

X

∈ (X)X
′

Nk

X ′′ X ′′

X F ( ) ≥  X
′′

F ∗

Nk+kstep k kstep

k kmax F ( ) <  X
′′

F ∗ F ∗ F( )X ′′ k kmin
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VNS for the cell clustering problem

With respect to the problem's definition, let us assume that all cells can be represented by numbers from 

 to  . Specifically, cells can be represented by the set  ,  , and that for each cell   there are

two types of data: the   and   coordinates of the cell (  and  ) and the embedding values (vector  ).

In our representation, the solution vector   contains indexes of   cells chosen as cluster

representatives. Also, cell    is a centroid of the  -th cluster. From the centroid solution vector    we

obtain vector   of size   in the following way:  ,  , represents the closest centroid from

the   vector to the  -th cell. Our representation satisfies all conditions described by equations (2) - (5).

Using this representation, our goal was to minimize the value of the function   where 

 is defined as 

The function InitialSolution() randomly chooses K mutually different numbers from the set of numbers 

  and returns them as a  -dimensional vector  . For every solution vector  , vector    is

obtained in the following way: for each cell  , the distance   between the cell   and all centroids   from

the vector    is calculated; next,    is set equal to the    for which the distance    is minimal. That is,

whenever the vector    is changed, vector    is also updated. Also, to avoid repeated calculations, the

distance   between all cells is calculated and saved as a distance matrix.

1 n C = [ ]ci n = |C| ci

x y cxi c
y
i embi

Y = [ ,   … ,   ]y1 yK K

yi i Y

X = [ ]xi n xi i = 1, … ,n

Y i

F : C ×  C →   ,R
+

F F(X) = (α (i, ) + (1 − α) (i, )) .∑
n
i=1 Dgene xi Dcoord xi

{1,   … ,  n} K Y Y X

i D i yj

Y xi yj D

Y X

D
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The Shake() function takes two inputs: the incumbent   and the size   of the neighborhood that needs to

be explored. As a result, the Shake() function randomly chooses    elements from the vector    and

replaces them with    randomly chosen elements from the set    that are different from all

elements from the current  . This means that when some elements are changed, all elements in vector 

 will still be mutually different. In other words, the   function chooses a vector   from

The LocalSearch() function takes vector  , the distance matrix  , and the parameters   and   as

inputs. In our implementation, we used the first improvement strategy. Based on the value of the

parameter  , for each element of the vector  , the LocalSearch() function first chooses a random integer

number  ; next, based on the   value, keeps the observed element of the vector   as it is (

) or replace it with the new one ( ). For  , the observed element is replaced

with one of the candidates from the set of candidates that are created within the LocalSearch() function

(the LocalSearch() function searches for   candidates for which the   value from the observed

candidate is the smallest, sorts the list, excludes all candidates that are already present in the vector  ,

and then chooses one candidate for the replacement). Please note that the smallest    value

between the observed candidate and itself will be zero, so the condition    is necessary. In case 

,   will be chosen again until its value is not equal to  . Additionally, if the candidate list is

empty after excluding all elements that already exist in the vector  , a random candidate will be chosen

from the set 

Finally, after the procedure of replacing or keeping elements from the vector    is finished, i.e., a new

vector    is obtained, the    function calculates    and, if  , the first

improvement has been made, and the function returns the vector   as the output or repeats the whole

process. The process of examining elements of the vector    and replacing them with new values is

repeated only if no improvement is made, but not more than   times. In case no improvement is made

and the process has been repeated p times, the vector    will be returned as the output of this

function.

In other words, the LocalSearch() function examines elements in the close neighborhood of the observed

vector   by creating a new vector  , calculates the function value   and, if the function value is

less than the currently best value  , returns that vector. Otherwise, it will continue the process of

examining elements of the vector   but not more than   times.

Usually, the StoppingCondition() function checks if the maximal number of iterations ( ) or the

maximal running time ( ) have been reached. In our code, the StoppingCondition() function checks

Y k

k Y

k {1, … ,n}

Y

Y Shake() Y ′   (Y ).Nk

Y ′ distance m p

m Y ′

ind ∈ [0,m] ind Y ′

ind  ==  0 ind  >  0 ind ≥  2

ind distance

Y ′

distance

ind > 1

ind  ==  1 ind 1

Y ′

{1, … ,n} ∖ { ,   … ,   }.y1 yK

Y ′

Y ′′ LocalSearch() F( )Y ′′ F( )  <  Y ′′ F ∗

Y ′′

Y ′

p

=Y ′′ Y ′

Y ′ Y ′′ F( )Y ′′

F ∗

Y ′ p

maxiter

tmax
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only if the maximal number of iterations has been reached and, if the answer is  , returns the best

solution found as the result of the VNS procedure. If the maximal number of iterations has not been

reached, the VNS procedure continues its search.

Data Description

We assessed the performance of the clustering methods through quantitative evaluation, employing

datasets sourced from two distinct spatially resolved transcriptomic technologies: Stereo-seq [23] and 10x

Visium [24].

From Stereo-seq technology, two datasets were used for testing: a large dataset of a field mouse brain

hemisphere (SS200000128TR E2 benchmark) and another from the dorsal midbrain (Forebrain). The

large field mouse brain contains more than 38,000 cells and more than 20,000 genes and can be

downloaded from [25], while Forebrain contains more than 18,000 cells and more than 23,000 genes and

can be downloaded from [26]. Please note that Forebrain contains the whole dorsal midbrain. In our study,

we used manual lasso to separate a part of this dataset and called that part Forebrain. Both datasets are

composed of only one slice.

In order to evaluate the performance of the presented VNS method on multi-slice datasets, we used a 10x

Visium dataset containing spatial expressions of 12 human-layered dorsolateral prefrontal cortex

(DLPFC) sections. Since these 12 sections are from three different human donors, they were used as

multi-section (4-layers) datasets in our study. All layers of the DLPFC sections were manually annotated

by Maynard et al. [24] and can be downloaded from [27]. Viewing them as the ground truth, we compared

the clustering accuracy of the VNS method with other clustering methods using only embedding

obtained by the vertical spatial transcriptomic integration provided by STAGATE.

Analysis

Input parameters

Testing was conducted on the AWS instance m6a.48xlarge under the Linux operative system.

Input parameters for our algorithm are the number of clusters ( ), the percentage of the influence of the

embedding values ( ), the maximal number of neighborhoods that should be searched ( ), the

true

K

α ,kmax
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maximal number of iterations ( ), and the local search parameters    and  . The minimal ( )

number of neighborhoods and step ( ) are set to   by default.

The input parameters used for testing are    (   means that no additional spatial

information is included, while   means that   of spatial information is used for calculating the

distance between the cells),  ,  , and  .

Evaluation method

We used the Adjusted Rand Index (ARI) [28] to evaluate the results and compare them with each other. ARI

is a measure used to evaluate the performance and similarity between two clustering algorithms. It

quantifies the agreement between the true and predicted clustering, adjusting for the amount of

agreement that could occur by chance. ARI values range from -1 to 1: where 1 indicates the perfect

agreement, 0 indicates agreement expected by chance, and negative values suggest less agreement than

expected by chance.

Results of the VNS method across various scenarios with single-slice datasets

Due to the sparsity of the gene expression matrix and to ensure a fair comparison, embeddings were

obtained using various methods from the literature (PCA, STAGATE, GraphST, and CCST) for both Stereo-

seq datasets. Moreover, all methods create embedding that significantly reduces the number of genes to a

much smaller set of features. For instance, the CCST method reduced the number of genes from the

Forebrain dataset to 128 features, STAGATE to 64 features, PCA to 50 features, and GraphST to 20 features.

For the E2 dataset, all parameters were the same except for STAGATE, where the number of features was

lowered to 30. Hence, the input data depend on the number of cells and the number of obtained features

(embeddings). The standard clustering methods from the literature ( -Means, MClust, Louvain, and

Leiden) and the proposed VNS method for cell clustering were applied to the generated embeddings. The

results of the testing are presented in Tables 1 and 2.

The goal of the VNS method was to find the solution with the smallest cost function, and we show these

results in Table 1. Table 1 shows results obtained by the VNS method only and is organized as follows: the

first column presents the name of the embeddings used as the input to the VNS method, while the

following four columns ( ,  ,  and  ) show the smallest cost function value, the

corresponding running time, and the statistical analysis of all solutions obtained by VNS when

comparing to the presented cost function value in that order. In other words, due to the stochastic nature

maxiter m p kmin

kstep 1

α ∈ {1,  0.95} α  =  1

α = 0.95 5%

∈ {10, 15, 20, 25, 30}kmax m ∈ {10, 12, 15, 20, 30} p ∈ {10, 12, 15, 20}

k

fVNS tVNS err, σ
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of the metaheuristic, the VNS algorithm was run 20 times (for 20 different seeds) for each embedding,

and information regarding the best solution value obtained in these 20 runs is provided in these four

columns ( ,  ,  and  ). More precisely,    presents the minimal cost function value

obtained after these 20 runs;    is the corresponding running time for the presented solution value; 

 and   contain additional information on the quality of the solution:   is the average relative error of

found solution from the presented one and is calculated as  , where 

 where   is the VNS solution obtained in the   run (seed). The

value    is the standard deviation of    and is calculated by    For each

embedding method, the results obtained by VNS are presented in separate rows.

The results presented in Table 2 are organized into three groups. Similar to Table 1, the first column (first

group) presents the name of the method used for creating the embedding. The next ten rows present the

results for each clustering method separately; for each method, we provide the ARI score ( ) and the

running time ( ) in seconds. The   and   values under the VNS columns stand for the best found 

score obtained for all testing combinations and the corresponding running time. The highest   score

achieved for some datasets among all clustering methods is highlighted in bold, while the second-best 

 score is highlighted by an asterisk (*).

In both tables, the first set of results corresponds to the E2 dataset, and the next corresponds to the

Forebrain dataset. The E2 dataset results are visualized in Figure 1, while the Forebrain dataset results are

visualized in Figure 2.

fVNS tVNS err, σ fVNS

tVNS

err σ err

err = er1
20
∑

20
i=1 ri

err_i = |V N   −   |/|V N |,Si fVNS Si V NSi ith

σ err σ  = .1
20
∑

20
i=1 (er − err)ri

2
− −−−−−−−−−−−−−−−−

√

ARI

t ARI t ARI

ARI

ARI
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Embedding  (s)

E2

CCST 1,019.7419 48.8355 0.1626 0.0476

STAGATE 2,706.7446 110.258 0.1196 0.0415

PCA 9,550.0142 79.1977 0.0320 0.0118

GraphST 10,083.5379 64.95 0.0197 0.0059

Forebrain

CCST 427.8511 47.8054 0.1579 0.0439

STAGATE 543.0947 52.7096 0.0925 0.0347

PCA 3,541.7886 50.1935 0.0214 0.0073

GraphST 2,209.235 92.0103 0.0473 0.0140

Table 1. VNS solution for single-slice datasets. Values in columns  ,   and   are obtained as

explained in the Analysis section.

fVNS tVNS err σ

fVNS ,  errtVNS σ
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Embeddings

Leiden Louvain -Means MClust VNS

ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s)

E2

CCST 0.1553 29.1638 0.1518 5.7702 0.1962* 15.3243 0.1401 4,799.5287 0.2224 47.5667

STAGATE 0.1951 7.5198 0.2176 6.3803 0.2907 2.62854 0.2052 516.8929 0.2890* 59.7737

PCA 0.0001 6.8347 0.1316 9.9780 0.2072* 12.0037 0.2024 1,128.1911 0.2907 235.465

GraphST 0.0841 14.8255 0.0697* 13.0344 0.0492 4.2599 0.0635 533.1441 0.0636 47.5184

Forebrain

CCST 0.0925 25.7164 0.0961* 2.5659 0.1093 8.7788 0.0821 1,330.3455 0.1263 18.6987

STAGATE 0.1753 3.6952 0.1676 3.6263 0.1775* 6.0085 0.1718 269.9742 0.2342 24.6907

PCA 0.1659 4.4805 0.1674* 3.7720 0.1717 6.4302 0.1025 147.4443 0.1568 45.2866

GraphST 0.1738 3.8813 0.1847* 4.6558 0.1833 1.8972 0.1709 73.0143 0.2104 9.2064

Table 2. Clustering method comparison for single-slice datasets. The highest ARI score achieved for some

datasets among all clustering methods is highlighted in bold, while the second-best ARI score is highlighted

by an asterisk (*).
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Figure 1. (a) Results of the VNS clustering on the E2 dataset. The first figure on the left presents the ground

truth data. These results were obtained using the VNS method with PCA, STAGATE, GraphST, and CCST

embeddings. (b) Clustering results for the E2 dataset. Each row presents the clustering results obtained by  -

Means, MClust, Louvain, Leiden, and VNS over a certain embedding method. Therefore, the first row presents

the results obtained by all clustering methods when using PCA embedding. The next three rows used

STAGATE, GraphST, and CCST embeddings.

k
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Figure 2. (a) Results of the VNS clustering on the Forebrain dataset. The first figure on the left presents the

ground truth data. These results were obtained using the VNS method with PCA, STAGATE, GraphST, and

CCST embeddings. (b) Clustering results for the Forebrain dataset. Each row presents the clustering results

obtained by  -Means, MClust, Louvain, Leiden, and VNS, over a certain embedding method. Therefore, the

first row presents the results obtained by all clustering methods when using PCA embedding. The next three

rows used STAGATE, GraphST, and CCST embeddings.

k
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VNS clustering achieves better results than other tested methods using the E2 dataset

From the first part of the results shown in Table 1, we can conclude that, using PCA embedding in all 20

runs, the values of the cost function are very close to the lowest cost function value ( , 

). Using STAGATE, we have some differences, although    is still below    implying that the

VNS method is stable with both embeddings. The results of VNS clustering when the smallest cost

function values are reached are visualized in Figure 1a, while the results with the best ARI score achieved

by all clustering methods are shown in Figure 1b.

VNS methods outperform other methods when clustering cells from the Forebrain dataset

By examining values from the   and   columns in Table 1 for the Forebrain dataset, it can be easily seen

that differences between the results obtained in 20 runs are very small. In fact, the difference between

the best-found solution (the solution with the minimal cost function value) and the other 19 solutions is

less than 5% (the average relative error   is less than 5%). This result means that the solutions found in

all 20 runs were very close to the smallest one. Also, from the results in the column  , we can observe

a running was less than 1 minute for three different embedding types and less than 2 minutes for one

embedding type.

Moreover, from the results presented in Table 2 for the Forebrain dataset, we can see that, in the majority

of cases, VNS had the highest   score compared to the other methods (for three types of embedding,

the    score was the highest). Also, the running time was less than 1 minute for each type of

embedding. The only embedding for which the VNS did not find a solution with the best   score was

the PCA one, and for this embedding, the best  score was obtained by the  -Means method.

By analyzing the results in Tables 1 and 2, we conclude that the VNS method achieves the best   score

with the STAGATE embedding, and that in all   runs all solutions were close to the one with the lowest

cost function ( ). The results obtained with the minimal cost function and the maximal 

 score are visualized in Figure 2.

VNS demonstrates a superior performance on multi-slice datasets

Next, we compared the clustering accuracy of the VNS method with other clustering methods by using

embeddings obtained by the STAligner method only. Compared to other embedding methods used for

single-slice datasets, it is worth mentioning that STAligner reduces the number of genes to 30 features.

The results of this comparison are presented in Tables 3 and 4. Table 3 is organized similarly to Table 1.

err  <  3.5

σ  <  1.5% σ 5%

err σ

σ

tVNS

ARI

V NS ARI

ARI

 ARI k

ARI

20

err  <  1%

ARI
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The only difference is in the first column, which, in this case, is called Slice name. Since DLPFC datasets

are 4-layered slices, this column contains the names of the first and the last slices in this particular

dataset. Other slices imply. Thus, each row represents the results for one separate DLPFC dataset.

Table 4 is organized similarly to Table 2; however, the column Embeddings is replaced by the column

Slice name, and the names of the first and the last slices from particular multi-slice datasets are

presented. Other slices imply. The results for each dataset are presented in separate rows, as in Table 3.

The results from Table 3 are visualized in Figure 3.

As we see from the columns   and   in Table 3, in all 20 runs, the VNS method obtained results similar

to the ones with the smallest cost function (   < 5.8%,    < 2.5%). Again, these results imply that the

method is stable even for multi-slice datasets. The fact that results from the columns   are smaller

than 5 implies that this method can obtain results for four slices of these types of datasets in less than 5

seconds.

From the results presented in Table 4, it can be concluded that the method proposed in this paper

outperforms other clustering methods in all aspects. Specifically, for each of the datasets we tested, 

 score was the highest and the running time was the lowest when the VNS method was used.

Slice name

151507_151510 890.7088 4.2262 0.0884 0.0390

151669_151672 755.7133 2.8674 0.0866 0.0273

151673_151676 513.8781 1.1983 0.0923 0.0396

Table 3. VNS solution for multi-slice datasets.

err σ

err σ

tVNS

ARI

fVNS tVNS err σ
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Slice name

Leiden Louvain -Means MClust VNS

ARI t (s) ARI t (s) ARI t (s) ARI t (s) ARI t (s)

151507_151510 0.3440 27.3778 0.4293* 4.0119 0.3061 2.1001 0.3489 62.5176 0.4887 2.1094

151669_151672 0.4084 26.9197 0.4985* 2.9611 0.2213 1.6839 0.4633 39.1007 0.6156 1.3014

151673_151676 0.4370 25.1056 0.4754* 2.6766 0.3299 1.4413 0.4316 49.1890 0.5016 0.8573

Table 4. Clustering method comparison for multi-slice datasets. The highest ARI score achieved for some

datasets among all clustering methods is highlighted in bold, while the second-best ARI score is highlighted

by an asterisk (*).

k
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Figure 3. The clustering results on the DLPFC datasets 151507-151510, 151669-151672, and 151673-151676 are

presented in panels (a), (b), and (c), respectively. The first column shows the ground truth data, while the

subsequent columns display the results obtained using  -Means, MClust, Louvain, Leiden, and the VNS

method with STAligner embeddings.

Discussion and Conclusion

Here, we introduced a novel approach suitable for clustering both single- and multi-slice spatial

transcriptomics datasets. This is the first application of a metaheuristic method, called the VNS, to the

clustering of spatial transcriptomic data. The essence of the VNS implementation presented in this study

is the utilization of a combinatorial/mathematical optimization algorithm; in this instance, a

metaheuristic approach. These methods are strategically designed to deliver sufficiently optimal

solutions to optimization and machine learning challenges while minimizing computational resources.

This approach is intended to offer a robust and computationally efficient solution for cell clustering in

spatial transcriptomics.

Our analysis demonstrated that the performance of clustering methods is significantly influenced by the

choice of embeddings and the way they were generated. Notably, the VNS approach combined with PCA

embeddings yields results that closely align with the ground truth, as illustrated in Figure 2b. When

benchmarked against existing techniques, our method consistently outperforms in terms of efficiency

and ARI scores. The algorithm’s speed and stability are commendable, and its flexibility is evidenced by a

comprehensive set of parameters that can be tailored to meet diverse user requirements. Future research

will extend the method’s application to time-series datasets and explore additional VNS modifications

and embedding techniques to enhance its utility.

Availability of source code and requirements

Project name: VNS

Project home page: https://github.com/STOmics/VNS/tree/main

Operating system(s): Linux

Programming language: Python

License: MIT

RRID:

k
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Data availability

From Stereo-seq technology, two datasets were used:

1. a large dataset of a field mouse brain hemisphere (SS200000128TR E2 benchmark), which can be

downloaded from Zenodo [25]

2. Forebrain, which can be downloaded from the CNGB MOSTA database

https://db.cngb.org/stomics/mosta/download/.

Additional data is also available in GigaDB  [29]. We used only one part of Forebrain, which was

extracted using a manual lasso.

Abbreviations

ARI, Adjusted Rand Index; CCST, Clustering for Spatial Transcriptomics; DLPFC, dorsolateral prefrontal

cortex; GCN, graph convolutional network; PCA, Principal Component Analysis; VNS, Variable

Neighborhood Search.
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