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ABSTRACT: Utilizing the quantum mechanical formalism describing the “double slit” 

experiment, where quantum particles make a choice, a model is presented to describe the 

psychological equivalent in a human mind, Neural Quantum Superposition. The probabilities 

of choosing between two options are formally developed and the evolution in time is 

analyzed. The importance of entangled (correlated) states of mind is highlighted, which also 

models the action leading to a change of mind.  
 

     1. Introduction 

In a recent article [1] the role of the logical and intuitive mind (elements of the human 

consciousness) in the creation of artificial intelligence programs in chemistry 

(chemoinformatics) [2,3,4] was briefly discussed. Also, an Arbeitshypothese was briefly 

presented, showing that the patterns of human thought in the action of decision making and 

in the change of mind, seem isomorphic with some basic formalisms of quantum mechanics 

(QM).  In this article a more extended presentation of such a hypothesis, Neural Quantum 

Superposition (NQS), is discussed. Previously some researchers have already pointed out 

the fact that human consciousness seems to manage problems, whose structure cannot be 

described by simple logical (Boolean) statements [5] or by classical statistics [6]. These 

theoretical approaches do not presume the existence of a real, biological QM fabric of 

consciousness, limiting their statements to the apparent similarity between QM formalisms 

and human behavior (quantum cognition [7]).  Inside the dynamics of neurochemistry the 

human mind is capable of allocating thoughts that are antinomic or do not obey to the law of 

total probability, like e.g., self-referential statements: a known liar expresses a sentence S: “I 

am a liar”.  If he speaks the truth than S is false (as he contradicts it by saying the truth), if he 

lies however then S if false (as he is not a liar in this case). So, S cannot be proven true or 

false, although we know that it is true! It seems that true and false can coexist within a single 

statement S in the human consciousness, which can be formally described by a superposition 

of the two antinomic states, as 

https://doi.org/10.32388/10QN54 

mailto:Prof.marsili@gmail.com


 

 

State-of-mind(S) = (True) + (False).  

This category of problems pertains to the Goedelian class of incomplete systems, where the 

non-provability of a true statement is formalized in the incompleteness theorem [8]. For 

example, think of a human eye perceiving all the objects contained in a room (chairs, paintings 

etc..). The observer recognizes all the visible objects and compiles a list. This list, regardless 

of how hard the eye looks, will be incomplete. Why? Because the seeing eye cannot see itself! 

So, there is at least one object missing in the list, the eye, which cannot be proven to exist, 

but the observer knows that it exists (because he experiences the act of seeing) [9]. This 

approach can be extended to consciousness itself. Regardless of the amount of introspection, 

consciousness can hardly completely observe itself, thus leaving space for an ontological gray 

area of indetermination. In a social environment the mind can manifests patterns of behavior 

not coherent with classical statistics (the so-called sure thing). Imagine an opinion poll with 

the question “…is our local governor doing a good job? “. Say, 34% of the interviewed people 

answer YES, 45% answer NO, and the remaining 21% says NOT SURE. They seem to float 

in a mental state of irresolution and uncertainty, where the two states YES, NO are mixed, or 

entangled. Again, their state of mind can be represented by a state of superposition  as 

        (NOT SURE) = (YES) + (NO) 

The interesting thing is that in neurochemistry we have the same array of neurotransmitters 

(GABA, glutamate, dopamine, acetylcholine, etc., etc..) at the neuron’s disposal and yet their 

different deployment (call it a constellation) provides for the existence of a set of three states 

S of consciousness: S1 is linked to a constellation of neurotransmitters encoding the state of 

mind of answer YES. S2 is the constellation leading to answer NO. But what is the 

constellation S3 leading to NOT SURE? Which molecular species and in what concentration 

do they form a constellation that is responsible for the undefined answer?  We are tempted to 

adopt the mysterious concept of superposition of states. The sure thing paradigm of classical 

statistics, where the sum of probabilities of all possible independent outcomes must equal 

100%, breaks down when human consciousness is observed. In throwing dice, each face has 

1/6 probability of showing. There is no seventh face for a superposition of, say, numbers 3 

and 5 at the same time! Dice do not conform to superposition of states. But, apparently, the 

human mind does. Therefore, we to try to model the dynamics of the mind utilizing, as a 

tentative Arbeitshypothese, the QM superposition formalism in describing hardware-based 

QM experiments. We shall focus on the superposition of neural quantum states and their time 

evolution. This approach will reveal isomorphisms between the QM formalism and the 

consciousness dynamics in choice selection and in the change of mind. To do this we must 

introduce the paramount experiment of QM, that represents the essence of quantum 

superposition: the double slit experiment (DSE). 
 

      2. The Double Slit Experiment  

 

The double slit experiment displays the ontological probabilistic nature of quantum 

phenomena [10]. An electron shooting gun G sends single electrons downrange towards a 

screen S that contains two narrow slits close to each-other. Behind S there is a photosensitive 

film F. When slit B is closed electrons pass one-by-one through slit A only, and leave a 

blackened area on F in correspondence to the aperture A. When A is shut, then electrons 



 

 

travel through slit B only, and a black spot is detected on F corresponding to the location of 

slit B (Fig.1a,b). We describe the wave nature of the electron traveling along  two paths A and 

B with  complex quantum state functions A and B within a finite space V. 

 
 

Fig.1a,b  Single electrons travel from a source G to a photosensitive film F passing through a barrier with two 

slits. When only  slit A is open and B closed, a blackened area of the many electron  impacts is found on F (a).  

When slit A is shut and B is open, a similar effect is detected on F in correspondence with slit B. 

 

The single probability (A) and (B) of finding the electron on a point of impact, POI, xi or xj 

on F behind slit A or slit B is given by  2(A) and  2(B), according to the Born density rule. 

Now, if both slits are kept open at the same time, one would expect that both dark areas 

behind A and B would appear at the respective POI. Then, the overall probability distribution 

 would follow the law  =  2(A) +  2(B). However, this is not what is observed 

experimentally. Instead of the expected sum of two independent density patterns, a 

remarkable interference pattern is recorded on F (see Fig.2). 

 
 Fig.2  If both slits are left open, electrons do not hit the film at the corresponding areas behind the slots, but an 

unexplained interference pattern appears all over the film. The dotted areas on the right show the multitude of 

points of impact on F, together with the cumulative probability density function on the far right (computer graphics 

by Alexandre Gondran) 



 

 

 

 

 This can only arise from two waves originating at A and B, which interfere along the way to 
F. But we have just one electron emitted, so how can one elementary particle travel through 
two separate slits at the same time and interfere with itself? It cannot go though A only, or 
through B only, because we would get no interference pattern in such a case. But it cannot 
go through both apertures at the same time, as it cannot split into two half-electrons, either. 
But, even more mindboggling, it cannot not go through both slits, because  interference 
demands two points of origin of the overlapping waves! It is from the repetition of thousands 
of runs, each involving one electron at a time, that the dotted area POI in Fig.2 is generated. 
The cumulative aspect of brighter and darker stripes is not the shape of the electron wave 
function. It is the resulting image of the sum of all individual impacts at different positions xi on 
F. When an electron hits the film at coordinate xi it is found there as one full electron with 

100% probability. There is a sudden transition of the probability wave  with an infinite 
number of position coordinates and the corresponding probability values, to one coordinate xi 
only, a one-value Dirac distribution (xi,0). This finding is called the collapse of the wave 
function. This fundamental experiment of QM is the source for a change of paradigm in 
confronting our logical mind with an ontologically inexplicable quantum world [11]. We must 
accept, that “something” we call a single electron flies towards F along both paths A and B at 
the same time. Something that apparently knows about the existence of multiple paths to F! 
To model the interference pattern the probability density function needs the superposition of 

quantum states  : formally the electron  perceives both slits at the same time 

 

  = a + b          eq.1    

 and a,b being the  weights of A,B . With a symmetric arrangement of the experiment , 

where paths G-A and G-B are identical in length,  a = b = n.  

The probability density function is then   

                                                                                                                        

 = n2( + )( + )       eq.2       (* meaning complex conjugate)                                                                                                    

                                                                                                                                      

 = n2(
 +  

  + 
  +  

  )    eq.3      

                                                                                                         
and the QM normalization postulate, for having 100% probability  inside the finite V in which 

 acts, requires  

                                                ∫  
 

𝑉
 dV = 1           eq.4 

 

Expressing the electron path functions simply with plane waves 

 

                         = e−i(kx(A)-t) and    =  e−i(kx(B)-t)       
we obtain 

 

  =  n2(e−i(kx(A)-t) + e−i(kx(B)-t)) (ei(kx(A)-t) + ei(kx(B)-t)) 

  =  n2(e + e + e−i(kx(A)-t)ei(kx(B)-t) + e-i(kx(B)-t)ei(kx(A)-t)) 



 

 

                                                                                                                                                                                                                                                      
and because paths A and B are isoenergetic ((A) = (B)) we have  

 

 = n2(   +  + e−ikx(A)eikx(B) + e-ikx(B)eikx(A)) 

 = n2(   +  + e−ikx(A)+ikx(B) + e-ikx(B)+ikx(A) ) 

 = n2(  +  + eikx + e -ikx  )      

eikx + e -ikx   = ( coskx + isinkx ) + ( coskx - isinkx ) =  2coskx  

 

with x  being the difference  in the two paths BF, AF between slit A and B and film F  : 

 x  = x(BF-) - x(AF)  . This difference is what determines a constructive or destructive 

interference and thus gives rise to the wavy intensity pattern on F (see Fig2). 

We are left with a  real term only that contains two local variables, x(BF) and x(AF). 

 

We need  ,(eq.4) , < > =    (normalization of the probability)   

 

     ∫  
 

𝑉
 dV  = ∫  

 

𝑉
𝑛(  +    +   coskx  ) dV  = 1   and with   coskx =  

    

     ∫  
 

𝑉
 dV  =    𝑛∫  

 

𝑉
(  +    +   )dV=     1                               eq.5  

 

     As plane waves are not square-integrable and thus not normalizable in the beginning we can 

     only say that   < >  ~ ∫  
 

𝑉
 dV  .  But  this  is irrelevant for our discussion, the point is the 

    existence of  a nonlinear term in  eq.3, manifest as   in eq.5.  We  see  that  the  probability        

    density is now depending on the third term where two separate variables act simultaneously 

    to model the interaction intensity [12]. 

    The  parameter    is  a  value determined also  by  the  specific  experiment  geometry. 

     It is , as  eq.5, time  independent.  We  shall  see  later, that   in  the description of the NQS 

    consciousness dynamics, this parameter will be time dependent . 

The probability density is dependent on the angle between the two paths of travel. If, for 
example, the two trajectories would be the same, (when the distance between A and B 

becomes zero there is only one path k) then   =  =  and the interaction term would 

become 
2 and so  =  

2 . The mere existence of two slits (choices) , automatically entails 

the existence of an entanglement between two apparently separate paths. We call them 
entangled  because the existence of one path (when both slits are open) entails the existence 
of the other! Conversely, the manifestation of an interference pattern reveals the existence of 

two competing paths (choices).  If the angle widens, the terms 
  decrease, until total 

decorrelation is achieved (at 900). The two choices, A or B, have now become independent, 
and we no longer have a DSE, but two separate single slit experiments with vanishing 

interference We shall transfer this knowledge about DSE  into the more complex biological 

realm of the human consciousness. The modeling of psychological experiments involving two 
options A and B, will reveal an interesting isomorphism between the QM formalism of a DSE 
and the  dynamics of conscious selection and the change of mind. 



 

 

 

 

  

 

  

    

  3.  Neural Quantum States 

 

DEFINITIONS:  

- We call the experiment of conscious perception, positive recognizing and awareness of two 

objects A and B, an Erlebnis Experiment, EE. 

- We call the human experiment of the selection of one option out of two (A, B) a choice within 

an EE.  We model the system with     being norm-1 real functions, as found in modeling  

an “electron in a box”. We simply assume that     are steady waves inside a defined 

segment of the brain of length L and volume V. They are encoding the “awareness” of objects 

A and B. They are time independent in this first approximation, depending on local variables, 

and describe  the conscious state of mind, in which, simultaneously, an array of stimuli, 

visually or memory generated, act on specific regions of the biological neural network we call 

brain. If a test person M looks at two shirts of different colors in a fashion shop, we call his 

becoming conscious of the two shirts and of their colors, an Erlebnis. We deal here with an 

EE where a choice between two options, the colored shirts for example, must be performed. 

        Let NA, NB be two ensembles of biological neurons that are activated inside a specific 

brain region. Let f(NA,), f(NB) encode different specific neurochemical constellations 

(consisting of chemical species, their concentrations, neural rest or action potentials, blood 

pressure, etc., inside the ensembles of neurons NA, NB). Thus, constellations f(NA) and f(NB) 

are real physicochemical systems and originate from the stimuli of the two objects, A and B, 

perceived visually at the same time during the EE. Let now formally represent the 

constellations f(NA) and f(NB) as QM state functions  and B during an EE. A and B 

describe the effect of f(NA) and of f(NB) on consciousness. 

A, B (real objects) → transformation into→ f(NA), f(NB) (neurochemistry)-→representation 

by→  ,B (QM mathematics) 

 We have introduced the concept of superposition of state functions as shown in eq.1.  

         =  +    (  are now general parameters) 

 

  .  If we assume in our NQS Arbeitshypothese that QM rules at neural level, then we must  

accept that the density function is given by the squared superposition state of  

 and    as in eq.2 of the DSE. 

  

 =    = ( + )( + )         

    = (A  + B  +  B) ,   (  = 2 ) 

 



 

 

In analogy, we have to assume that the two brain functions A, B generate an 

entanglement term B, where the two choices A and B are not separable. Note that the 

entanglement term is mandatorily entailed in the application of QM superposition formalism 

to our neural EE description. Psychologically this entails the following consideration: if two 

similar objects A and B are perceived by M and he must choose one of them, a mental state 

of entanglement, or interference, is automatically present in his mind ! 

 

The normalization postulate again requires eq.5 , with  <B> being the correlation 

coefficient , which is close to 1 when     are similar , i.e. highly colinear. We have 

assumed in this simple model, that the mental perception of objects A and B is carried out by 

f(NA) and  f(NB)  by the neurons NA and NB   along L inside the same V and  encode similar 

(i.e. comparable) states of awareness. Note that we deal with the perception and choice 

between sufficiently similar objects (or thoughts) A and B. We confront an apple and a pear, 

or two colored shirts etc. Choices between, say “ I must call grandma” and “I must buy a new 

lightbulb for the kitchen” obviously have decorrelated , independent   and   so that 

<B>→ 0. The action of choice might in such cases also be decided by circumstantial 

parameters, like “…the hardware shop is closed now, so I choose to call grandma first…”. 

Again we have 

 

∫  
 

𝑉
 dV =   ∫  

 

𝑉
(A  + B  +  B) dV = 1    eq.6a 

        

       so that we need               +  +  =                eq.6b   

 

meaning that the total probability of finding any kind of mix of two correlated  mental states 

is 1 and is carried by three probability parameters. 

 

 

 

       4. Time Evolution Operator 

 

Because neurons are time dependent chemical systems, the three probability parameters in 

eq.6 must now be considered as time-dependent. To model the time-dependence of an EE 

dealing with decision making, we utilize  a  reversible time evolution operator T, where   is 

a frequency  linked to the energy of the system by  =   ћ 

                                                 T = e-it   
that acts on a wavefunction and models the forward action of time  on    

                                                               t = T           
For the probability density to be conserved, T must be unitary 

 

            T-1T = 1    and therefore    < t t
* > = < | T-1T |>  

 



 

 

 The operator T represents a reversible rotation in an Euler plane (see Fig.3). Euler’s formula 

is a mathematical formula that expresses the fundamental relationship between the 

trigonometric functions and the complex exponential function, stating for any real x : 

                                                     eix = cosx + isinx 

The radius r of the Euler circle is taken as 1, and rotates counterclockwise by an angle  The 

initial moment sees r = max = 1, and the projection of r onto the real axis after some rotation 

gives rise to a  . The difference between 1 and  is contained in the two coefficients 

 and    The speed of rotation is determined by  Where does an energy term  =   h 

come from? When the brain recognizes and stores information of a visually perceived object, 
chemical work is performed inside a devoted set of neurons Nj. Glucose is processed and 
inside all involved neurons a specific membrane polarity is established, leading to an overall 

electronic potential, which is stored energy. The QM neural function j , here postulated to 

describe the state of consciousness linked to the perceived object j, belongs to a 

corresponding energy state  j . If the brain perceives and encodes two objects, say, the red 

and the blue shirt, we have two distinct energy states A and B, with state functions  and 

 

he amount of energy used is contextual and circumstantial, as we deal with the human mind 

and not with an inanimate machine like a diffractometer! The action of mood, memories, pre-

existing likes and dislikes, external influencing factors and more, can result in  emotionally 

different perceptions of the objects by the test person M and may lead to a diversified mental 

(= neural) energy accounting. 

        We apply the time evolution operator to equation 2 obtaining equation eq.7 

 

 = (e -i(A) tA + e -i(B)tB) (ei(A) tA + ei(B)tB)     

       =  
 + 

 + e−i()tei()t + e-i()tei()t       

=  
 + 

 + e−it 
 +eit   

    with  

 e−it 
 + eit  = 2cost 

 

  and in analogy to eqs.6 we want  ∫  
 

𝑉
 dV = 1  with 2 =  

 

  ∫  
 

𝑉
(

 + 
 +   cost ) dV  =  

  =    +  +  cost ∫  
 

𝑉
 dV   =     

  =    +  +  cost  = 1           eq.7  
  

At any time t eq.7 must hold and as   is now time-dependent also  
and  

must implicitly 

be. 

The constant <B
 >  can be absorbed in   keeping in mind that   and    are not time-

dependent. We now have  = (EB - EA)/h expressing the energy difference of the two 

neurological state functions in the EE,  and three implicitly time-dependent probability 



 

 

parameters      = (t) (t) (t)  because the weights of the mental states expressed 

by   and    can and will change in time, as shown here below.   
 
 

     

   

5.   Psychological Preferences 

 

Eq.7 shows the time dependence of the interaction term. We identify three phases in the EE 

concerning the decision-making process.  In the very first phase of our EE (approx. 0.1- 0.2 

sec) two objects, A and B, are visually exposed to test person M. M will perceive, recognize 

and categorize A and B, (this is a blue shirt, this is a red shirt) before starting the mental 

choice procedure. Immediately after, in a second phase, the actual mental work of decision-

making about which shirt to select, starts at t=0. At this point in time the interaction term is 

dominant and contains all probability density because no judgement step has been 

accomplished yet. Thus, uncertainty and hesitation are maximal (at t=0 we have  = 1= max 

and  =0) . A moment later, at tlater, M’s mind starts to untie the entanglement because his 

natural, pre-existing preferences start to act. For example, M’s personal color preferences 

may be “first preferred color is blue, then red with approximate preference weights 3:1”. This 

means that upon forming his judgement about which shirt to buy, M will start favoring the blue 

shirt over the red one in a 3:1 psychological preference pattern. These weights start now to 

be manifested in the inflation of coefficients   and  while max deflates to later (see Fig.3). 

        

  Fig.3  Rotation in an Euler plane. The real part of  e-it ,that is cost , causes the moduling of max  over 

time. The shrinking of max  to a smaller  allows the increase of the two individual probability terms  and 
  . 

The sum of  ,  and 
  must be always 1 (100% probability) 

 

 Formally, this is represented by the time evolution operator acting on   When operator T 

starts to act with the flow of time, the rotation diminishes the  part, and the importance of 

 
 increases accordingly in sync. This keeps the requirement of 



 

 

(+   +  cost = ) valid all time. The decrease of   will reach a point where the 

probabilities  and   may become equal to  itself, and then grow even larger. Now the 

probability of either A or B to be chosen is larger than the probability of being in an undecided 

state of mind. We can understand  and    as weighted stimuli or signal amplitudes sent to 

the neural network where the choice process is underway. If a specific signal is strong enough 

and the voltage reaches a threshold, it triggers the neuron’s action potential.  At this decisive 

point (t = tchoice), the ensemble of neurons avalanches, they all fire and a choice is made.  

However, there is no way by which this, and any other known theory, can indicate which 

signal,  or   grows first to become dominant and determine the result!   

 
                                                                                                                       

  

    
 

      6.  The Speed of Decision Making 

 

The larger the difference in the two potentials A and B is, the faster is the rotation and the 

deflation of the interaction term ( deflation speed ~ cost). Example1: If two objects are 

equal then EA = EB  and  is zero. The interaction term does not change with time, rotation 

speed is zero within a homeostatic situation. Psychologically this means that the test person, 

who must decide between equal objects A and A cannot decide within a finite time, as there 

is no discriminant information to drive a selection. This is equivalent in the DSE to having 

both slits identically placed, that is, they are one and the same slit. The experiment itself has 

collapsed into redundant information and speaking of choice is now meaningless! Here we 

have a nice isomorphism between the DSE and the EE test. 

Example 2: suppose a vegan, who dislikes meat, is confronted with a grilled T-bone steak 

and a mixed vegetables dish. The neural states SALAD   and  STEAK correspond to two very 

different energy levels and a large  will cause a fast rotation, where   deflates rapidly and 

the highest probability density flows into  (   ). 

Example 3: a meat lover looks at chicken wings and pork ribs. These two dishes are both 

from the grill and have more flavor and texture similarities than the options of example 2. 

Thus,  will be smaller due to closer energy levels, and the dish selection may evolve at a 

slower pace, with the customer showing some hesitating behavior. 

 

 

       7.  Perturbations 

 

The initial natural preferences of M may undergo modifications along the selection process, 

due to contextual and circumstantial perturbations of varying magnitude. A “pure” preference 

parameter, like “blue is my color of choice”  can be altered by a sudden circumstantial event, 

and lose its original ranking (e.g.,  = ). Suppose that M is ready to pick the blue shirt and 

suddenly a red exotic sport car dashes by the fashion shop. M gets a sudden psychological 



 

 

input that tells “red is sexy and fast! “. At this point the pure natural preference “blue” gets 

blindsided by a perturbation  red , that may change the natural predominance of blue because 

 perturb
perturb ≠ nat.pref

nat.pref
 

We have now perturb = nat.pref. + red , or explicitly in this example perturb = blue + red , 

which may modify the selection result. The role of such perturbations is now analyzed 

formally.  How can the state of initial total uncertainty (t=0,  = max) break down and the 

generated probability density flow into the individual density factors  2,  2 ?  At first, random 

perturbations  are introduced into eq.7 to modify the initial total entanglement   

max
  =         ( 2,  2 = 0) 

and we define a perturbed function  
P as 


P =  +  

      =      max
  −−− p

P
P  = ( + )( + ) 

       =   B + A
 + B

 + B                      eq.8 

 

The new terms A and B  are seeds generating individual, decoupled probability 

densities for A and B.  As   and  are free parameters, we can write  =    =     

leading to 

  =  +    +   p           eq.8a   

 (with the last very small term B  adding to the first) , which is isomorph to eq.5 . 

 Conservation of total probability  in eq.8 has p < max , as some probability is now carried by 

the perturbation terms   . We recognize now that an initial complete mental 

entanglement state, max
 , expressing total uncertainty, partially decays spontaneously 

into the two decoupled, individual mental states 
 and   by the random action of mentally 

endogenous (e.g., flashes of memories) or exogenous (e.g., the visual stimulus of the red 

sports car) perturbations . Comparison of eq. 8a with eq.7 shows 

 p =  cost −− p =  re(eit)  = cost                 eq.9 

meaning that the random action of perturbations (conscious or unconscious, both are carried 

out by chemical agents) during the choice EE are equivalent to the flow of time eroding the 

intial state of total uncertainty. 

       We have the time-dependent eq.10  

 

  =   cost  +  A
 +  B        

  =  p  +  A  + B      eq.10  
 with  =    =   and p = max  at t = 0    (eq.7  ! )    
 

showing the growth of   probabilities depending on the change of   with time: 

perturbations are psychologically necessary to start the rotation ! This makes sense, as the 

effect of any perturbation to manifest itself takes some finite amount of time. 



 

 

At  t0 = 0,   A
 +  B  is, per definition, equal zero, as the perturbations have not 

acted yet.  For a subsequent time tlater the max term has decreased at a certain rate (~) 

and the two pure state terms inflate because  manifests itself in ,   
 in a way that the 

normalization postulate  + 
 + cost =  holds all time. Explicitly, if we consider a starting 

time t = t0 = 0 for the choice EE, and a later time tlater
 , we write  

 

max( cost0  −  costlater
 )  = (max  −  later) 

 =  A
 +  B  

 =  A
 +  B.                                 eq.11a     

or equivalently   

      t  =  1  − maxcostlater =  +                                   eq.11b  

 

Eqs.11a,b nicely show the formal link between the deflation of a state of uncertainty by a 

rotation of  in an Euler plane (radius = 1), the resulting inflation of two additional components 

,    its speed of decay depending on  and the interesting connection and equivalence 

to psychological perturbations  (eq.11a). 

 

 

8. Decision Making 

 

The action of a unitary time evolution operator T on  generates a rotated probability density 

distribution ’  preserving the norm (the unit length of r = max = 1!): T −− ’  . Repeated 

smooth incremental rotations lead to a point tchoice =   where a decision is made 

(
 or     ). The probability density matrices Pi  may evolve along the rotation processes 

from to t = 0, to t1, t2….to  =  tchoice,  

as (scheme 1) 
   

   
 

Scheme 1     An initial probability matrix, Po, of a choice experiment has all probability in the entanglement term 

max .The action of the time evolution operator T at later times t1,t2,…tchoice is the mechanism to inflate the 

probability terms for A and B, until a  neurochemical threshold is reached where a decision is made at tchoice 

 

 

As for Po at t= 0 , (initial total uncertainty of the mental state) the Pj matrices following the 

reiterated action of Tj  during small time intervals are never diagonal, as the interaction term 

would be zero in such a case, meaning that A and B would pertain now to independent 

eigenvalues  (with 0   ,   1 and  = 0) ! Independent eigenvalues in a diagonal P matrix 

would mean, at neurological level, that the perception of one object is independent from the 

perception of the other. But this entails canceling out the simultaneous cognition, or 



 

 

awareness, of the other! This is equivalent to a DSE turned into two independent  single slit 

experiments (!), where, if the electron passes through, say, slit A only (choice eigenvalue = 

A) then slit B must be closed, that is non-existent for the electron. Because, if  both were 

open and available ( a choice is now feasible) interference would arise at once, as we well 

know ! This is a fact that contrasts with life experience in an EE, where A and B are always 

simul-  taneously present in the cognitive process of the mind. If, for example, M selects the 

blue shirt, this does not mean that the red shirt is instantly cancelled out of his conscious 

perception! On the contrary, a residual temptation for the red shirt may very well be nudging 

his mind (the lasting influence of the red sports car!).  This same reasoning therefore entails 

that the mere existence of state functions A and B in the mind must generate an 

entanglement term A B ! In other words, selecting A does not cause a deletion of B at 

neurological level (and vice-versa). 

It is important to outline that the dimensionality of the cognitive selection process is preserved 

by the unitary (isonorm) time evolution operator T . Quantum consciousness seems to differ 

from the QM of hardware measurements in  preserving the dimensionality of S. This is 

absolutely necessary to continuously guarantee for the existence of an interaction term, 

which is fundamental to make a choice possible. In other words, only an nonzero interaction 

term (= simultaneous awareness of both objects A and B)  makes  any choice procedure 

possible. This is in stark contrast with the DSE, where, after the electron has hit the 

fotographic plate at one position eigenvalue xi  the probabilities of all other position 

eigenvalues vanish (see Fig.4). 

Fig.4   Collapse of the cumulative probability density function. When a single electron, traveling as interference 

wave, hits the film F at a coordinate xi  that has an initial probability p(xi)<100%, it is found there after impact as 

a whole particle with probability 100%.  

 

 

 

     9 . Change of Mind 

 

Imagine M having chosen the blue shirt (      ). He is ready to pay but suddenly he 

hesitates and says “ I changed my mind” , replaces the blue shirt and takes the red one 



 

 

(     )  . This reversible mental mechanism is only feasible, contrary to the DSE, 

because a residue of the interaction term must be still present at neurological level. Through 

eit    the probabilities     can be redefined.  The reversible thermodynamics of  

isotherm neural processes ( at or close to equilibrium) go hand-in-hand with the reversible 

operator T and allow, by infinitesimal displacements of temperature and molecular 

concentrations, a transitory re-inflation of  (    )  with now diminishing   Hereafter a 

subsequent inflation of   can follow (     ) which may manifests itself in the purchase 

of the red shirt. he phases of A and B  may not change in respect to eachother, but their 

local amplitude, or intensity, does, which is the magnitude of    The actual occurrence 

of this change of mind and its probability are obviously an individual psychological matter and 

cannot be quantitatively calculated!  

 
 

 

10. The Role of Entanglement 

 

The entanglement term provides a sort of “tank” for a probability potential. It connects two 

separate states A and B and contains parts of both.  It can move probability density between 

A and B. To the organic chemist the concept of “bonding orbital” is familiar. In a -bond 

between atoms A and B, the distribution of the two electrons can be described as 

superposition of three states, where electrons are shifted from one atom to the other via 

resonance: 

 =  (−+) + (+−) +  () The quantitative expression for () is called the 

“overlap integral”, <>. It is identical to the interaction term in our NQS treatment. Without 

an overlap term there would be no molecules, only disconnected atoms in the Universe. We 

would not exist. The psychological equivalent would be a state   where two states of mind 

overlap. But it is this overlap that connects the otherwise separate states.   has the vital role 

of allowing judgement and evaluation in the mind.  Without it, human decisions could be taken 

in a detrimental and irreversible manner.   allows danger management, compromise, 

strategic moves and survival. Neurochemistry has a central role. Take an initially tranquil 

person having lot of drinks in a bar.  Alcohol itself does not necessarily cause aggression. It 

increases the amount of aggression a person feels when provoked. Therefore, when a person 

feels challenged, rather than ignore that behavior, he responds in an aggressive manner. He 

can end up limited in the ability to have restraint: the response may be a 100%, one-way 

violent choice! The interaction term is zero in such a case. Interestingly, in various cultural 

areas (German, Anglo-Saxon, Latin), one speaks of blind rage, blinde Wut, furia ciega, furia 

cieca. The accent is on blind. This underlines what was said before: only one choice is 

perceived in a state of mental blindness. The other choice, relaxing and renouncing violence, 

is utterly non-existent at conscious level, that is 
VIOLENCE = 100%, RELAX = 0% and of course 

 =   It is the non-vanishing interference, or entanglement, or overlap, call   in any 

way you want, that seems to be in control and separates a human mind from a machine. 

Here is also where a hypothetical QM mind differs from a hardware QM measurement, where 

the act of making a decision (the measurement) results in an irreversible outcome with 100% 



 

 

probability (the clash of an electron on a film for example). In the mind of  a sentient 

(conscious) being, the probabilities of alternative outcomes are not vanishing.  
 

11. Conclusions 

 

       The Neural Quantum Superposition approach shows a formal isomorphism between 

quantum mechanics and human psychological behaviour in the dynamics of making a choice 

and in the change of mind. Starting from the principle of superposition of quantum states, a 

time evolution operator is introduced to model the probabilities of possible choices. NQS 

describes the effect of perturbations influencing the outcome of selection processes. The 

unitary time evolution operator models  the mental modifications of preferences and the 

subsequent change of mind. The here presented approach does not prove anything. The 

isomorphism discussed may very well be a pure coincidence with no deeper meaning. Or 

maybe not. 

The basic question of what it is that a quantum mechanical model is describing is left 

unanswered. If consciousness is a single manifestation of a monistic structure per se, then, 

when an ethanol molecule binds to GABA receptors in the brain, the established dipole-dipole 

interaction field (obeying QM laws!)  should already be the altered state of consciousness 

itself!  That is holism, the electromagnetic field is consciousness. If dualism is invoked, 

neurochemical agents and their fields must interact with something separate, an embossed 

consciousness field. The consciousness field should have the property of being impervious 

and robust against decoherence phenomena, which make macroscopic superpositions of 

quantum states very unstable due to environmental electromagnetic noise. But this field 

would need exchange quanta to interact with the neurochemically established 

electromagnetic fields (photons or something entirely new?). Go, figure it out!  
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