
Submitted to Statistical Science

Detecting Outliers in Multiple Sampling
Results Without Thresholds
Yu-Fu Shen

Abstract. Bayesian statistics emphasizes the importance of prior distribu-
tions, yet finding an appropriate one is practically challenging. When multi-
ple sample results are taken regarding the frequency of the same event, these
samples may be influenced by different selection effects. In the absence of
suitable prior distributions to correct for these selection effects, it is neces-
sary to exclude outlier sample results to avoid compromising the final result.
However, defining outliers based on different thresholds may change the re-
sult, which makes the result less persuasive. This work proposes a definition
of outliers without the need to set thresholds.
Key words and phrases: Bayes method, Selection effect, Unknown prior dis-
tribution, Data Cleaning.

1. INTRODUCTION

People often determine the probability of occurrence
of event through random sampling, but results are unreli-
able if the number of the sample is too small. The prob-
ability density function, which depends on both the num-
ber of samples and the number of events, is superior to a
single probability value. Bayesian statistics goes further
by emphasizing the importance of the prior distribution;
for example, if there is a strong selection effect during
sampling, no matter how large the sample is, the result
still be unreliable. However, it is difficult to obtain an
appropriate prior distribution in practical situations, and
sometimes we may not even be aware of the selection ef-
fect during sampling, mistakenly assuming that all sam-
ples are equally weighted. This is especially common in
social investigations and astronomical spectroscopic sur-
veys. All investigations or observations have different en-
vironments, it is difficult to assess the selection effect of
each of them. Bayesian linear statistics[1] take this issue
into account, but this work argues that some sampling
results with strong selection effects should be identified
first, and they can be defined as outliers.

Sometimes sampling results with strong selection ef-
fects may be identified manually. Regardless of whether
they can be manually identified, if one wants to exclude
some sampling results, they must either find clear evi-
dence of the problem within these sampling results or
classify them as outliers using a strict definition, other-
wise there may be suspicion of cheating. Of course, some-

Changchun Observatory, National Astronomical
Observatories, Chinese Academy of Sciences , (e-mail:
shenyf@cho.ac.cn)

times the majority of samples make the same error, and
the best sampling results may end up being outliers.

The method based on the standard score (Z-score) can
be employed to find outliers. However, it is difficult to
account for the impact of sample size unless the sample
results are weighted according to their size, but there is
no unified form of weighting, and thresholds must be set.
Methods that require setting thresholds lack persuasive-
ness because conclusions may differ with different thresh-
olds.

The method proposed in this paper uses the probabil-
ity density function to consider the impact of sample size
and defines outliers for multiple random sampling results
without setting thresholds. For a set of probability density
functions corresponding to multiple sampling results, un-
der the definition of this work, there may be no outliers,
one outlier or multiple outliers. Sometimes all probabil-
ity density functions in the set are outliers, resembling
a “fragmented” set, which indicates extremely unstable
sampling quality and cannot give reliable results.

2. METHOD FOR FINDING OUTLIERS

When there is no selection effect, assuming N events
are detected, the more samples (n), the more reliable
θ = N/n. However, θ cannot reflect n, so a probability
density function is needed to replace θ. The larger n, the
smaller the information entropy[5] of the corresponding
probability density function. Now suppose we want to in-
vestigate how many stars in a sky area are giants; we per-
form spectroscopic observations of that region and obtain
spectra for n stars, analyzing and finding that N of them
are giants. The probability of finding a giant in this sky
area fits the binomial distribution
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(1) p(N | θ,n) = θN (1− θ)n−N

Equation 1 indicates that even if the proportion of gi-
ants (θ) in this sky area is constant, the probability of
finding nθ giants from n stars in that sky area is not
equal to 1, which is consistent with the Theorem of Large
Numbers[2–4]. In Bayesian Statistics, we have

(2) p(θ |N,n)∝ p(N | θ,n)p(θ)

A prior distribution p(θ) is required, but we know noth-
ing about it. For example, in this scenario, we need to test
the galactic model using the proportion of giants, so we
cannot correct the observational results based on the prior
parameters obtained from the model. Besides, during as-
tronomical observations, we are bound to see more giants
because they are brighter than non-giants (turn-off stars)
at the same distance. Therefore, we do not expect to ob-
tain a truly complete θ; it is good enough to be complete
within a certain brightness (magnitude) range. However,
sometimes observers also tend to select stars that are ei-
ther bluer or redder, and the color distribution of giants
differs from that of non-giants. Thus, color bias can af-
fect the proportion of giants. Even if the observer’s color
bias is known, it is difficult to quantify its impact on the
proportion of giants. In summary, the prior distribution
cannot be estimated, so the prior distribution is assumed
to be an uniform distribution

(3) p(θ) =

{
1 0< θ < 1
0 otherwise

then we have

(4) p(θ |N,n)∝ θN (1− θ)n−N

To ensure
∫ 1
0 p(θ |N)dθ = 1, it has been proved that

(5) p(θ |N,n) = Beta(θ |N + 1, n−N + 1)

where

(6) Beta(θ | a, b) = Γ(a+ b)θa−1(1− θ)b−1

Γ(a)Γ(b)

where a=N + 1, b= n−N + 1, and

(7) Γ(x) =

∫ +∞

0
tx−1e−t dt

If there is only one sampling result, it ends here. How-
ever, in practical situations, the conditions during sam-
pling are always changing. Even if it is unclear whether
these specific conditions will actually lead to selection

effects, the sampling result should be divided into mul-
tiple sampling results based on these conditions. In this
scenario, there are always multiple observations of the
same sky area, and in each observation the selection bi-
ases differ. For instance, one observation might be biased
towards bluer stars, another towards redder stars, and an-
other might even have undergone pre-filtering to exclude
giants, albeit with a pre-filter accuracy that is not one hun-
dred percent, leaving a small number of giants behind.
As a result, even if an observation provides a vast sam-
ple size, it can still be unreliable, whereas a result with a
much smaller sample size might actually be closer to the
truth. If sampling results with strong selection biases are
not treated as outliers and removed, it will inevitably lead
to biases in the overall probability density function. Here
comes the definition of outliers without setting thresholds.

Now assuming this sky area has been observed k times
(k>3), then we have N1, N2, N3... Nk and n1, n2, n3...
nk. So,

(8) pi(θ) = p(θ |Ni, ni) = Beta(θ |Ni+1, ni−Ni+1)

If, in a few sampling results, a non-uniform prior dis-
tribution assumption is used, resulting in a different form
of the corresponding pi(θ) from that in Equation 5, this is
acceptable and will not affect the following definitions.

Now we have Obsk = {p1, p2, ..., pk}. Make sure no re-
peated elements in the set Obsk. Then define Similarity
S,

(9) Sj
i =

∫ 1

0
min(pi(θ), pj(θ))dθ

Then define
(10)

Slist(Obsk) = {S2
1 , S

3
1 , ...S

k
1 , S

3
2 , S

4
2 , ...S

k
2 , ...S

k
k−1}

where |Slist(Obsk)|= 1/2 · k · (k− 1). Define

(11) min1({A}) = min({A})
and

(12) min2({A}) = min({A}\min1({A}))
so we have

minx({A}) = min({A}\(13)

{min1({A}),min2({A}), ...,minx−1({A})})
Then define

MINn({A})(14)

= {min1({A}),min2({A}), ...minn({A})}

(n < |{A}|)
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and

Checklist(Slist(Obsk))(15)

= MINk−1(Slist(Obsk))

= {Sb1
a1
, Sb2

a2
, ...Sbk−1

ak−1
}

and a check function

(16) Check(x | Sb
a) =

{
1 a= x|b= x
0 otherwise

and an operator

(17) Ĉi({A}) = {Check(i | a) | a ∈A)}

then define

(18)
Unsi(i | Obsk) =

∑
Ĉi(Checklist(Slist(Obsk)))

if observation i is an outlier in k observations, we have

(19)
Unsi(i | Obsk) = |Checklist(Slist(Obsk))|= k− 1

we can also define an operator

(20)

Ôut1(Obsk)

=

{
pi Unsi(i | Obsk) = |Obsk| − 1
None Unsi(a | Obsk)< |Obsk| − 1, ∀1≤ a≤ k

and

(21) Ôut2(Obsk) = ˆOutlier1(Obsk\Ôut1(Obsk))

then we have

(22)

Ôutn(Obsk)

= Ôut1(Obsk\

{Ôut1(Obsk)), Ôut2(Obsk)), ..., Ôutn−1(Obsk)})

If Ôutn is undefined, Ôutm, ∀m>n are undefined. If
Ôutk−3(Obsk) is defined, Ôutk(Obsk) is defined so Obsk
is “fragmented”, no reliable results should be given by a
“fragmented” set.

Figure 1 are some examples.
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FIG 1. All curves in the four panels are probability density distribu-
tions given by synthetic observations. Each observation corresponds
to a curve. Red curves are outliers. From left to right and from top
to bottom, the first panel shows an example of five observations with-
out outliers, the second panel shows a very sharp outlier compared
with other curves, the third panel shows a common type of outlier, and
the fourth panel shows the case with two outliers. The pictures can be
drawn by the code provided in the appendix.

SUPPLEMENTARY MATERIAL

import numpy as np
from scipy.stats import beta
from collections import Counter
def S(Ni,ni,Nj,nj):

h=0.001#integration step size
theta=np.arange(0,1,h)
pi=beta.pdf(theta,Ni+1,ni-Ni+1)
pj=beta.pdf(theta,Nj+1,nj-Nj+1)
minij=[min(a,b) for a,b in zip(pi,pj)]
minij=np.array(minij)
return np.sum(minij*h)

def out(N,n):
k=len(N)
Slist=[]
ilist=[]
jlist=[]
for i in range(k):

for j in range(k):
if i>=j:

continue
else:

Slist.append(
S(N[i],n[i],N[j],n[j])
)
ilist.append(i)
jlist.append(j)

ilist=np.array(ilist)
jlist=np.array(jlist)
Slist=np.array(Slist)
ilist=ilist[np.argsort(Slist)]
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jlist=jlist[np.argsort(Slist)]
ilist=ilist[:k-1].tolist()
jlist=jlist[:k-1].tolist()
l=ilist+jlist
counter = Counter(l)
mce, mcc = counter.most_common(1)[0]
if mcc<k-1:

return -1
else:

return mce

def main(N,n):
if len(N)!=len(n):

print(’len(N)!=len(n)’)
return -1

d=np.array(n)-np.array(N)
if len(d[d<0])>0:

print("n < N")
return -1

outN=[]
outn=[]
output=len(N)+1
while output>=0:

output=out(N,n)
if output>=0:

outliersN.append(N[output])
outliersn.append(n[output])
N=N[:output]+N[output+1:]
n=n[:output]+n[output+1:]
if len(N)==1:

print(’Fragmented!’)
outN.append(N[0])
outn.append(n[0])
return N,n,outN,outn

else:
return N,n,outN,outn

#example:
import matplotlib.pyplot as plt
N=[15,11,7,29,100]
n=[30,20,15,60,200]
newN,newn,outN,outn=main(N,n)
print(outN)
print(outn)
theta=np.arange(0,1,0.001)
for i in range(len(newN)):

plt.plot(theta, \
beta.pdf(theta,newN[i]+1, \
newn[i]-newN[i]+1),color=’black’)

for i in range(len(outN)):
plt.plot(theta, \
beta.pdf(theta,outN[i]+1, \

outn[i]-outN[i]+1),color=’red’)
plt.xlabel(’$\\theta$’,fontsize=16)
plt.ylabel(’Probability density’, \

fontsize=16)
plt.xticks(fontsize=14)
plt.yticks(fontsize=14)
plt.tight_layout()
plt.show()

Python code
The code for drawing the sketch map is also included
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