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The now-called quasi- (or pseudo-) steady state (QSS) approximation was introduced by Briggs and

Haldane in an analysis of an unusual kinetic scheme for an enzyme-catalysed reaction, it had no

product binding. The approximation, though perhaps not the kinetic scheme used, was well founded,

and led to a solution of the rate equation of an enzyme-substrate intermediate. That in turn allowed

the derivation of the well-known equation describing the kinetics of many enzymes, the Henri-

Michaelis-Menten equation. Unfortunately, in more realistic kinetic schemes with product binding,

the application of the QSS approximation leads to an uncertainty in the nature of kinetic constants as

described by rate constants. It is shown here that for reasonable special cases of two kinetic schemes,

�rst analysed by Haldane, that during the pre-steady state the reverse reaction may cause the

concentration of the enzyme-substrate intermediate to rise to give a QSS essentially that of its �nal

equilibrium concentration. This leads to a revision of the structure of kinetic constants (as describe by

rate constants), and is suf�cient to show the Haldane Relationship between catalytic constants and the

equilibrium constant of the reaction is not generally true.

Corresponding author: E. A. Barnsley, eabarnsley@t-online.de

Introduction

It is the centennial year of the publication by Briggs and Haldane [1] of an approximation that is useful in

obtaining a solution for the concentration of an enzyme-substrate intermediate in enzyme-catalyzed

reactions. The approximation applies when a substrate concentration is many orders of magnitude

greater than that of the enzyme, as is usual in studies in vitro, and as a result of which the nett rate of
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change of the enzyme concentration is negligible compared with that of the substrate. Thus, in the rate

equation for an enzyme-substrate intermediate, that rate can then be sensibly equated to zero. Although

this has been called a steady state, that expression was not used by Briggs and Haldane, and the

descriptions pseudo-steady or quasi-steady state (QSS) are preferable. The analysis of Briggs and Haldane

was complete for the unusual kinetic scheme they used, one with absolutely no binding of the product to

the enzyme, but reactions are to some degree reversible and for some of these its application has provided

ambiguous descriptions of the kinetic constants of the Henri-Michaelis-Menten (HMM) equation

(equation 3).

The QSS approximation was used by Haldane [2][3] in analyses of two reversible kinetic models, schemes 1

and 2, below, and since then by many others in the analyses of numerous more complex two-substrate

reaction schemes. The common procedure is to write the rate equation for all enzyme components,

equate each of them to zero, and solve the resulting simultaneous equations to �nd the concentration of

the intermediate that gives rise to product. A HMM equation can be obtained only for initial velocities

(meaning those at the outset of the QSS), but whether the solution of the equations is done purely

algebraically, or by using a matrix solution for simultaneous equations, or another algorithm such as that

of King and Altman  [4], or using Cleland’s concept of partition analysis and net rate constants  [5], the

result always neglects the possible effect of the back reaction, during the pre-steady state, on the QSS

concentration.

Results of analyses made around sixty years ago by Miller and Alberty  [6]  and Walter and

Morales  [7]  showed that for scheme 1 at the beginning of the QSS, dx/dt may have an extremely low

positive value with d2x/dt2 negative and both of these approaching zero, that is x is approaching its

equilibrium value. This contrasts with the usual assumption that, if dx/dt=0, the value of x is a maximum

and, as pointed out by Morales and co-workers  [8][9], that d2x/dt2 is negative. The consequence that, at

the outset of the QSS, x may essentially have its equilibrium concentration, leads to a signi�cant

difference between descriptions, written as rate constants, in the catalytic constants of the derived HMM

equation (equation 1). This has have been entirely overlooked, even by the latter authors themselves. The

QSS approximation may be useful for solving equations and leading to a HMM equation, but without

further information the catalytic constants written in terms of rate constants are insecure.

For model 1, when k1 is greater than k-2, the Km for reactant A is that given by Haldane, (k-1+k2)/k1, but

when k-2>k1 the concentration of the intermediate X is essentially its equilibrium concentration and its
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Km is (k-1/k1+k2/k-2) (see below). Without information about the relative values of the binding constants

k1 and k-2, an experimentally derived Km cannot be interpreted in terms of rate constants. Although the

kinetic scheme 1, used by both Miller and Alberty  [6]  and Walter and Morales  [7]  must be viewed as

inadequate (see references 2 and 3), I show below that analyses of reasonable special cases of scheme 2

lead to similar consequences to those deduced for scheme 1. A full analysis of scheme 2 is not possible,

but computer-aided numerical computations, starting with appropriate sets of rate constants for each

�xed equilibrium constant, could survey this matter. A further consequence of these observations is that

the Haldane Relationship is not generally valid.

The analysis of reversible reactions

A thorough analysis of scheme 1 has already been given  [6]. The scheme itself is inadequate, however,

because X gives rise directly to A and B and the scheme probably lacks an elementary step. It is, however,

that used by Henri [10] and Michaelis and Menten [11] in deriving the HMM equation, and it remains the

standard starting point in teaching enzyme kinetics. I shall outline here a simpli�ed version of the

analysis of Miller and Alberty  [6], because it is useful in analyses of special cases of scheme 2. This

scheme was introduced by Haldane [2][3] because he recognized that scheme 1 was inadequate to describe

experimental

Scheme 1.

results in the hydrolysis of sucrose, catalysed by invertase, which was the reaction for which

Henri [10] and Michaelis and Menten [11] produced their kinetic analyses. These authors knew the reaction
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was reversible and subject to product inhibition, but Haldane pointed out that scheme 1 could not explain

the formation of methyl glucoside when the reaction was carried out in the presence of methanol.

Scheme 1

In this scheme, A and B are reactants, E the enzyme and X an enzyme-reactant intermediate. The

corresponding small case letters represent their concentrations, and the letters k are rate constants. The

conservation equation for E is given by eo= e+x, the approximate conservation equation for A by ao=a+b,

and in both of these the subscript o refers to the total concentration. Using these, the rate equation for X

is given by equation 1 for which there is no analytical solution.

dx/dt={k1ao+(k-2-k1)b}eo- x{k1ao+(k-2-k1)b+k-1+k2}                   1.

In the usual analysis [2][3], when b is negligible compared with ao, terms in b are neglected, so that at the

beginning of the QSS the initial velocity, vi= k2x, is given by equation 2, and this

vi = k2eoao/{ao+(k-1+k2)/k1}                                               2.

vi = kcateoao/(ao+Km)                                           3. 

identi�es in the HMM equation (generally written as equation 3) the catalytic constants as kcat
A=k2, and

Km
A=(k-1+k2)/k1. The approximation, ao=a+b, neglects only the term k1x(eo-x) in comparison with

{k1ao+(k-2-k1) b} eo, and is well justi�ed under the usual conditions in vitro when ao >> eo.

Miller and Alberty [6] noted, however, that when k1=k-2, the terms in b in equation 1 disappear, and the

variables in the equation can be separated to give equation 4. Integration gives equation 5 (the constant

of integration is given by the condition that x=0 when t=0).

1/k1aoeo)dx=[1-(x/eo){(1+(k-1+k2)/k1ao}]dt                                             4.

x=aoeo{1-exp-(k1ao+k-1+k2)t}/{ao+(k-1+k2)/k1}                                       5.

Equation 5 describes the concentration x throughout the pre-stead state and the QSS. The substitution of

Haldane’s expression for Km
A gives equation 6, and this and equation 6

x=aoeo{1-exp[[-k1(ao+Km
A)t}/(ao+Km

A)]                                                   6.

describe monotonic exponential curves. For sensible values of ao, eo Km and k1, the curve plateaus very

rapidly at x=aoeo/ (ao+Km
A) which is the usual solution for x. Equation 6 rearranges to give equation 7,

and if for example, x/xequ is given the value 0.999 and if ao=Km,
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t = -loge(1-x/xequ)/k1(ao+Km)                                                                      7.

then for the reasonable values of k1=106M-1sec-1 and Km =10-3M, t = 3.5 x10-3 sec. The QSS is reached

after an extremely short pre-steady state; in the words of Briggs and Haldane [1] “in the �rst instant.”

Miller and Alberty  [6]  then used approximation methods to examine the result with different relative

values of k1 and k-2. For the case when k1>k-2, x rose to a maximum before declining (that is the usual

description of events at the beginning of the QSS), and for the condition k-2>k1, they stated their

approximations were not reproducible although some did show x rising to a plateau. This situation was

later clari�ed by Walter and Morales [7] who used computer aided calculations to show that, when k-2>k1,

x always plateaued at the equilibrium value, so that x is given by x=aoeo/{ao+(k-1/k1+k2/k-2)}.

Consequently, although kcat remains express as k2, the Km
A is (k-1/k1+k2/k-2). In the reverse with

direction with k-2>k1, Km
B and kcat would be those given by Haldane [2][3]. Substitution of these results in

the Haldane Relationship does not lead to the equilibrium constant of the reaction.

The results calculated by Walter and Morales  [7]  may not be expected intuitively, but the result is a

necessary one when k-2>k1. The differentiation of equation 1 leads to equation 8. If for convenience in

equation 8, the term {k1ao+(k-2-k1) b+k-1+k2} is abbreviated as N,

dx2/dt2=(k-2-k1)(db/dt)(eo-x)-dx/dt{k1ao+(k-2-k1)b+(k-1+k2)}                             8.

dx/dt is substituted from equation 1, and d2x/dt2 is equated to zero, then separation of the terms in eo and

x leads to the value of x/eo given by equation 9. The term N contains b which

x/eo=[(k-2-k1)(db/dt)-N{k1ao+(k-2-k1)b}]/[(k-2-k1)(db/dt)-N{k1ao+(k-2-k1)b}–N(k-1+k2)]     9.

varies during the reaction, but N (derived from (k1a+k-2b) in deriving equation 1) is always positive. Thus,

in equation 9, the numerator is greater than the denominator, implying the impossible solution x/eo>1.

Consequently, when db/dt and dx/dt are both positive, dx2/dt2 cannot be zero. It becomes zero only at

equilibrium, and so consequently there is not an in�ection (change in the sign of the curvature) in the

time course of x as it rises to xequ. (d2x/dt2 = 0 is required at an in�ection point).

The values of the kinetic constants are matters for experimental measurement, but a comparison, of

values to be expected from analyses obtained here with those of Haldane, shows just how large an error

in Haldane’s results would exist if individual rate constants were known. Thus, for scheme when k-2>k1,

Km
A=(k-1/k1+k2/k-2) and that of Haldane is Km

HA=(k-1+k2)/k1. The ratio KM
HA/Km

A simpli�es to (1+k-
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2Kequ/k1)/(1+Kequ), and consequently, for a given reaction (constant Kequ), the ratio KM
HA/Km

A is directly

proportional to k-2/k1, is 1 when k-2=k1, and has a slope of Kequ/(1+Kequ). For different reactions at a

given k-2/k1, KM
HA/Km

A decreases with increase in Kequ, and the slope (obtained by differentiation) is

given by (k-2/k1-1)/(1+Kequ)2.

Scheme 2

Haldane [2][3] also applied the QSS approximation in his analyses to the more realistic kinetic scheme 2 in

which an elementary step with the formation of an enzyme-product species (Y) has been added. A

complete analysis of scheme 2 could be made by modern

Scheme 2.

methods of numerical integration, and this would require that, for each of a range of equilibrium

constants, reasonable sets of rate constants be examined. Each set would be consistent with the chosen

equilibrium constant, Kequ= k1k2k3/k-1k-2k-3. Reasonable special cases of scheme 2, however, reduce the

analysis to that given for scheme 1, and are suf�cient to show that, in these special cases, and staring a

reaction with A, when k-3>k1, y has its equilibrium value in the QSS. This again leads to expressions for

Km different from that given by Haldane, and also a different one for kcat.

One special case occurs if X and Y are always in equilibrium [12], and a second special case is that when k-

1=k3. The conservation equation for A is ao=a+b+x+y, and this gives the following exact differentials:

da+db = -dx-dy. The rate equations for da/dt and db/dt are equations 10 and 11, and rearrangement of

their sum and substitution of a=(ao-b) and k-1=k3, leads to equation 12. If k-3=k1, the terms in b disappear

in equation 13, and the
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da/dt=k-1x–k1a(eo-x-y)                                                                           10.

db/dt=k3y-k-3b(eo-x-y)                                                                             11.

d(x+y)/dt = = eo{k1ao+(k-3-k1)b}-(x+y){k1ao+(k-3-k1)b+k-1}               12.

variables in (x+y) and t can be separated and integrated as shown for x in Scheme 1. The QSS is that when

(x+y) closely approach (xequ+yequ), and the QSS concentration of Y is yequ. For the condition k-3>k1, (x+y)

in equation 12 can be dealt with as was x in scheme 1 to show that the QSS is also given by (xequ+yequ).

The results are not in agreement with those of Haldane (for the condition k-3=k1), and are kcat
A=k2k3/(k-

2+k2) and Km
A= k3(k-2k-3+k1k2)/k1k-3(k-2+k2).

Discussion

The analysis presented in this communication for scheme 1 recapitulate that in the publications of Miller

and Alberty [6], but for simplicity employ an approximation of the conservation equation for the reactant,

and also show why the computations of Walter and Morales  [7]  for scheme 1 are to be expected. For

reasonable special cases of scheme 2, a similar analysis is outlined, and these analyses show that use of

the QSS assumption as introduced by Haldane  [2][3]  to provides expressions for Km and kcat is not

adequate. Although the QSS approximation itself may be an excellent numerical one, it may lead to an

ambiguity in the description of catalytic constants in term of rate constants. Haldane also wrote (2,3,

p.82), “Perhaps, however, the most important result of the above investigation is … [an equation for the

velocity of the reaction which … when equilibrium is reached … [leads to the equation]...

kcat
AKm

B/kcat
BKm

A=Kequ. So this quantity is equal to the equilibrium constant, [Kequ] which depends on

the free energies of A and B, and is independent of the catalyst.” (Paraphrased, with added words in

brackets [], by this author). As recently as 2004, Alberty  [13]  stated that his earlier work with Bock  [14],

using results obtained with the enzyme fumarase, had con�rmed the validity of this Haldane

Relationship. It has been shown by Rose  [15], however, that there are several possible kinetic pathways

within each of the four sub-units of fumarase, and so the actual mechanism cannot be described by

either scheme 1 or 2. The Haldane Relationship is correct when k1=k-2 in scheme 1, and when k1=k-3 in

scheme 2, but otherwise it is not generally correct.

Haldane’s analyses [2][3] were followed by their application to complex models of two-substrate reactions

in which the concentration of one reactant was kept constant (�xed), allowing the derivation of HMM
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equations with “apparent” kinetic constants, each pair for one �xed concentration, and all of these

analyses will have the same uncertainties outlined for Haldane’s work. It should be noted that, for the

kinetic scheme they used, the results deduced by Briggs and Haldane  [1]  are irreproachable, but that

scheme was exceptional, lacking any product enzyme binding: it was not scheme 1. The long failure (also

by this author) to recognize the insuf�ciency of the usual application of the QSS approximation is a

puzzle.

Modern methods of evaluating experimental kinetic measurements are made by computer aided

numerical integration. This applies to the direct determination of catalytic constant for the HMM

equation directly from primary experimental data  [16], and to determining actual rate constants for a

given model based on the expressions for kcat and Km determined by the QSS approximation  [17]. For

scheme 2 and more complex ones, it is clear that, in the �rst place, Kequ for the reaction should be known,

and for that, reasonable sets of rate constants consistent with Kequ should be examined. Such extensive

computations may demonstrate if for scheme 2 the relative values of the binding constants of reactants

and products are the only determining factor that leads to the steady state in one direction being the �nal

equilibrium concentration of enzymic intermediates. For more complex schemes for which computations

are made starting with a derived analytical equation based on the QSS approximation, the reliability of

that equation must be checked. It will probably be helpful if all text books describing the use of the QSS

assumption are updated.

In contemplating the historical developments in studies of enzyme kinetics it may be questioned if the

QSS assumption as applied was superior to the equilibrium one of Henri  [10]  and Michaelis and

Menten [11]. The former is based on a very good approximation which is generally true when ao>>eo, and

was thought to give a more general interpretation of the kinetic constants in the HMM equation whereas

the equilibrium assumption was arbitrary and identi�ed a Km as a dissociation constant. But as applied

the QSS assumption did not reveal all possible constants correctly, and furthermore, it does not always

provide a solution, such as in the analysis of a two-substrate reaction with random order of substrate

binding. Both the equilibrium and the QSS assumption may lead with relative simplicity to an HMM

equation, but for both further information about individual rate constants is required to determine the

structure of catalytic constants.
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