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Neuroinflammation constitutes a key modulator of synaptic function and neuronal network
organization, with direct implications for cognition, emotion, and behavior. However, a conceptual
gap persists in understanding how the origin of the inflammatory stimulus—infectious or sterile—
and, in particular, the temporal trajectory of the neuroimmune response determine divergent
functional outcomes at the circuit level. In this narrative review, evidence from experimental models
and translational studies is integrated to analyze the mechanisms through which neuroinflammation
modulates synaptic plasticity, excitation—inhibition balance, and network efficiency.

The reviewed data indicate that neuroinflammation induced by infectious stimuli is typically
characterized by acute glial activation, intense but predominantly reversible network dysfunction, and
transient functional alterations, mediated by proinflammatory cytokines and dynamic changes in
neuronal excitability. In contrast, sterile neuroinflammation and unresolved inflammatory states are
associated with sustained glial activation, complement-dependent synaptic remodeling, microglial
priming, and persistent circuit dysfunction, with long-lasting effects on plasticity and cognitive
performance. Prolonged microglia—astrocyte interactions emerge as a critical determinant in the
transition from reversible functional alterations to states of chronic circuit disconnection. Taken
together, this review proposes that the functional outcome of neuroinflammation depends less on the
initial origin of the stimulus than on the duration, resolution, and inflammatory memory of the
neuronal circuit. These findings underscore the need for experimental approaches that integrate
temporal and circuit-level dimensions to understand the contribution of neuroinflammation to

persistent brain dysfunction and neurodegenerative vulnerability.
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Introduction

Neuroinflammation refers to the context-dependent immune response that arises within the central
nervous system (CNS) in response to disturbances of homeostasis, including infection, trauma, ischemia,
or neurodegeneration. This response is primarily mediated by resident immunocompetent cells, such as
microglia and astrocytes, and, under specific conditions, by infiltrating peripheral immune cells, and is
characterized by the production of inflammatory mediators that can modulate neuronal and synaptic

function.. [LL21(31[4

The classical conception of the CNS as a strictly immune-privileged compartment has been substantially
revised. Although access of peripheral immune cells remains highly regulated, the discovery of
meningeal lymphatic vessels and resident immune cell populations at the CNS borders has redefined
immune privilege as a state of active regulation rather than an absence of immune activity. BI6I7] Within
this framework, immune signaling is now recognized as an integral component of brain physiology, with

functions that extend beyond host defense to include neural development, synaptic pruning, and the

maintenance of functional neuronal circuits. [L12171

Neuroinflammation is neither a uniform nor a static process. Its functional consequences depend on the
nature, intensity, and duration of the initiating stimulus, as well as on the balance between
proinflammatory and regulatory mechanisms. Acute neuroinflammatory responses may promote repair
and restoration of homeostasis, whereas persistent or dysregulated inflammation can lead to long-
lasting functional alterations and, in certain contexts, neurodegeneration. [I21BI4 At the mechanistic
level, these responses are initiated through the recognition of pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs)

expressed on glial cells, particularly microglia, thereby triggering inflammatory cascades that may

resolve or persist depending on the context. m2jelr7]

Critically, the functional impact of neuroinflammation cannot be adequately understood at the level of
individual cells. Brain function emerges from highly interconnected neuronal circuits whose stability and
flexibility depend on finely regulated synaptic plasticity and excitation—inhibition balance (E/I balance).
These processes are increasingly recognized as being sensitive to signals derived from the immune
system. 18191 Through bidirectional communication, neurons, glial cells, and immune elements form
functional neuroimmune circuits in which inflammatory mediators modulate synaptic function and

neuronal activity, while neuronal signaling can, in turn, shape immune responses within the CNS. [8109]
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Within this circuit-based framework, both infectious and sterile neuroinflammation activate largely
overlapping cellular and molecular repertoires, despite being initiated by distinct stimuli. Infectious
neuroinflammation, driven by the recognition of PAMPs, is typically associated with rapid and transient
immune responses, whereas sterile neuroinflammation, triggered by DAMPs released following stress or
tissue injury, tends to involve sustained glial activation in the absence of pathogens. Although both
contexts can disrupt synaptic plasticity and circuit connectivity, accumulating evidence suggests that
sterile and persistent inflammatory states are preferentially associated with chronic circuit dysfunction
and long-term functional impairment, even in the absence of overt neuronal loss. [8191 However, the
mechanisms through which distinct neuroinflammatory contexts converge or diverge at the level of
neuronal circuits remain fragmented in the literature. This review aims to critically integrate the
available experimental and clinical evidence to examine neuroinflammation—infectious and sterile—as a
dynamic modulator of neuronal circuit function, emphasizing temporality, persistence, and resolution

capacity as key determinants of functional outcome.

Functional Framework: Neuroinflammation, Glia, and Modulation

of Neuronal Circuits

Neuroinflammation and Neuroimmunity as Functional Modulators of Neuronal Circuits

Brain function emerges from dynamic neuronal circuits organized through the coordinated interaction of
excitatory and inhibitory neurons, glial cells, and immune signals, rather than from isolated properties of
individual neurons or discrete anatomical regions. (0)II2][13] The stability and flexibility of these
circuits depend on E/I balance, which is regulated by synaptic and homeostatic plasticity mechanisms
that adjust connectivity and network gain in response to changes in activity and context. = =12=22122

From this perspective, synaptic plasticity constitutes a circuit-level phenomenon, in which coordinated
modifications of excitatory and inhibitory synapses remodel entire networks, regulate neuronal
synchrony, and support processes such as learning, memory, and contextual adaptation. ==+ Circuit
dysfunction is therefore defined as alterations in the activity, connectivity, and information processing of
neuronal networks in the absence of overt structural damage, such as neuronal loss or macroscopic

lesions. 12118} This dissociation between structure and function explains why cognitive, sensory, or

behavioral deficits do not necessarily correlate with structural lesion burden, a phenomenon classically
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described as the clinicoradiological paradox in multiple sclerosis and also observed in other neurological
disorders, [131116] Electrophysiological and functional neuroimaging studies have demonstrated aberrant
patterns of synchronization, hyperexcitability, or network inefficiency in neurodegenerative and

autoimmune diseases, as well as during aging, even at early stages or in the presence of minimal

atrophy. 15][16][17](18

Within this framework, neuroinflammation emerges as a central modulator of circuit-level functional
dysfunction. Immune signals derived from microglia, astrocytes, and, in certain contexts, peripheral
immune cells alter neuronal excitability, synaptic transmission, and plasticity without necessarily
inducing cell death. L0I2105107119] Proinflammatory cytokines such as interleukin-1 beta (IL-18) and
tumor necrosis factor alpha (TNF-o) modulate synaptic receptors, glutamatergic and GABAergic

neurotransmission, and mechanisms of long-term potentiation (LTP), thereby disrupting E/I balance at

the circuit level. 131(171[191[201(21]

The existence of neuronal circuits sensitive to immune signals is supported by the identification of
neuronal populations that express specific receptors, such as IL-1R1, enabling them to respond to
cytokines through non—cell-autonomous transcriptional programs. [12]0151[20] These circuits constitute
the neural substrate of sensory, affective, and cognitive symptoms induced by immune activation, even in
the absence of central structural damage, and are integrated into specific functional neuroimmune axes
—such as brain—skin circuits in atopic dermatitis and psoriasis—that can perpetuate pathological states

through circuit-immunity feedback loops. [22][23]

The functional impact of neuroinflammation depends critically on its temporality and context. Acute
inflammatory states typically induce reversible circuit dysfunction through rapid changes in excitability
and synaptic transmission, whereas chronic inflammation promotes maladaptive plasticity, persistent
network reorganization, and progressive loss of functional efficiency. [I27II8IRUR4] prjcroglial
activation and priming, together with sustained engagement of pathways such as NF-«B and PI3K-Akt—
mTOR, contribute to the stabilization of pathological network states and to clinical vulnerability, as
observed in epilepsy, movement and oculomotor disorders, and neurodevelopmental disorders, in which

circuit dysfunction predominates over focal structural damage. [191[21]{241[25][26][27]
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Glia as an Active Interface Between Immunity and Neuronal Circuits

Microglia and astrocytes form an integrated glial system that detects infectious and sterile signals and
translates them into functional changes at synapses and within neuronal circuits. Both populations
express PRRs, including toll-like receptors (TLRs), complement receptors, and chemokine—receptor axes,

enabling them to respond to both PAMPs and DAMPs and to directly modulate synaptic function. (28](29]

Under physiological conditions, microglia regulate circuit organization and refinement through activity-
dependent synaptic pruning, a highly selective process mediated by “find-me,” “eat-me,” and “don’t eat-
me” signals, such as the C1g—C3—CR3, CX3CL1/CX3CR1, and CD47/SIRPq axes. [21(32133)[341(35](36)(37] Thjg
interaction is synapse-type specific: microglial subpopulations can selectively modulate inhibitory
synapses via GABAergic signaling, sculpting inhibitory connectivity without affecting excitatory
synapses. 28] In pathological contexts, these same mechanisms may become maladaptive; for example,
in epilepsy, microglial activation induced by hyperactive inhibitory neurons promotes the selective

elimination of inhibitory synapses and amplifies network hyperexcitability through complement-

dependent feedback circuits. (311391

Astrocytes regulate the synaptic microenvironment through glutamate uptake, metabolic support, and
Ca?-dependent signaling, actively participating in the modulation of synaptic transmission and
plasticity. 22149 Neuronal activity controls astrocytic transcriptional programs through pathways such
as Sonic hedgehog (Shh), which regulate the expression of synaptic modulators critical for experience-
dependent plasticity. 4! Neuroinflammation disrupts these functions, reducing glutamatergic uptake
and promoting states of hyperexcitability and E/I imbalance. (29][40]

Bidirectional communication between microglia and astrocytes integrates these responses at the circuit
level. During inflammation, microglial release of ATP activates P2Y1 receptors on astrocytes, amplifying
Ca? signals and modulating excitatory transmission, while microglia can dynamically instruct

astrocyte—synapse interactions and facilitate activity-dependent synaptic elimination. [401142] Thig
integrated glial system enables rapid and context-dependent modulation of neuronal circuits, with
effects—adaptive or maladaptive—critically determined by the intensity, duration, and timing of the

immune stimulus. 2231137]
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Cytokines and Immune Mediators as Direct Modulators of Plasticity and Excitability

Proinflammatory cytokines, particularly IL-18, TNF-qa, and IL-6, act as direct modulators of synaptic
transmission and neuronal circuit plasticity, without requiring structural damage or neuronal death.
Primarily released by activated microglia and astrocytes, these molecules alter neuronal excitability,

receptor trafficking, and synaptic organization, thereby redefining network function in a manner

dependent on the inflammatory context. [281301(43][441(45][46](47][48]

IL-1B regulates synaptic plasticity in a concentration-dependent manner, suppressing long-term
potentiation (LTP) at elevated levels and impairing learning and memory processes. These effects are
mediated through activation of p38 MAPK, interference with brain-derived neurotrophic factor (BDNF)
signaling, and epigenetic mechanisms that repress gene programs associated with plasticity. 43144148
(49

1501 Neuronal expression of IL-1R1 delineates circuits that are specifically sensitive to immune signals,
providing a direct link between inflammation and cognitive, affective, and sensory alterations. [29)

TNF-a modulates plasticity through synaptic scaling mechanisms that adjust surface expression of
AMPA receptors and bidirectionally regulate excitation—inhibition balance, while IL-6 contributes to
synaptic dysfunction in states of persistent neuroinflammation, acting synergistically with other
proinflammatory cytokines. [B01311431[441(48) 1y contrast, cytokines such as IL-13 may exert modulatory
and neuroprotective effects by enhancing phosphorylation of glutamatergic receptors and activating
CREB-dependent transcriptional programs. 2!

These effects converge on the activation of shared intracellular pathways—including p38 MAPK, NF-«B,
JAK/STAT, and PI3K-Akt—-mTOR—that regulate receptor trafficking, synaptic organization, and gene
expression, {£2122M3212%0 Sustained dysregulation of these pathways promotes excessive synaptic
pruning, loss of plasticity, and persistent network alterations. [23131]

Both acute and chronic exposure to cytokines can disrupt E/I balance and synaptic plasticity in the
absence of structural neurodegeneration. Whereas acute inflammation typically induces reversible
functional changes, chronic inflammation stabilizes maladaptive plasticity states through

transcriptional and epigenetic modifications, perpetuating circuit dysfunction even after resolution of

the initial stimulus, (2/301[44](48](50]
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Infectious vs. Sterile Neuroinflammation: Functional Convergence

and Contextual Divergence

Shared Sensors, Signal Integration, and Functional Trajectories

Activation of PRRs by infectious stimuli—through PAMPs—or by sterile stimuli—via DAMPs derived
from tissue injury or protein aggregation—leads to alterations in synaptic function and neuronal
circuitry within the CNS. However, the functional differences between these contexts do not arise from
the engagement of entirely distinct molecular repertoires, but rather from how these signals are

integrated and translated into temporal and persistent effects on excitatory and inhibitory synapses.

Both PAMPs and DAMPs activate a largely overlapping set of PRRs expressed by microglia and astrocytes,
including TLRs, NOD-like receptors (NLRs), inflammasome components, and complement receptors.
Among TLRs, TLR2, TLR3, TLR4, and TLR9 recognize specific bacterial or viral motifs, whereas some of
these receptors—particularly TLR4—also respond to endogenous signals and noninfectious stress
stimuli, acting as contextual sensors rather than exclusively pathogen-specific detectors. [29][521[53][54]
(351 Complementarily, NLRs such as NLRP3 can be activated by both microbial products and endogenous
damage signals, promoting inflaimmasome assembly and caspase-1-dependent cytokine
maturation. 261 Likewise, activation of the complement cascade (C1g—C3) and its receptor CR3 mediates

synaptic pruning processes induced by both infectious and sterile insults. (36 (Figure 1A)

Although the repertoire of activated PRRs is largely shared, the functional integration of these signals
differs substantially between infectious and sterile neuroinflammation. In both contexts, PRR activation
converges on common intracellular cascades—including NF-«B, p38 MAPK, JAK/STAT, and PI3K-Akt-
mTOR—but the intensity, kinetics, and molecular context of pathway activation vary depending on the
origin and persistence of the stimulus. 29157} (Figure 1A) Additional modulatory signals, such as
canonical and noncanonical WNT pathways, can bias glial responses toward pro-resolutive or
proinflammatory programs, determining whether these shared cascades support transient responses

oriented toward defense and repair or, conversely, persistent inflammatory states associated with

synaptic dysfunction and neurodegeneration. 1221122115
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Infectious Neuroinflammation: Rapid Glial Activation and Predominantly Reversible

Network Dysfunction

Infectious stimuli, through PAMPs, directly and potently activate TLRs and NLRs via recognition of
microbial motifs, triggering robust and typically acute glial activation. This pattern is characterized by
rapid release of cytokines and chemokines, production of nitric oxide, and strong induction of antiviral
and antibacterial programs. 2911521531571 At the molecular level, for example, LPS efficiently activates
TLR4 and downstream MAPKs in microglia, promoting marked expression of TNF-o and reactive
nitrogen species. BOI5T] 1 viral infections, coupled activation of NMDA glutamatergic receptors in
microglia has also been described, with Ca** mobilization, activation of CaMKII, NF-«xB, and AP-1,
increased oxidative and endoplasmic reticulum stress, and the emergence of a highly reactive and
neurotoxic microglial phenotype. 61l 1n contrast, sterile stimuli—such as extracellular ATP, HMGB1,
misfolded proteins (B-amyloid), or extracellular matrix fragments—activate the same PRRs but tend to
induce more gradual and context-dependent responses, with preferential engagement of reparative or
29156

neurodegenerative programs, including chronic NF-«B or JAK/STAT?3 signaling in astrocytes. [29156] 1y

these scenarios, sustained activation of axes such as PI3K/Akt can alter receptor trafficking, synaptic

plasticity, and neuronal metabolic homeostasis. (621 (Figure 1B)

These differences in signal integration are reflected in the hierarchical organization of the glial response.
During infectious neuroinflammation, microglia act as primary sensors, rapidly detecting PAMPs and
releasing proinflammatory cytokines such as IL-13 and TNF-o, which secondarily induce reactive
astrocyte activation, [0316411651[66] Activated astrocytes amplify and modulate the inflammatory response,
disrupt blood—brain barrier integrity, and directly affect synaptic transmission through changes in
glutamate uptake and gliotransmitter release. [651(671[68] Bjdjrectional microglia—astrocyte crosstalk can
escalate neuroinflammation, perturb synaptic homeostasis, and generate acute changes in network
excitability and functional connectivity. [631641[69] (Figure 1B) In this context, astrocytes may also act as

viral reservoirs, contributing to persistence and dissemination of infection within the CNs, [631

Sterile Neuroinflammation: Sustained Activation and Persistent Circuit Dysfunction

In sterile neuroinflammation, although microglia continue to act as the initial sensors, activation is
predominantly driven by DAMPs and is associated with more persistent functional trajectories. Microglia

mediate synaptic pruning and remodeling processes, often through complement-dependent
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mechanisms, and release cytokines that induce astrocytes to transition toward neurotoxic or
neuroprotective states. [1r431[661[70] Endogenous DAMPs, such as HSP60 released by stressed neurons, can
activate TLR4 and promote NLRP3 inflammasome activation in microglia, inducing sustained IL-1B
release and reinforcing chronic, infection-independent inflammatory circuits. ZU In this context,
microglial activation does not adopt a rigid binary phenotype but rather dynamic mixed states
modulated by local and systemic signals. BN Astrocytes assume a more prominent role in the long-
term modulation of synaptic plasticity, metabolic support, and maintenance of the extracellular
environment, contributing to chronic, low-grade circuit dysfunction rather than acute excitotoxicity. o
[831[72] This contribution increases progressively, particularly in chronic neurodegenerative conditions,
where astrocytes sustain maladaptive plasticity states and functional network disconnection. o
[43] (Figure 1C)

Consistent with this prolonged kinetics, sterile neuroinflammation induced by traumatic injury or
protein aggregation (for example, tauopathies or Alzheimer’s disease extracts) generates gradual and
persistent changes in synaptic structure and function. In vivo imaging studies show that both systemic
LPS-induced inflammation and tauopathy models prolong microglial contacts and promote excessive
synaptic remodeling, with increased microglial phagocytosis of dendritic spines and filopodia. 351 This
process is complement dependent, with upregulation of the C1g—C3—CR3 pathways, and is exacerbated in
pathological contexts. 531 1n Alzheimer’s disease, sustained microglial activation may fail to efficiently
clear AB, favoring non-resolving inflammation that accelerates synaptic loss and cognitive decline. Bl
models of direct central inflammation, such as experimental autoimmune encephalomyelitis (EAE),
selective impairment of hippocampal LTP, reduction of NR2B subunits of the selective impairment of
hippocampal LTP, reduction of NR2B subunits of the NMDA receptor, and increased IL-1p are observed,
indicating a specific alteration in the composition and function of excitatory synapses. [74] Although both
central and peripheral inflammation can affect LTP, only sterile central inflammation is associated with

these particular molecular changes. [741
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Figure 1. Shared and divergent immune signaling pathways in infectious and sterile neuroinflammation.

This figure illustrates the shared immune-sensing architecture and the divergent downstream consequences

of infectious and sterile neuroinflammation at the circuit level. (A) Both infectious and sterile inflammatory

stimuli engage overlapping sets of pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs),

NLRP3 inflammasome components, and complement receptors, which converge on common intracellular

signaling pathways such as NF-«B, p38 MAPK, JAK/STAT, and PI3K-Akt—-mTOR. These pathways are

expressed across multiple glial cell types and constitute a shared molecular framework for neuroimmune

activation, regardless of the inflammatory origin. (B) In infectious neuroinflammation, pathogen-associated

molecular patterns (PAMPs) induce robust PRR engagement, leading to rapid glial activation, transient

cytokine release, and production of nitric oxide and reactive oxygen species. This response is typically

associated with acute network hyperexcitability and oscillatory disruption that is largely reversible following

effective inflammatory resolution. (C) In sterile neuroinflammation, damage-associated molecular patterns

(DAMPs) elicit context-dependent PRR signaling that favors sustained glial activation, complement-mediated

synaptic remodeling, and astrocyte-driven network modulation, ultimately promoting progressive synaptic

loss, functional disconnection, and persistent circuit dysfunction.

Network Functional Patterns Induced by Infectious and Sterile Neuroinflammation

Differences in PRR activation and signal integration during infectious versus sterile neuroinflammation

translate into distinct functional patterns of neuronal network excitability, synchronization, and
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disconnection. In infectious contexts, immune activation typically induces acute and intense network
dysfunction, characterized by rapid changes in neuronal activity and transient alterations in oscillatory
dynamics; in contrast, sterile neuroinflammation follows slower and more persistent trajectories that
culminate in chronic, low-grade circuit dysfunction. MIS2M53)751[76] Experimental exposure to TLR
ligands such as LPS, peptidoglycan, or poly(I:C), recognized by TLR4, TLR2, and TLR3 respectively,
triggers acute microglial activation with the release of proinflammatory cytokines (TNF-q, IL-6) and
reactive oxygen and nitrogen species, producing immediate effects on network dynamics. [52] These
alterations include slowing of gamma oscillations, emergence of beta-band activity, and episodes of
neuronal hyperexcitability, even in the absence of neuronal death. [52153] Repeated or combined PRR
activation exacerbates these effects, with nitric oxide and microglial-derived oxidants acting as central
mediators of more severe network dysfunction. (221 In models of peripheral viral challenge with poly(I:C),
acute-phase cytokines such as CXCL10 increase seizure susceptibility by enhancing excitatory
transmission and suppressing inhibitory signaling. mn Nevertheless, these responses may be attenuated

after repeated stimulation through tolerance and negative regulatory mechanisms, such as induction of

A20 or IRAK3, reflecting processes of functional microglial reprogramming. 781

In contrast, sterile neuroinflammation is associated with sustained activation of microglia and
astrocytes, prolonged release of inflammatory mediators, and progressive impairment of synaptic
plasticity, including reduced LTP, neuronal morphological changes, and cognitive decline. 731761791 1y
this context, chronic activation of pathways such as PI3K/Akt, NF-xB, or cGAS—STING sustains persistent
production of type I interferons and proinflammatory cytokines, promoting synaptic loss and
neurodegeneration. [601[62][751[79] Recent evidence indicates that sustained type I interferon signaling
directly disrupts synaptic homeostasis and activity-dependent plasticity, favoring states of functional
disconnection in cortical and hippocampal networks. (75117911801 Consistently, comparative studies show
that although infectious and sterile stimuli activate overlapping inflammatory pathways, they differ in
their functional consequences: the former induce predominantly acute network hyperexcitability,

whereas the latter are associated with complement-mediated persistent synaptic loss and chronic circuit

dysfunction. [621[81182]

Alterations of Excitation—Inhibition Balance According to Inflammatory Context

From the perspective of E/I balance, infectious neuroinflammation tends to acutely potentiate excitatory

transmission and transiently suppress inhibition, favoring reversible states of synchronization and
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hyperexcitability. 22177 In contrast, sterile neuroinflammation is associated with sustained microglia-
mediated synaptic pruning and progressive loss of excitatory synapses, contributing to functional
disconnection and cognitive decline. [73)[74] The relative preservation of inhibitory interneurons during
acute infections suggests mechanisms of differential vulnerability and underscores the importance of

inflammatory context in determining functional outcome. 521

Inflammatory Persistence, Glial Priming, and Functional Circuit Outcomes

At the network level, functional outcomes do not depend exclusively on microglial activation but rather
on the dynamic interaction between microglia and astrocytes, whose contribution to circuit remodeling
varies according to the origin, intensity, and duration of the inflammatory stimulus. In infectious
contexts, both glial populations participate in rapid responses aimed at damage containment, whereas in
sterile and chronic scenarios this interaction tends to sustain prolonged inflammatory states that durably
disrupt synaptic and metabolic homeostasis. In infectious neuroinflammation, acute and high-intensity
glial activation promotes rapid, activity- and complement-dependent synaptic pruning, associated with
severe but potentially reversible network dysfunction. (3211521(331[57)(77] In contrast, chronic or repetitive
sterile stimuli promote glial priming, sustained phenotypic changes, and chronic complement-
dependent synaptic pruning, characterized by prolonged microglial contacts, excessive elimination of
dendritic spines, and persistent alterations in phagocytic capacity, contributing to progressive synaptic

loss and long-lasting disruption of circuit homeostasis. [321[52](531(561[571(601(78]

Beyond the initial origin of the stimulus, experimental evidence converges on the notion that the
duration and persistence of the neuroinflammatory state are the primary determinants of synaptic and
network functional outcomes. Episodes of acute, self-limited neuroinflammation—whether infectious or
sterile—induce transient alterations in synaptic plasticity, reversible E/I imbalance, and short-term
cognitive deficits that tend to resolve following the restoration of glial and neuronal homeostatic
programs. '=1=21e21le2le2]ISDlS ] In contrast, sustained or unresolved neuroinflammation, whether driven
by persistent infection, ongoing sterile injury, or chronic pathology, is associated with long-lasting
synaptic dysfunction, maladaptive plasticity, and persistent E/I imbalance that progresses toward circuit
disconnection and neurodegeneration. =!=2!e2le L] This qualitative shift is linked to prolonged exposure
to proinflammatory cytokines such as IL-1, TNF-o, and IL-6, sustained activation of microglia and

astrocytes, and persistent engagement of inflammatory pathways such as the NLRP3 inflammasome. [43]

(831(87]
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A central element in the transition toward persistent inflammatory states is glial priming, or “innate
immune memory,” whereby microglia acquire a durably sensitized functional state following an initial
activation. This phenomenon is supported by epigenetic reprogramming mechanisms, including
chromatin modifications, stable changes in gene expression, and metabolic reprogramming, such as
sustained upregulation of glycolysis. [88I[891[901(91[92] A5 a result, primed microglia respond
disproportionately to secondary stimuli, even of low intensity, with amplified release of inflammatory

mediators, increased circuit vulnerability, and persistent synaptic dysfunction. [281(831[881(931[941[951(96][97

From a functional perspective, this priming translates into a state of persistent circuit sensitization,
characterized by sustained impairment of synaptic plasticity, slowing of network oscillations (including
gamma activity), reduced efficiency of neuronal processing, and increased vulnerability to functional
relapses, even in the absence of overt structural neurodegeneration. [2819411951[98I[991[100] pjodels of
aging, traumatic brain injury, and neurodegenerative diseases show that this sensitized state conditions
exaggerated responses to subsequent inflammatory challenges and durably compromises the circuit’s

capacity for functional recovery. (281941961 (Figure 2)

Importance of the Origin of the Inflammatory Stimulus

Comparisons between infectious and sterile models indicate that the origin of the inflammatory stimulus
is indeed relevant during early phases, particularly when marked differences exist in the intensity,
kinetics, and compartmentalization of the initial immune response. Infectious stimuli typically elicit
rapid, high-intensity responses, with acute cytokine peaks and predominantly transient functional
alterations, such as reversible cortical hyperexcitability and brief cognitive deficits. (101)[102][103] 11
contrast, sterile stimuli generate more gradual initial responses, but with slower onset and greater

persistence, favoring long-lasting alterations in synaptic plasticity and chronic circuit dysfunction. (21(83)

(86]

However, accumulating evidence shows that the origin of the stimulus ceases to be the determining
factor once a state of persistent neuroinflammation and glial priming has been established. Under these
conditions, the duration of the inflammatory state, the circuit’s prior inflammatory history, the degree of

resolution achieved, and the basal state of the neuronal network predict functional outcomes more

accurately than the infectious or sterile nature of the initial insult. [8311881(931[941[100}
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Thus, although both types of stimuli activate largely overlapping molecular repertoires, it is the temporal
trajectory of the inflammatory response—and not exclusively its origin—that determines whether the
circuit returns to a reversible functional state or progresses toward persistent dysfunction. Within this
framework, neuroinflammation becomes an emergent property of the circuit, shaped by its

inflammatory history and its capacity for resolution.
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Figure 2. Inflammatory persistence, glial priming, and circuit-level functional outcomes. This conceptual
model illustrates how the temporal persistence of neuroinflammatory signaling shapes circuit-level
functional outcomes, independently of the initial inflammatory origin. The x-axis represents time and
inflammatory persistence, ranging from acute, self-limited responses to unresolved or chronic inflammation,
while the y-axis reflects the degree of functional circuit disruption. Acute inflammatory responses with
effective resolution (green trajectory) are characterized by transient cytokine surges and reversible synaptic
alterations, allowing restoration of excitatory—inhibitory balance and return to baseline network function. In
contrast, failure to resolve inflammation beyond a critical resolution threshold (dashed line) promotes
sustained cytokine exposure, glial priming, and maladaptive plasticity (red trajectory). Over time, these
processes stabilize dysfunctional network states, leading to synaptic loss, network inefficiency, and
functional disconnection. The figure emphasizes inflammatory duration and resolution capacity, rather than

inflammatory origin per se, as key determinants of long-term circuit integrity.
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Descending Autonomic Modulation of Neuroinflammation

Autonomic circuits, particularly vagal and cholinergic pathways of the brainstem, exert a context-
dependent descending modulation of the immune response during neuroinflammation. Through the
inflammatory reflex, afferent signals derived from infection or tissue damage are integrated at the
brainstem level and translated into a cholinergic efferent output that suppresses peripheral cytokine

release via activation of o7 nicotinic receptors on immune cells. [1041105][106]

During PAMP-induced infectious neuroinflammation, such as that triggered by LPS or viral stimuli,
these pathways are robustly engaged and contribute to the efficient resolution of acute inflammation, in
part through acetylcholine production by T lymphocytes and adrenergic mechanisms associated with
vagal afferent signaling. 107111081 1 contrast, in sterile neuroinflammatory contexts, activation of these

reflexes is less effective, favoring the persistence of low-grade inflammatory states. (11199

Consistently, vagal stimulation effectively suppresses LPS-induced inflammation in acute models but
shows limited efficacy in scenarios of chronic sterile neuroinflammation, where glial priming and
sustained cytokine production constrain resolution mechanisms. 40710l Thys the activity of
autonomic, limbic, and brainstem circuits differentially modulates glial inflammatory states: whereas
acute infectious inflammation is associated with anti-inflammatory feedback loops, chronic sterile
inflammation tends to sustain persistent glial activation and impaired resolution. [LI701[84)(110) Taken
together, these data indicate that the efficacy of autonomic modulation depends primarily on the
duration and context of the neuroimmune state, rather than on the infectious or sterile origin of the

initial stimulus.

Cognitive, Emotional, and Behavioral Outcomes

Clinical and experimental evidence converges in showing that infectious neuroinflammation is
predominantly associated with acute cognitive, emotional, and behavioral alterations that are reversible
in a substantial proportion of cases, whereas sterile or chronic inflammatory states tend to produce
persistent, multidomain deficits. During bacterial or viral infections, systemic and central inflammatory
activation induces the so-called sickness behavior, characterized by fatigue, cognitive slowing, and
affective changes, in association with transient elevations of cytokines such as IL-6, TNF-a, and CRP. (1)

(12)[113] Thege changes reflect an adaptive motivational reorganization and typically resolve in parallel
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with the decline of inflammatory markers, as demonstrated by longitudinal studies documenting

cognitive and emotional recovery following infection resolution, L1112

In contrast, sterile neuroinflammation and certain post-infectious states are associated with persistent
fatigue, sustained cognitive impairment, and affective disturbances that outlast the initial insult. These
conditions are linked to ongoing neuroinflammatory signaling, disruption of the blood—brain barrier,
and persistent glial activation, resulting in durable deficits in attention, memory, and executive
functions. [8I4115] copsistently, experimental models show that chronic inflammation compromises
synaptic plasticity and network efficiency, thereby promoting persistent cognitive and emotional

dysfunction, [8311161117]

Taken together, these data indicate that functional symptoms associated with infectious
neuroinflammation display a greater potential for reversibility than those arising from sterile or chronic
states, in which long-lasting synaptic and circuit-level alterations predominate. [S3IMNIMA) phjg
distinction supports the concept of inflammation-course-dependent temporal windows, during which

early resolution of inflammation is critical to prevent the transition toward persistent circuit

dysfunction. [831(118]

Discussion

The reviewed literature suggests that neuroinflammatory processes induced by infectious and sterile
stimuli share a largely overlapping molecular architecture, based on the activation of PRRs, common
inflammatory cascades, and a close functional interaction between microglia and astrocytes. However,
the way these signals are integrated over time—as well as their persistence and degree of resolution—

varies considerably across experimental models and pathological contexts.

A central limitation of the available body of evidence is its strong reliance on animal models and on acute
or artificial inflammatory paradigms, which do not always capture the temporal and contextual
complexity of human neuroinflammation. In addition, methodological heterogeneity—including
differences in the type of stimulus, the compartmentalization of inflammation, and the outcomes
assessed—hampers the establishment of direct causal relationships between glial activation, synaptic

remodeling, and network dysfunction.

These limitations underscore the need to interpret the reported circuit-level outcomes not as inevitable

consequences of a given inflammatory stimulus, but rather as context-dependent results shaped by
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experimental conditions, prior inflammatory history, and the resolution capacity of the nervous system.

Conclusions

The evidence synthesized in this review supports a conceptualization of neuroinflammation as a
dynamic modulator of brain function, capable of altering synaptic plasticity, excitability, and the
organization of neuronal networks without necessarily requiring irreversible structural damage.
Infectious and sterile stimuli activate largely overlapping molecular repertoires, but differ in the kinetics,
persistence, and contextual integration of these signals, resulting in distinct functional trajectories at the
circuit level. Within this framework, the distinction between acute, potentially reversible dysfunction and
persistent, maladaptive dysfunction emerges as a continuum driven by the inflammatory course rather

than as categories strictly defined by the origin of the initial stimulus.

A central theme emerging from the reviewed studies is the role of glial cells—particularly microglia and
astrocytes—as an active interface between immunity and neuronal circuits. Through the integration of
immune signals, modulation of the synaptic microenvironment, and regulation of activity-dependent
pruning and plasticity, these cells largely determine the functional stability of neuronal networks.
Persistent glial activation, together with priming phenomena and functional reprogramming, promotes
the consolidation of maladaptive plasticity states and circuit disconnection, even in the absence of overt
neurodegeneration, thereby redefining neuroinflammation as an emergent property of the nervous

system rather than a transient response to an isolated insult.

From an integrative perspective, this work proposes that the duration, resolution, and prior
inflammatory history of a circuit constitute critical determinants of cognitive, emotional, and behavioral
outcomes. In this context, a key challenge for future research will be to more precisely characterize how
the temporal trajectories of neuroinflammation interact with mechanisms of activity-dependent
plasticity and network organization over time. Advancing our understanding of these processes will
allow refinement of current conceptual models and the establishment of a more precise framework to
interpret the transition between reversible and persistent dysfunction in neuroinflammatory states,

without reducing this complexity to a simple dichotomy between infectious and sterile inflammation.
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