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Gas leakage poses a signi�cant hazard that requires prevention. Traditionally, human inspection has

been used for detection, a slow and labour-intensive process. Recent research has applied machine

learning techniques to this problem, yet there remains a shortage of high-quality, publicly available

datasets. This paper introduces a synthetic dataset featuring diverse backgrounds, interfering

foreground objects, diverse leak locations, and precise segmentation ground truth. We propose a zero-

shot method that combines background subtraction, zero-shot object detection, �ltering, and

segmentation to leverage this dataset. Experimental results indicate that our approach signi�cantly

outperforms baseline methods based solely on background subtraction and zero-shot object detection

with segmentation, reaching an IoU of 69% overall. We also present an analysis of various prompt

con�gurations and threshold settings to provide deeper insights into the performance of our method.

The dataset is available at https://forms.gle/aPHPfnM4Lwaz9FKB8.

Corresponding author: Shan Du, shan.du@ubc.ca

1. Introduction

Various organic gases are extensively used today across industry, both as fuels (for example, natural gas,

methane) and starting materials for synthesis. However, methane emissions and other gases, particularly

unintended leaks, are harmful and should be prevented. Methane has a signi�cantly greater greenhouse

impact than carbon dioxide (CO2), exhibiting a heat-trapping potential over 28 times that of CO2
[1].
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Additionally, many hydrocarbon gases can be toxic to humans[2]. In enclosed areas, leaked gases may

pose a risk of hypoxia, endangering personnel, or causing �re and explosion hazards. For additional

background, detailed justi�cation, and the need for effective leak detection, readers may refer to several

previously published papers[3][4][5].

There are many works focusing on gas leak detection using computer vision; however, despite many

computer vision algorithms being data-intensive, public datasets are very scarce. Three major datasets in

this �eld are GasVid[3], Gas-DB[6], and the Industry Invisible Gas Dataset (IIG)[5].

GasVid[3] is a dataset featuring controlled methane gas releases against a clear sky background, making it

nearly ideal for foreground (leak) segmentation via background subtraction. Yet, this scenario rarely

re�ects real-world conditions. Moreover, GasVid lacks segmentation ground truth, providing only

quanti�cation classi�cation that limits segmentation assessment to visual inspection. Gas-DB[6] includes

segmentation but consists of still images instead of full-motion video. Although the images are

sequential, they exhibit low continuity and short duration, making many video-based methods

inapplicable. Both GasVid and Gas-DB rely on human-controlled releases, where leaks originate at the end

of a releasing device such as a pipe. In comparison, IIG[5] contains videos of real gas leaks, but it has only

bounding box annotations and is captured on handheld cameras, which introduces substantial camera

motion.

We attempted to label pixel-level segmentation ground truth for GasVid[3], but the semi-transparent,

blurry boundaries of gas leaks made annotation dif�cult. Consequently, our proposed method of Priori

Ground Truth—knowing the ground truth before generating input data—can address these challenges by

establishing accurate annotations from the outset.

Datasets in all domains exhibit inherent biases. GasVid and Gas-DB, for example, have spatial biases

related to speci�c releasing devices, and all three datasets can be in�uenced by factors such as camera

type, location, and lighting. Compiling large-scale gas leak detection data is inherently dif�cult, resulting

in relatively small datasets that risk propagating any underlying biases to trained models. Recently, zero-

shot techniques have gained attention for their low implementation cost and independence from

training data.

To advance this area of research, we propose a novel computer-synthetic dataset offering diverse leakage

points, perfectly accurate segmentation ground truth, and stable video recordings containing multiple

moving objects. We produce high-quality data that avoids human labelling and retains precise
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segmentations by overlaying realistically rendered leaks and interfering foreground elements onto varied

backgrounds. In addition, we proposed a zero-shot method using a vision language model to avoid the

model bias trained on this dataset. Our experiment shows that this method can achieve promising

performance on this dataset.

Our contributions can be summarized as follows:

We construct a diverse video-based computer-rendered dataset with complex backgrounds,

interfering moving objects, and accurate ground truth.

We propose a new baseline algorithm that combines background subtraction and zero-shot object

detection to segment gas leakage accurately.

2. Related Work

2.1. Gas Leak Detection and Datasets

There are three main public datasets in the gas leak detection �eld. GasVid was proposed with

GasNet[3]  and VideoGasNet[7]. It contains a video dataset of controlled gas release. Most videos include

the sky as a background, with gas released from a chimney-like structure. However, it was originally used

as a classi�cation dataset to determine if there is leakage and the amount of leakage without localization

or segmentation information. Segmentation is not only important for precise localization but also

required for better quanti�cation of the gas release[4]. Most of its videos also do not have interference

from other moving objects such as humans or cars, makinRGBund-subtraction method able to segment

out the foreground (leak) with promising performances. In GasNet[3]  and VideoGasNet[7], authors used

background subtraction to remove non-moving parts in the video and kept a “soft” subtraction (without

thresholding) Then, these subtracted frames (still frames in GasNet[3]  and sequence of frames in

VideoGasNet[7]) were sent into a CNN or ConvLSTM[8] to classify if there is a leak in the frames and the

amount of leak.

Gas-DB[6], on the other hand, is a segmentation dataset. It contains over 1000 RGB-T images (images

with 3 RGB channels and one thermal channel) with carefully labelled segmentation masks in different

environments with other moving objects. The RGB channels provided more textual information than the

thermal-only images. However, it was designed for image segmentation tasks without considering

temporal information, which makes it hard to distinguish other similar-looking objects with leaks or
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hard to detect faint leakage. Although the images are collected in temporal sequence and can be

connected as videos, the lengths are usually very short, and the frame continuity is very low. Their model

uses cross-modality attention to leverage the information in both RGB channels and thermal channels,

achieving 56.52% IoU results. However, they split the dataset into training and validation sets using

frame level instead of video level splits, meaning frames in the same video, which could have similar

environments, can end up in training and validation sets. This means when the model is applied to

unseen environments, the performance could potentially drop. This is similar to the situation for

background subtraction for seen scenes vs. unseen scenes (Section 2.2). Additionally, both of these

datasets have gas “leaked” from the end of pipe- or chimney-like structures. Therefore, if we train a

model on these raw images (i.e. not the background-subtracted images in GasNet[3] and VideoGasNet[7]),

the model could be biased toward these structures such that it will tend to relate these structures to the

leakage, which is not necessary the case in real scenarios.

The Industrial Invisible Gas (IIG) dataset[5]  is another recent IR-camera-captured dataset designed for

object detection in real-world industrial environments. Unlike arti�cially simulated gas leaks, this

dataset represents actual scenarios, avoiding biases associated with prede�ned leak locations, such as the

ends of pipes. It consists of 5,569 images and includes �ve distinct scenes: pump oil seals, oil tank vents,

gas stations, industrial chimneys, and other industrial settings. It was also captured as videos with high

continuity, but the videos were captured using a handheld camera, which introduced camera jitter

motion, making some video-based methods (such as background subtraction) hard to apply.

Furthermore, both GasVid[3]  and GasDB[6]  utilize real-world simulations with controlled gas releases.

Although these methods aim to replicate real-world scenarios closely, they pose signi�cant �re and

explosion hazards (with the risk being lower in GasVid due to its open-air setting but higher in GasDB,

where some experiments take place in partially enclosed spaces) and contribute to the release of

greenhouse gases into the environment.

According to the GasVid paper[3], at least 12 kg of methane was released for the dataset used in the study

—excluding emissions from testing and failed attempts (such as tank releases). While this quantity may

be negligible globally, it still represents an avoidable environmental impact from a single experimental

dataset. In contrast, a computer-generated dataset can achieve the same objectives without contributing

to greenhouse gas emissions.
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Humans’ labelling of segmentation masks is inef�cient and inaccurate. This is due to the gas plume’s

blurry boundary and transparent nature.

Synthetic datasets have been used in many areas. Guo et al.[9]  demonstrated that for molecular model

captioning, using a rendered dataset provides a straightforward method to obtain large amounts of data

without human involvement, signi�cantly boosting the downstream performance on real datasets. Wang

et al.[10] used Unreal Engine 5 to simulate forest �re. Mao et al.[11] used 3D software to render forest �re

smoke images and used CycleGAN[12] to generate more images. Gu et al.[13] also used the rendered dataset

to simulate gas leakage to avoid manual labelling segmentation data.

2.2. Background Subtraction

Background subtractions (BGS)[14][15][16][17][18][19] have been used to detect moving parts in a video.1 Non-

deep-learning methods, such as MOG[14], MOG2[15][16], and kNN[16], do not require prior training or

masks labelling for frames at the beginning of the video.

Over an extended period, one class of supervised background subtraction methods is video or video-

group-optimized deep learning methods[20][21]. These methods require some frames from the target

video or target video group to be labelled (i.e., segmentation by humans of what objects are in the

foreground) to perform well. When applied to unseen videos, their performance drops dramatically[17].

For example, the original F-score reported by FgSegNet v2[20]  using a video-optimized method was

nearly perfect (0.9789), but when trained using the video-agnostic method by[17], the f-score is only

0.3715.

BSUV-Net[17] is one of the �rst deep-learning-based methods that could be applied to unseen videos with

good results. BSUV-Net 2.0[18]  improved it by using stronger data augmentation. Other deep learning

methods for unseen BGS include[22][23][24][25][26].

Zero-shot background subtraction (ZBS)[19] introduced open vocabulary detection and segmentation for

BGS in zero-shot settings. It uses an open vocabulary object detector to detect all objects in the image

and use their movement across the video to determine if the object is foreground or background. While

ZBS demonstrates effectiveness in handling illumination changes and pixel noise, it presents a

fundamental limitation: it requires objects to be detectable before background subtraction can occur.

This requirement creates a signi�cant problem for applications such as leak detection. In such scenarios,
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background subtraction is used as a preliminary step for object detection by extracting the moving

objects—not the other way around. This creates a dependency loop for these applications.

2.3. Vision Language Models

Vision language models (VLMs)[27][28][29][30][31][32][33][34][35][36][37][38] have been advanced dramatically

recently and show promising results in tasks combining vision and language, especially in zero-shot

settings, such as language guided classi�cation, segmentation, object detection, and vision grounding.

CLIP (Contrastive Language Image Pretraining)[27]  is one of the earliest and foundational works in this

�eld. It uses contrastive learning pre-task where matched image-text pairs are used. This allows for zero-

shot image classi�cation by giving the model a list of candidate classes in natural language and

calculating the similarity between the image and text features. Other VLMs expended CLIP-like zero-

shot capabilities to localization (including grounding and detection)[37][39][40][36][35][30]. By combining

these localization models with Segmente Anything Model (SAM)[41], language-guided instance level

segmentation could be achieved, such as in Grounding SAM[42]  and APOVIS[43]. More details of these

models can be found in the supplemental material.

3. Dataset

We created the dataset by overlaying interfering foreground objects and gas leakage simulation footage

onto background scenes. The foreground elements were sourced from two IR datasets, BU-TIV[44]  and

CAMEL[45][46], which include objects such as bats, cars, and humans. To extract objects of interest from

these IR videos, we segmented the objects of interest using either thresholding or the SAM 2

model[47]  with box annotations from the original dataset. Background footage was selected from

GasVid[3]  from non-leak portions or generated using DALL-E-2[48]. GasVid backgrounds are used to

ensure our dataset includes sensotr noise, real-life lighting change, etc.. DALL-E-2 generated backgrounds

are used to diversify the background senses. Gas leakage simulations were rendered in Blender using

smoke simulation and force �eld. Some foreground objects, leakage simulations, and background scenes

were reused in different combinations. For ground truth for segmentation, we used the generated

“smoke” footage at the same position as in the overlay. A detailed comparison of our dataset with GasVid

and GasDB is provided in the Table 1.
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Gas-DB[6] GasVid[3] IIG[5] Ours

Format Image Sequence Video Video Video

Video Clip Length Short ( 60 frames)
Long ( 21K

frames)

Medium ( 500

frames)

Short-medium ( 300

frames)

Collecting Method Controlled Release Controlled Release Real Emission Computer Simulation

Spatial Bias Yes Yes No No

Background Complex Simple Complex Complex

Ground Truth
Manually labeled

Masks

Quanti�cation

Classes
Bounding Boxes Priori Ground Truth

Scene Variation 8 1 5 9

Other Moving

Objects
Yes Rarely Some Yes

Frame Continuity Low High High High

Total Number of

Frames
 1.2k  700k  5k  12k

Inter-Video

Similarity
Low High Low Medium

Availability Public Public Upon Request Public

Table 1. Comparison of Different Datasets

Similar to Gas-Vid[3]  and Gas-DB[6], we removed some videos (26, 27, and 28) because they exhibit a

strong, highly localized wind that causes smoke to disperse signi�cantly. We believed that such extreme,

erratic wind behaviour is rare in real-life scenarios. Therefore, we decided to exclude these videos, as they

do not represent typical conditions and introduce unrealistic challenges. We also removed video 24

because of a misalignment between the video and the ground truth. We have retained these videos in the

published dataset so that readers can review them and assess our decision.

∼
∼ ∼ ∼
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4. Methods

A pipeline of our method can be found in Figure 1.

Figure 1. Method Overview: Our method for gas leak detection involves background subtraction, zero-shot

object detection, non-maximum suppression (NMS), temporal �ltering, and segmentation. First, background

subtraction is used to identify the moving parts in the video. Then, two text prompts (positive and negative

prompts) are employed to guide a zero-shot object detector in detecting leaks. We use the prompt ”white

steam” because it is more commonly recognized than phrases explicitly mentioning gas leaks. NMS and

temporal �ltering are then applied to remove extra boxes and �x false positives or negatives based on past

temporal information. Finally, a segmentation model—such as the Segment Anything Model 2 (SAM 2)—is

used to convert the bounding boxes into segmentation masks.

4.1. Background Subtraction and Enhancement

A sequence of simulated IR-compared frames is processed with background subtraction to extract the

moving part of the video. We used a short history (30) to avoid false positives from slow-moving objects

such as clouds, which is the same approach used in GasNet[3].

Instead of relying on built-in mask generation for different background subtraction (BGS) methods, we

extracted the background image from the algorithm and then computed the absolute difference between
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the current frame and the background image:    where    is the difference,    is the

background image obtained from the BGS algorithm, and   is the current frame.

Since the difference could be subtle, we enhanced the image by a factor   and clipped the values between

0 and 255:  .

Because the intensity of the difference may vary across different scenarios, we used an adaptive

enhancement factor, as shown in Equation 1. We set the default factor to 15; however, this value could

sometimes be too high when the intensity of the difference is large, leading to clipping and loss of image

details. To mitigate this issue, we ensured that   (one standard deviation above the mean) does

not exceed 255 by selecting a lower  , as shown in Equation 1.

4.2. VLM Filtering

After background subtraction, all moving objects, including non-leak objects like humans, cars, birds, etc,

are also extracted. To select leaks, we leverage the zero-shot object detection capability of a Vision-

Language Model (VLM) Owlv2[36] to �lter interested objects (leak), with the VLM Threshold ( ) as a

hyperparameter that determines the threshold for a positive box output. However, using a prompt of “gas

leak” or something similar might not be ideal as these models are usually trained on RGB modality

images, in which gas is usually non-visible. Nevertheless, gas leaks in IR images resemble steam or

smoke in RGB images. Thus, we chose to use “white steam” as the prompt for object detection. Detailed

experiments with different prompts are shown in Section 5.4. We also used one negative prompt (white

human, car, bird, bike, and other objects), such that when the objects were similar to “white steam” but more

similar to the negative prompt, the VLM could correctly avoid it to reduce false positives. Finally, we

applied a non-maximum suppression based on the con�dence of each bounding box and the IoU between

them to reduce overlapping boxes.

4.3. Temporal Filtering

Since the VLM only considers the current enhanced difference frame ( ) as input, it lacks temporal

information. This limitation can lead to transient false positives or false negatives, causing issues with

poor segmentation and false alarms.
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i Ibg Ii I ′
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To address this problem, we assume that a leak does not appear or disappear suddenly. We implement a

temporal �ltering mechanism that ensures a detected box is considered valid only if, within the past 

 frames, at least   boxes have an IoU greater than   or absolute shift greater than   with the

current box. This prevents transient false positives caused by noise or non-leak objects. We used 

,  ,  , and   in our experiment.

Similarly, we assume that a leak will not vanish suddenly. Therefore, if no leak is detected in the current

frame, we look over the past   frames and compare all detected boxes across these frames. If two boxes

in different frames have an IoU greater than  , we infer that the leak is still present and add the

corresponding box to the current frame. We used   and   in our experement.

These hyperparameters were not tuned extensively to avoid over�tting to a certain dataset.

These two �lters provide a simple method to balance response time against false positive and false

negative rates, leveraging the assumption that leaks are generally continuous. A detailed pseudocode

implementation is provided in Algorithm 1 in the supplemental material, and we demonstrate its

effectiveness in the experiment section.

4.4. Segmentation

After temporal �ltering, the boxes are passed to SAM 2[47]  to generate segmentation masks. SAM 2

produces a mask for each given box, which is combined using an OR operator. We utilize SAM 2 because it

is less susceptible to noise and can effectively disregard non-primary objects, ensuring more accurate

segmentation of the target subject.

5. Experiments and Results

5.1. Settings

In this paper, for each method tested, we performed a hyper-h method tested on key parameters such as

morphological kernel size and threshold. To reduce computational intensity, ensure the approach aligns

with real-world frame rate limitations—where hardware performance is constrained despite the need for

real-time monitoring—and acknowledge that closely spaced frames are often similar, making individual

evaluation unnecessary, we process every frame using the BGS algorithm but only perform VLM �ltering

and subsequent stages only every 5 frames. To ensure consistent comparison for the BGS-only baseline,

we also performed BGS for every frame but only evaluated the result every 5 frames. The Owl-V2 model is

k1 n1 τtIoU1
τtShift

= 10k1 = 1n1 = 0.3τtIoU1
= 40τtShift

k2

τtIoU2

= 3k2 = 0.3τtIoU2
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loaded from Huggingface using 4bit quantization and �oat16 computation type. The SAM 2 model is 2.1

Hiera Small using an of�cial repository. We reported four metrics for comparison: IoU (I), precision (P),

recall (R), and frame-level accuracy (FLA). Frame-level accuracy is the accuracy of frame-level

classi�cation. If any pixels in the frame are segmented, it is considered positive.

5.2. BGS-Only Baseline

In GasNet[3] and VideoGasNet[7], using only the background subtraction method yields a very clean and

clear leakage (foreground) segmentation due to the static background and the absence of interfering

moving objects such as cars and people. Therefore, we aim to establish a baseline using only BGS on our

dataset. We experimented with different BGS methods, as shown in Table 2. All methods are run by using

a history of 30, getting the background image from the background model and subtracting it from the

current image; this difference image is then multiplied by 15 and thresholded by 40. These

hyperparameters are hand-turned on MOG and broadcast to all methods, as tunning all hyperparameters

for all settings is unrealistic.

BGS

Method
Re�nement

Stationary Foreground

I/P/R/FLA

Moving Foreground

I/P/R/FLA
Overall I/P/R/FLA

Median Morph 0.50/0.63/0.74/0.85 0.30/0.52/0.44/0.68 0.43/0.59/0.63/0.79

Median - 0.41/0.67/0.53/0.85 0.25/0.56/0.33/0.68 0.35/0.63/0.45/0.79

MOG2[15][16] Morph 0.56/0.67/0.8/0.85 0.38/0.56/0.57/0.69 0.5/0.63/0.7/0.79

MOG2[15][16] - 0.51/0.68/0.68/0.85 0.35/0.6/0.47/0.69 0.45/0.65/0.6/0.79

-NN[16] Morph 0.23/0.36/0.46/0.78 0.16/0.27/0.29/0.63 0.21/0.32/0.41/0.72

-NN[16] - 0.16/0.32/0.26/0.78 0.11/0.24/0.18/0.63 0.14/0.29/0.23/0.72

Table 2. BGS Only Baseline on Our Dataset We tested different background subtraction (BGS) methods with

different re�nement settings. We reported the intersection of union (IoU, I), precession (P), recall (R), and

frame level accuracy (FLA). Frame level accuracy is the method’s accuracy in classifying each frame to leak

(with positive pixels) and no leak (all pixels are negative).

k

k
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To re�ne the masks generated by the BGS method, we also evaluated the performance of morphological

operations, speci�cally using opening to reduce salt noise and closing to connect separated

segmentations (due to the weak appearance of the leakage). We tested various closing kernel sizes

ranging from 10 to 50, with the best results presented in Table 22. Regardless of the morphological

settings, the opening operation is applied to all runs, but the closing operation is only applied on the ones

with morph checked. Results are reported separately for Stationary Foregrounds (without interfering

objects) and scenes containing moving objects. Additionally, the performance of each method across

different closing kernel sizes is illustrated in Figure 3.

From Figure 3 and Table 2, we can observe that MOG2 performs the best and larger morphological size

tends to yield better results.

Figure 2. Preview of Our Dataset. These images are selected from 10 different videos. For each side-by-side

subplot, the left one is the input frame, and the right one is the thresholded ground truth. Some of these

videos use GasVid[3] as background, while others use DALL-E-2[48] generated background.

Figure 3. BGS Only Baseline on Our Dataset With Different Morphological Closing Operation Sizes
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5.3. Ablation Study

Our method consists of four main components: background subtraction, VLM �ltering, temporal

�ltering, and SAM 2[47]  for segmentation. To systematically investigate the contribution and

effectiveness of each individual component in our pipeline, we conducted an ablation study as

summarized in Table 3. Speci�cally, we compared �ve experimental conditions:

�. BGS-Only Baseline: This row represents the best-performing result from the background-

subtraction-only experiments described in Section 5.2. This could be considered as an improved

version of the �rst step of GasNet[3] and VideoGasNet[7].

�. BGS + VLM Filtering + SAM 2 (optimal threshold, without temporal �ltering): In this condition, we

integrated visual-language model (VLM) �ltering into the best-performing background subtraction

system and employed Segment Anything Model 2 (SAM 2)[47]  for converting bounding boxes

generated by the VLM into segmentation masks. Noticeably, the only distinction from our complete

proposed method is the absence of temporal �ltering. By comparing this condition with our

complete method, we analyzed the incremental value provided by the temporal �ltering component.

Note that the optimal threshold for the VLM �ltering differs between this setting and our proposed

method; thus, we conducted separate threshold sweeps for both versions. The corresponding results

are visualized in Figure 4. From this �gure, we also observed that our complete method has a

broader effective threshold range, indicating higher robustness against threshold variations.

�. Proposed Method without Background Subtraction (VLM + temporal �ltering + SAM 2, no BGS):

In this con�guration, background subtraction was omitted. The hypothesis was that not

eliminating stationary objects would lead to dif�culties in both correctly identifying leaks and

avoiding false positives from non-leak objects. To achieve the best possible performance under this

con�guration (since its modality is different from our con�guration), a grid search was conducted

on the enhancement factor and VLM threshold to determine the optimal settings. Details of the grid

search are provided in the supplementary material.

�. Proposed Method with Traditional Segmentation (BGS + VLM �ltering + temporal �ltering +

Otsu[49]): We replaced the powerful SAM 2 segmentation method with the conventional

segmentation technique proposed by Otsu[49], combined with simple morphological operations.

Given that our test scenario consists primarily of a clear white leakage region against a dark

background, it might be possible to achieve reasonable segmentation results using simpler
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methods. Thus, we evaluated this setting to establish the necessity and advantage of employing the

more advanced SAM 2 segmentation algorithm.

�. Complete Proposed Method (BGS + VLM �ltering + temporal �ltering + SAM 2): This condition

represents our complete proposed approach, integrating all the discussed components to achieve

robust leakage detection and segmentation.

BGS
VLM

Filtering

Temporal

Filtering
Seg.

Stationary

Foreground

I/P/R/FLA

Moving Foreground

I/P/R/FLA
Overall I/P/R/FLA

✓ None - 0.56/0.64/0.83/0.85 0.38/0.53/0.58/0.69 0.5/0.61/0.73/0.79

✓ ✓ SAM 2 0.09 0.67/0.81/0.79/0.88 0.54/0.79/0.65/0.83 0.62/0.80/0.74/0.86

✓ ✓ SAM 2 0.19 0.22/0.39/0.28/0.57 0.46/0.65/0.59/0.74 0.31/0.49/0.4/0.63

✓ ✓ ✓ Trad. 0.12 0.57/0.85/0.65/0.83 0.35/0.88/0.37/0.72 0.49/0.86/0.55/0.79

✓ ✓ ✓ SAM 2 0.12 0.70/0.83/0.82/0.87 0.69/0.79/0.84/0.92 0.69/0.82/0.82/0.89

Table 3. Ablation study of different components with IoU (I), Precision (P), Recall (R), and Frame Level

Accuracy (FLA). In the segmentation column (Seg.), traditional (Trad.) means Otsu[49] combined with

morphological transformations. This analysis corresponds to our ablation study, detailed in Section 5.3.

τV LM
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Prompt Stationary Foreground I/P/R/FLA Moving Foreground I/P/R/FLA Overall I/P/R/FLA

white gas 0.59/0.82/0.70/0.88 0.55/0.74/0.66/0.80 0.57/0.80/0.67/0.83

white plume 0.35/0.55/0.52/0.67 0.31/0.48/0.45/0.63 0.34/0.52/0.50/0.66

white steam 0.71/0.82/0.84/0.90 0.70/0.83/0.82/0.91 0.69/0.83/0.81/0.88

white methane leak... 0.70/0.82/0.83/0.89 0.62/0.75/0.77/0.89 0.67/0.79/0.81/0.89

methane gas leak 0.62/0.79/0.75/0.82 0.63/0.77/0.77/0.87 0.62/0.75/0.79/0.86

gas leak 0.62/0.79/0.76/0.83 0.57/0.75/0.70/0.86 0.60/0.77/0.74/0.84

white smoke 0.71/0.83/0.84/0.91 0.65/0.79/0.79/0.91 0.68/0.81/0.82/0.91

Table 4. Performance of Different Prompts on Stationary, Moving and Overall Backgrounds. The complete

form of “The white methane leak…” is “white methane leak on black background in the infrared image.” The

prompts containing “white smoke” and “white steam” yielded the highest performance. In terms of overall

performance, as measured by Intersection over Union (IoU), the prompt with “white steam” demonstrated a

slight advantage over the prompt with “white smoke”.

The ablation study shows that using only background subtraction (case 1) provides reasonable results,

especially in cases where there is no moving foreground. However, when VLM �ltering and Segmented

Energy Model 2 are added (case 2) for segmentation, performance improves signi�cantly, with an overall

IOU increase of more than 10%. This enhancement allows for better �ltering of non-leak objects.

In contrast, removing background subtraction (case 3) to detect moving objects leads to the worst

performance, even lower than the baseline of case 1. Without background subtraction, the model

struggles to identify leaks and correctly classify non-leak objects, as indicated by both low precision and

recall.
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Figure 4. Performance of Method with and without Temporal Filter across Different

VLM Thresholds ( ). The two con�gurations have different optimal  .

However, the method with the temporal �lter achieves a higher best IoU. It

demonstrates greater robustness to   variations, maintaining strong performance

over a broader threshold range (0.09–0.15), whereas the method without the temporal

�lter performs well only at 0.09.

Case 4 setup performed similarly to the background subtraction baseline but with a high precision and

low recall. Upon visual inspection with a few images, we noted that some bounding boxes failed to

encompass objects fully. Traditional segmentation could not extend the segmentation masks beyond

bounding box limitations, whereas SAM 2 can use semantic information to capture entire objects.

With the full model (case 5), performance reaches 69% IOU, showing an almost 20% improvement over

the MOG baseline and approximately a 40% boost compared to using only a visual language model,

temporal �ltering, and segmentation. Comparing this with case 2, where no temporal �ltering is used, we

achieved a 7% IoU boost in overall cases and a 15% increase in moving foreground. These two cases have

a similar precision, but case 5 has a higher recall and higher frame-level accuracy. This could be due to

the propagation mechanism in the �lter. By comparing the performances of case 2 and case 5 across

τV LM τV LM

τV LM
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different VLM Thresholds in Figure 4, we can also observe that with temporal �ltering, the method is

more robust to changes in the threshold.

5.4. Prompt Comparison

We hypothesized that the model might struggle to understand abstract or uncommon concepts such as

“gas”, “methane,” and “leak.” To address this, we used “white steam” as a positive prompt in the object

detection phase. To test our hypothesis, we experimented with different prompts. Since different

prompts may have different optimal values  , we performed a sweep across   for each prompt.

The results are shown in Figure 5.

In our comparison, “white steam” and “white smoke” achieved the best performance, which we attribute

to their frequent occurrence in natural language. Additionally, the prompt “white methane leak …” also

performed well, likely due to its detailed description specifying the infrared modality and black

background. However, “white gas” exhibited poor performance, which we hypothesize is because “gas” is

generally invisible in RGB images, which is what most VLMs are trained on. For a more detailed analysis,

please refer to the supplemental material.

τV LM τV LM
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Figure 5. Performance of VLM with Different Prompts and Thresholds. The prompts with “white

steam”, “white smoke,” and “white methane leak on black background in the infrared image” are the

top performing prompts. Additionally, the prompt containing “white steam” demonstrates strong

robustness, as its performance remains largely unchanged when the threshold varies between 0.10

and 0.15.

5.5. Qualitative Expenerments on GasVid

We performed qualitative experiments on GasVid to assess our method on real-world videos. Because

high-quality mask annotations are unavailable, we evaluated the results visually. Please see the

supplemental material for the results of the experiment.

6. Conclusion

In this work, we introduced a synthetic dataset with diverse backgrounds, interfering foreground objects,

and precise segmentation of ground truth. To leverage this dataset, our proposed zero-shot method

signi�cantly improves segmentation performances. Our approach achieves an IoU of 69%,

outperforming baseline methods relying solely on background subtraction or zero-shot object detection.

Additionally, our analysis of prompt con�gurations and threshold settings provides further insights into

optimizing segmentation performance. These �ndings highlight the potential of zero-shot learning in

gas leakage detection and suggest future work in re�ning dataset quality and enhancing detection
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robustness in real-world scenarios. Additionally, replacing background subtraction with the optical �ow

could enable adaptation to a wider range of scenarios, such as hand-held devices in the IIG dataset[5].

Moreover, this project could also be applied to �re detection, asteroid or exoplanet detection, and tracking

microorganism movement under a microscope.

7. Methane Release From GasVid

The total amount of methane released during the capture of the GasVid dataset can be calculated using

Equation 2, where    represents the total mass of methane released,    is the number of videos, 

 denotes the class label corresponding to the �ow rate, and   is the �ow rate of the  -th class in g/h.

Each �ow rate lasted for 3 minutes. Based on the �ow rate data from the GasVid paper, the total methane

release is 12906.385g.

mtotal n

i mi i

mtotal = n × ( × 3)∑
i=0

7
mi

60

= ×
31 × 3

60
∑
i=0

7

mi

= 1.55 × 8326.7 g

= 12906.385 g

(2)
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8. Further Review of VLMs

CLIP[27]  is a remarkable work that has inspired downstream work in segmentation, detection, etc.

LSeg[50] adapted CLIP into segmentation by calculating the similarity of the text query with every pixel

on the feature map of the image, classifying each pixel into one of the text queries. It then used a special
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regulation block to decode the feature map into segmentations. This straightforward way has also been

used in OwlVit[35] and Owl-V2[36]. In OwlVit, they pre-trained the CLIP encoder using contrastive loss and

transferred the model into detection by removing the pooling operation with a classi�cation and

localization head to archive language-guided detection.

Besides the image-text contrastive loss function, align before fuse (ALBEF)[51]  also used image-text

matching and masked language modelling like in BERT[52]. Their model has an image encoder, a text

encoder, and a multimodality encoder.

Although ALBEF was not trained on grounding or localization tasks, their Grad-CAM[53]  has shown a

strong localization correlation between phases and text. This is further improved by[39][40]. Grounding-

DINO[37]  and GLIP[34], on the other hand, are speci�cally trained on grounding tasks and trained in

object detection fashion by producing bounding boxes for phases. Both the Grad-CAM and the bounding

box can be used to prompt a segmentation model such as SAM[41], or SAM 2[47]  to generate language-

guided instance segmentation masks like in Grounding-SAM[42] and APOVIS[43].

Another line of work took a generative approach[28][29][31][32][30][54][55][56]. In these works, GPT-4

serials[28][29] and llama-like[31][32] models use pure language as an interface, take in instruction as text

prompt and generate output as pure text (such as location information in coordination). Florence, on the

other hand, uses special tokens for different tasks (such as segmentation, detection, etc) and also uses

special tokens for generated results. Some other works[54][55][56]  also used special tokens for

segmentation results.

9. Qualitative Experiments on GasVid

We excluded videos recorded at 18.6 m (following VideoGasNet[7]) and selected examples showing two

failure cases and two successful cases, as shown in Figure 6. The experiment used MOG2 as the

background subtractor, OWLv2[36] as the visual language model with a threshold of 0.06, enhancement

factor of 10, and both temporal �ltering and SAM 2 enabled. The results indicate that the model can

localize and segment leakage with reasonable performance, although worse than the synthetic dataset

due to real-world noise, artifacts in background subtraction, etc. Future work should be done on how to

improve this method on real-world captured videos.
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Figure 6. Selected Samples from GasVid: The two left columns display failure cases, and the two right

columns show successful cases. In each pair, the left image shows the background subtraction result,t with

blue indicating the segmentation output (artifacts may appear), while the right image is the original frame.

The three rows correspond to videos with GasVid IDs 1239, 2570, and 2579, recorded at distances of 12.6m,

15.6m, and 6.9m, respectively.

In the success cases, two samples (from the third column and �rst two rows) are true negatives, showing

that noise is not mistakenly segmented as a leak, while the remaining examples are true positives with

well-aligned segmentation boundaries. In the sample in the fourth column of the third row, the model

avoids an artifact from background subtraction that is not a leak. In the failure cases, the �rst and third

videos show over-segmentation of non-leak objects, and in the second video, the leak is missed (false

negative) due to the larger distance. We provided 4 full video results in the attached video.
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Figure 7. Grid Search For Con�guration without Background Subtraction: We did a grid

search on the enhancement factor and VLM threshold for the con�guration without

background subtraction. Different lines show different enhancement factors. The best

performing point is when the enhancement factor is 1.5 and the VLM Threshold is 0.19.

Results in this setting are values reported in Table 3.

10. Prompts Comparison

In our study on different prompts, “white steam” and “white smoke” performed the best, whereas “white

plume” exhibited the worst performance. We hypothesize that the superior performance of “white

steam” and “white smoke” is due to their explicit description of both the substance (smoke or steam) and

its colour (white). In contrast, the poor performance of “white plume” is likely because “plume” is a

relatively uncommon word.

Notably, the prompts “white gas” and “gas leak” also performed poorly. We attribute this to the fact that,

in the training data of vision-language models (VLMs), “gas” is often associated with “gas station” rather

than referring solely to a gaseous substance. As a result, the model may tend to link “gas” to “gas station”

or “gas stove,” leading to suboptimal performance. Additionally, since gases are generally invisible in RGB
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images, and RGB is likely the primary modality in the training dataset, the model may struggle to

associate the term “gas” with its visual characteristics in infrared imagery. This suggests that the poor

performance of prompts containing “gas” is likely due to a mismatch between the term’s associations in

the training data and its expected visual representation in real-world scenarios.

Another notable observation is that the long prompt, “white methane leak on black background in the

infrared image,” achieved near-optimal performance, only slightly worse than the best-performing

prompts. We hypothesize that while the VLM may not have a strong understanding of “methane,” the

explicit description of the black background and the infrared image modality provide suf�cient context

for the model to generate accurate outputs.
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Footnotes

1 Note that this is not the same as background removal, which is to segment the saliency objects in a

single frame image to remove the background; an example use case is to blur or replace the background

in online video conferences. For background removal, readers can refer to[57][58].

2 When we report the best results, we select the setting with the highest IoU, and report precision, recall,

and frame level accuracy (FLA) in that setting.
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