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Abstract

Purpose: Molecular docking prediction plays a pivotal role in intelligent drug design, offering significant advantages in

the development of antivirus medications and vaccines. By accurately evaluating the interactions between drug

molecules and target proteins, researchers can effectively expedite the discovery and development of vital

pharmaceutical solutions, aiding in the mitigation of epidemics, pandemics, and the urgent need for improved vaccines.

Methods: We propose an intelligent hybrid architecture for estimating molecular docking between two proteins using

deep networks based on pseudo-convolutions and Random Forests. As input, we used the sequences of characters

representing the bases of each protein. Through two layers of pseudo-convolutions, these sequences are reorganized

and, finally, represented as co-occurrence matrices, concatenated into a feature vector. To validate our proposal, we

used a combination of the public datasets Affinity Benchmark 3 and Negatome 2[1][2].

Results: The experimental results revealed that the hybrid architecture, comprising two layers of pseudo-convolution

followed by a decision layer with an ensemble of 25 Random Forests, yielded average accuracy of 94%, AUC of 93%,

sensitivity of 94%, and specificity of 78%. This demonstrates the feasibility of achieving robust estimates of molecular

docking without relying on 3D molecule modeling.

Conclusion: These findings the potential of rapidly estimating protein affinity, providing valuable insights into drug

interactions, molecular dynamics, and facilitating the intelligent design of pharmaceuticals, encompassing vaccines and

antiviral drugs. These advancements play a critical role in cost reduction related to laboratory analysis and expediting

the timely delivery of solutions to both the market and society at large, particularly in the context of epidemic outbreaks,

pandemics, and the urgent demand for supplementary vaccines.
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1. Introduction

1.1. Motivation and problem characterization

The Fourth Industrial Revolution, characterized by the integration of advanced technologies, has the potential to

significantly impact the development of nations in the Global South, particularly in the fields of Biomedical Engineering,

digital health, and the pharmaceutical industry[3][4][5][6][7][8][9][10][11]. These technologies, such as Artificial Intelligence (AI),

the Internet of Things (IoT), and big data analytics, offer unique opportunities for improving healthcare access, delivery,

and outcomes in resource-constrained settings[12][13][14][15][16][17]. In Biomedical Engineering, these advancements can

enhance the design and development of medical devices, diagnostics, and prosthetics, providing affordable and tailored

solutions to address specific healthcare needs[18][19][20]. Digital health platforms can revolutionize healthcare delivery by

enabling remote monitoring, telemedicine, and personalized health management, bridging the gap between patients and

healthcare providers, especially in remote or underserved areas[21][22][23]. Furthermore, the pharmaceutical industry can

benefit from intelligent drug design and discovery through computational methods that leverage AI and machine learning.

These techniques enable faster and more efficient identification of potential drug candidates, reducing costs and time

associated with traditional methods[24][25][26][27][28][29][30][31]. The integration of these technologies holds immense

potential for the Global South, offering opportunities to leapfrog and overcome existing healthcare challenges, leading to

improved healthcare access, better patient outcomes, and enhanced pharmaceutical development.

Estimating the affinity between two proteins holds significant importance for the health and pharmaceutical industries.

Protein-protein interactions play a central role in numerous biological processes and disease pathways, making them

attractive targets for therapeutic intervention. Accurate estimation of protein affinity provides insights into the strength and

specificity of these interactions, enabling the identification of potential drug targets and the design of effective therapeutic

strategies[32][33][34][35][36][37]. Precise knowledge of protein affinity facilitates rational drug design, lead optimization, and

the development of personalized medicine approaches[32][33][34][35][36][37]. Moreover, it aids in understanding the

mechanisms underlying various diseases, paving the way for the discovery of novel treatment options[37].

The reduction of time and cost associated with molecular docking poses significant challenges in the field of drug

discovery[34][38][39][40][41][42][43][44][45][46][47][48][49][50]. Molecular docking involves simulating the binding between a small

molecule and a target protein, a process that necessitates extensive computational resources and experimental validation.

The exploration of the vast conformational space and the accurate prediction of protein-ligand interactions contribute to

the time-consuming nature of this approach. These limitations hinder the efficiency of the drug discovery process and

increase costs through the need for extensive experimental iterations[34][38][39][40][41][45][49][50]. Overcoming these

difficulties requires innovative approaches that can expedite molecular docking while maintaining accuracy and reducing
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the reliance on resource-intensive experimental procedures.

Computational intelligence, more specifically machine learning, offers valuable advantages in estimating the degree of

molecular docking, addressing the challenges mentioned above. By harnessing large-scale datasets, these techniques

enable the development of predictive models that can learn complex patterns and relationships between protein structures

and binding affinities[51][52][53][54][55][56][57]. Machine learning models can capture non-linear interactions and subtle

features that are challenging to model using traditional methods. Through the integration of various input features such as

protein sequences, structural information, and physicochemical properties, these models can accurately predict protein

affinity[58][59][60][61][62][63][64]. The application of machine learning and computational intelligence streamlines the

screening of large chemical libraries, accelerating the identification of potential drug candidates[58][59][60][61][62][63][64].

In recent years, there have been significant advancements in computational models based on machine learning for

estimating molecular docking[65][66][67][68]. The research field has witnessed the development and refinement of various

approaches utilizing deep learning architectures such as convolutional neural networks (CNNs), recurrent neural networks

(RNNs), and graph neural networks (GNNs). These models have demonstrated impressive performance in support

diagnosis applications based on biomedical images, signals and clinical parameters, like in breast cancer, Covid-19,

mental disorders, and in neurodegenerative diseases like Alzheimer’s and

Parkinson’s[69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88]. Such models have been used successfully in

accurately predicting protein-protein binding affinities. Furthermore, the availability of extensive protein structure and

interaction databases has facilitated the creation of comprehensive and robust machine learning models. Integrating

multiple data modalities, including protein sequences, structures, dynamics, and ligand information, has further enhanced

the predictive power of these models[65][66][67][68][89][90][91]. In addition, transfer learning approaches have emerged,

where pre-trained models on related tasks are fine-tuned for molecular docking prediction, leading to efficient knowledge

transfer and faster model convergence. The state-of-the-art computational models based on machine learning hold

significant promise in accurately estimating molecular docking, ultimately contributing to the advancement of drug

discovery and the development of effective therapeutics[65][66][67][68][89][90][91].

Building intelligent algorithms for molecular docking that avoid the 3D modeling of proteins by angles and energies holds

great importance in the field of computational drug discovery. By relying solely on protein descriptions based on strings of

characters representing sequences of amino acids, these algorithms offer significant advantages and possibilities. One of

the key benefits is the reduction in computational complexity and time required for 3D modeling, which can be resource-

intensive and time-consuming. By directly utilizing protein sequences, intelligent algorithms can leverage the wealth of

information encoded within them, including structural motifs, functional domains, and evolutionary relationships. This

approach not only accelerates the molecular docking process but also opens up new avenues for exploring a wide range

of protein-protein interactions. Additionally, focusing on protein sequence-based descriptions allows for broader

applicability, as it enables the analysis of proteins with unknown or uncharacterized structures. Moreover, these algorithms

can leverage machine learning techniques to learn and predict the protein-protein interactions solely from sequence

information, further enhancing their accuracy and potential. Therefore, the development of intelligent algorithms that utilize

protein descriptions based on amino acid sequences represents a promising direction in molecular docking research,
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enabling efficient and accurate estimation of protein affinity while bypassing the challenges associated with 3D modeling.

In this work, we propose an intelligent hybrid architecture for estimating molecular docking between two proteins using

deep networks based on pseudo-convolutions and Random Forests. Pseudo-convolution networks consist of an iterative

process where, given a given number of layers, an input sequence representative of a pair of candidate-target proteins,

represented as a sequence of characters, is broken into smaller parts with size in power of two. In the final layer, the set

of sequences obtained is represented by co-occurrence matrices that model neighborhood relationships and character

populations. The matrices corresponding to each character segment of the output are transformed into vectors and these

are then concatenated, forming a feature vector. The vectors thus represented are classified by a Random Forest. The

molecular docking estimation problem was modeled as a classification problem. This approach was inspired by[92]: they

improved the virus identification results obtained from RT-PCR devices by training machine learning algorithms over

training a large dataset: 347,363 virus DNA sequences from 24 virus families and SARS-CoV-2. The authors obtained

results for sensitivity and specificity from 97% to 99%, demonstrating that the molecular diagnosis of Covid-19 can be

optimized by combining RT-PCR and the pseudo-convolutional method to identify DNA sequences for SARS-CoV-2 with

larger specificity and sensitivity values.

1.2. Related Works

The process of assessing the potential bonding between a ligand and a target protein is a multifaceted task that involves

the selection of candidates from extensive databases for subsequent in vitro and in vivo validation[93]. This process finds

applications in various fields such as drug discovery, peptide generation, DNA ligand discovery, and more.

Virtual screening is a technique employed to select ligand candidates for target proteins, with the aim of reducing the

number of compounds that need to undergo in vitro/vivo testing phases[93]. This approach helps to minimize the

associated costs of these processes. Over the years, machine learning (ML)-based algorithms have been proposed for

virtual screening. Scientific literature showcases a range of methods, including classical ML techniques like K-nearest

neighbors and gradient boosting[94], as well as advanced graph learning methods[95], which are trained using large ligand-

protein datasets tailored for supervised learning.

[96] exemplify the process of discovering new umami peptides for the food industry using machine learning and molecular

docking. They successfully identified six novel peptides derived from lamb bones and determined that hydrogen bonding

and electrostatic interactions were the primary forces involved. Their work employed a deep learning approach based on a

neural network model that combined fully connected neural networks (MLP) and recurrent neural networks (RNN) to

predict umami taste and evaluate the umami taste threshold of unknown peptides.

Addressing the limited exploration of docking methodologies for the interactions between nucleic acids and DNA

intercalating agents,[97] proposed a machine learning method to predict changes in DNA melting temperature upon drug

binding. They compared their approach with Autodock, Dock6, and Consensus methods.

In a drug repurposing study involving FDA-approved drugs,[98] identified Cobimetinib as an A-FABP inhibitor. They
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investigated a dataset of approximately 2,600 compounds and employed a ligand-based machine learning approach and a

structure-based molecular docking method, both based on Naive Bayesian. Additionally, they utilized t-SNE for data

visualization.

[99] developed an approach to propose novel drug-like molecules by combining a global molecular property optimization

strategy with a machine learning algorithm for docking score prediction. Their method generated numerous novel

molecules with high docking scores for a specific protein. The machine learning model served as part of the objective

function to evaluate the docking score of the proposed solution candidates.

In general, machine learning techniques have been applied to target-specific scoring tasks. Various studies, such as those

by[94][100][101], have demonstrated the application of different classical machine learning approaches, including Logistic

Regression, Gradient Boosting, K-Nearest Neighbor, Support Vector Machine, Random Forest, and Multi-Layer

Perceptron.

Most of the computational approaches for protein docking found in scientific literature require the simulation of the

complex in 3D prior to predicting scores or determining active/inactive

compounds[102][103][104][105][106][107][108][109][110][111]. In this study, we propose a solution based on pseudo-convolution

for protein representation and protein docking prediction. This method eliminates the need for 3D complex simulation.

2. Materials an Methods

2.1. Datasets

In order to implement and validate our proposal, we utilized two datasets: Affinity Benchmark Version 3 (257)[1] and

Negatome 2[2].

The Affinity Benchmark Version 3 is an updated version of the protein-protein docking benchmark 2. According to the

authors[1], this update incorporates 40 new test cases, resulting in a 48% increase compared to Benchmark 2.0. The 124

unbound-unbound test cases in Benchmark 3.0 are categorized into three groups: 88 rigid-body cases, 19 medium-

difficulty cases, and 17 difficult cases. The classification is based on the extent of conformational changes occurring at the

interface upon complex formation. The expansion of Benchmark 3.0 not only provides the scientific community with a

larger set of test cases for evaluating docking methods but also facilitates the development of new algorithms that require

abundant training examples. For a visual demonstration of complexes from Affinity Benchmark Version 3, please refer to

Table 1.
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Table 1. Example of the Affinity Benchmark 3 dataset organization

Negatome 2.0 introduced a significant methodological advancement through the implementation of an intricate text-mining

procedure for manual annotation. A revised version of Excerbt, a sophisticated text-mining tool employing semantic

sentence analysis, was utilized to identify potential non-interactions. Subsequent manual inspection revealed that nearly

50% of the text-mining results with the highest confidence values corresponded to pairs of non-interacting proteins (NIP).

The expansion of the database in Negatome 2.0 is noteworthy, with an increase of over 300% compared to its previous

iteration[2]. For a visual representation of complexes from Negatome 2, refer to Table 2.

No. Protein A Protein B PMID Evidence

1 Q6ZNK6 Q9Y4K3 15047173 MI:0019 - coimmunoprecipitation

2 Q9NR31 Q15797 17356069 MI:0019 - coimmunoprecipitation

3 P11627 P53986 20155396
MI:0411 - enzyme linked immunosorbent
assay

4 P33176 Q96EK5 16225668 MI:0059 - gst pull down

5 Q9NPY3 P02745 11994479
MI:0411 - enzyme linked immunosorbent
assay

Table 2. Example of Negatome 2 dataset organization

Since the objective of this study is to propose a method capable of predicting the presence or absence of docking

between two proteins, the construction of an appropriate database necessitates the inclusion of complexes with docking

(labeled as 1) as well as complexes without docking (labeled as 0). Unfortunately, existing public databases in the

literature do not encompass both classes simultaneously. Consequently, a combination of selected databases was

employed, each providing instances of the required classes. The utilized datasets comprise Affinity Benchmark 3,

consisting of 257 complexes with docking, and Negatome 2, which encompasses 6184 complexes without docking. A

subset of the final database is illustrated in Table 3.

Table 3. Example of the

organization of the full

dataset used in this work
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Protein A Protein B Label

1FGN_LH 1TFH_A 1

1DQQ_CD 3LZT 1

1E6O_HL 1A43 1

1JPT_HL 1TFH_B 1

1MLB_AB 3LZT 1

Q6ZNK6 Q9Y4K3 0

Q9NR31 Q15797 0

P11627 P53986 0

P33176 Q96EK5 0

Q9NPY3 P02745 0

2.2. Proposed method

In this study, we introduce a novel method for extracting features from ribonucleic acid (RNA) sequences of proteins. Our

approach, inspired by the pseudo-convolution machine utilized by[92], aims to represent protein RNAs as numerical feature

vectors derived from co-occurrence matrices that capture the neighborhood characteristics within a molecule. This

representation enables a machine-learning model to classify the presence or absence of docking between a pair of

proteins. Notably, our method eliminates the necessity of simulating the 3D structure of the protein complex for docking

classification. To validate our proposal, we employ the proposed dataset and utilize a random forest model. Further

elaboration on the full database, random forest implementation, and evaluation metrics can be found in Subsections 2.1,

2.3, and 2.5, respectively. The general pipeline of our proposal is presented in Figure 1, and Figure 2 illustrates our

specific contribution within the context of this research.

Figure 1. General scheme of the proposal: Initially, genetic material is acquired through sample collection, and subsequently, the RNA sequences

are obtained and stored as text files. These RNA sequences undergo a pseudo-convolutional representation process, which involves their

conversion into numeric vectors. Subsequently, a random forest model is employed to classify these representations into two categories: 0 or 1.

Here, 1 signifies the presence of docking between the samples, while 0 indicates the absence of docking. The samples used in this study were

sourced from two distinct datasets: the Affinity Benchmark 3 and the Negatome 2 dataset.
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Figure 2. Detailed contribution: A total of 6,441 complexes, encompassing both docking and non-docking cases, were utilized for training the

Random Forest models. To preprocess the RNA sequences, each sequence was concatenated and subjected to subsequent segmentation into

sub-sequences, while considering windowing and overlapping parameters. These sub-sequences were further concatenated and had the potential

to undergo additional segmentation based on the same windowing and overlapping parameters. Subsequently, the resulting concatenated

sequence was represented as 26 ×  26 co-occurrence matrices, which effectively captured the distribution of RNA neighborhoods. To create the

feature vector for classification, the flattened form of the 26 ×  26 matrix was employed as the input.

The process of feature extraction using a pseudo-convolutional machine can be delineated as follows. Initially, the RNA

sequences are concatenated to form a complete sequence. This complete sequence is subsequently partitioned into n

subsequences. To enable overlapping between these subsequences, the size of the overlapping segments is determined

by a parameter passed to the method. Notably, all n sub-sequences are then concatenated, resulting in an extended

sequence. This entire process can be repeated n times, generating increasingly extensive sequences with novel features

at each iteration.

The final sequence is represented by a 26 by 26 co-occurrence matrix. This matrix captures the frequency of occurrences

for specific pairs of ribonucleic acid (RNA) and provides insights into the proximity of RNA to their neighboring

counterparts. For instance, if we consider the RNA sequence read from left to right, the current RNA element being

analyzed is denoted as E, while its adjacent neighbor is labeled as P. Consequently, the corresponding matrix element

located at the intersection of row E and column P is incremented accordingly to signify their association. For a detailed

visual representation of this process, refer to Figure 3.
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Figure 3. Steps of the proposed method: A new method of representing genome sequences has been developed, which involves analyzing the

relationship between ribonucleic acids. First, RNA sequences are concatenated, then overlapping windowing is applied, resulting in small

sequences. Successively, all small sequences are concatenated. The overlapping windowing can be reapplied n times using as input the

concatenation of the small sequences. Next, the final concatenated sequence is represented by a 26 por26 co-occurrence matrix representing the

distribution of nucleotide neighbors. Finally, the co-occurrence matrix is flattened to be used by a machine learning model.

Upon feature extraction from all complexes, the resulting database was partitioned into balanced train and test sets based
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on the mean and standard deviation attributes. This rigorous splitting procedure is crucial to ensure robust model

evaluation. The distribution of instances per class and dataset can be observed in Table 4.

 
No
Docking

Docking Total

Train
set

4948 205 5153

Test set 1237 51 1288

Table 4. Number of instances of

training and test sets

2.3. Random Forest

The Random Forest algorithm is a widely adopted machine learning technique utilized for both classification and

regression tasks. During the training process, this method constructs multiple decision trees. In classification scenarios,

the output of the Random Forest model corresponds to the class that is most frequently selected by the constituent trees.

Conversely, in regression scenarios, the output can be either the average prediction or the mean value generated by the

individual trees[112][113][114].

Considering the nature of the problem investigated in this study, the Random Forest approach was specifically

implemented to address the classification task at hand. This enabled the accurate categorization of protein complexes as

either "docking" or "not docking". A visual representation of a Random Forest model designed for the classification of

protein docking between two proteins is provided in Figure 4.
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Figure 4. Random forest for classifying docking between two proteins. Trees 1 and 2 classified the complex as class 1(Docking), while the third tree

classified it as class 0 (No docking). However due the majority voting the final decision was classify this complex as class 1.

2.4. Classification

In order to find a good random forest configuration to the docking classification task, ten different random forest

configurations were evaluated, and the guide metric used to define the best was the kappa coefficient. Each configuration
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was evaluated in the train set using cross-validation with k fold equal to 10. In addition, each configuration was executed

30 times, so the results found are statistically more reliable. Table 5 shows all random forests evaluated in this work.

Finally, after finding the best random forest configuration, it was evaluated on the test dataset, and all proposed evaluation

metrics were generated.

ID
Number of
Trees

RF_100 100

RF_200 200

RF_300 300

RF_400 400

RF_500 500

RF_600 600

RF_700 700

RF_800 800

RF_900 900

RF_1000 1000

Table 5. All setups of

random forests were used

to find the best for the

classification docking

task. The number of trees

varied between 100 to

1000.

To determine the optimal configuration for the Random Forest algorithm, a comprehensive evaluation was conducted

involving cross-validation with 10 folds, repeated 30 times, resulting in a total of 300 experiments on the training set.

Subsequently, in the testing phase, the best classifier identified during the validation step was trained on the entire

training set and subsequently evaluated on the independent test set.

Notably, the training set exhibited a substantial class imbalance, with the number of protein sequence pairs categorized

as "no docking" being 25 times greater than the number of pairs classified as "docking" (4948 instances vs. 205 instances,

respectively, as can be seen on Table 4). This considerable imbalance can significantly impact the obtained results,

despite the inherent robustness of Random Forest classifiers in handling class imbalance. Consequently, a second

approach was devised to address this issue. The training set was divided into 25 balanced subsets, and each subset was

employed to train an individual classifier with the previously determined optimal configuration. These 25 classifiers were

then combined as an ensemble, and collectively assessed on the test set to enhance classification performance.

2.5. Evaluation Metrics
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To evaluate objectively the classification results, we used the following methods: the κ index, the overall accuracy, the

confusion matrix, the sensitity, the specificity, and the AUC. The confusion matrix for a universe of classes of interest 

Ω = {C1, C2, …, Cm} is a m × m matrix T = [ti , j]m×m where each element ti , j represents the number of objects belonging to

class Cj but classified as Ci
[76][115][116][117][118][119][120].

The overall accuracy is the probability that the experiment will provide correct results, that is, to correctly classify the pairs

of protein sequences as having affinity or not. In other words, it is the probability of the true positives (TP) and true

negatives (TN) among all the results. The sensitivity metric indicates the rate of true positive, while specificity is the rate of

true negatives. AUC stands for Area under the ROC curve, and can be approximated by the mean. The ROC curve, in

turn, is a graph showing the True positive rate vs. False positive rate. Finally, the Kappa index is a statistical correlation

rate[115]. Thereby, Accuracy, Sensitivity, Specificity, AUC, and Kappa Index metrics can be calculated according to the

equations [eq:accuracy], [eq:sensitivity], [eq:specificity], [eq:auc], and [eq:kappa] respectively.

Accuracy = ρv =

nTP + nTN
nTP + nTN + nFP + nFN ,

Sensitivity = ρTP =

nTP
nTP + nFN ,

Specificity = ρTN =

nTN
nTN + nFP ,

AUC = ∫1
0ρTPdρTN,

κ =

ρv − ρz
1 − ρz ,

where 

ρz =

∑m
i=1 ∑m

j=1ti , j ∑m
j=1tj , i

∑m
i=1∑m

j=1ti , j
2

,

ρv is the accuracy, and ti , j is the element of the confusion matrix in position (i, j), i.e. the number of instances in the

training set belonging to the i-th class but classified as belonging to the j-th class by the machine learning model under

evaluation, for 1 ≤ i, j ≤ m.

3. Results

Figure 5 displays boxplots depicting the experimental results of the kappa index obtained from the validation process for

different Random Forest configurations. Specifically, the boxplots illustrate the impact of varying the number of trees

( )( )
( )
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within the range of 100 to 1000. Notably, an evident trend emerges, indicating that an increase in the number of trees

leads to higher kappa values with reduced variability.

Comprehensive results for the evaluation metrics, including kappa, accuracy, sensitivity, specificity, and AUC, across all

investigated configurations during the validation process, are presented in Table 6. These metrics provide a

comprehensive assessment of the classification performance for each configuration, facilitating a comparative analysis

and aiding in the identification of the most effective Random Forest setup.

Figure 5. Boxplots of the kappa index results per Random Forest setup during the validation process. The number of trees was varied from 100 to

1000 trees. It is possible to see that the increase in the number of trees produces higher kappas with less variation.

Table 6. Validation results of accuracy, kappa, sensitivity, specificity, and AUC, considering the sample mean and standard deviation, for all

Random Forest configurations, varying the number of trees from 100 to 1000

From the analysis of the results of the kappa index in Table 6, it is possible to perceive that, considering only the sample

mean and standard deviation, it is not possible to establish significant differences between the Random Forest

configurations used. If we consider only two decimal places, the results are practically the same. However, observing the
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behavior from the boxplots in Figure 5, we can see that the configurations with 800, 900 and 1000 trees have a higher

median and show less variation in the results. In this way, we chose the intermediate configuration, with 900 trees, as the

most adequate. Subsequently, we evaluated the performance of the chosen RF_900 configuration on the test dataset. A

comprehensive summary of the test results can be found in Table 7.

Table 7. Test results of accuracy, kappa, sensitivity, specificity, and AUC, for the 900-tree Random Forest

Table 8 presents the comprehensive test results obtained from the ensemble of 25 Random Forests, each comprising 900

trees and associated with a specific partition of the training set. The analysis reveals notable performance metrics for the

classification task at hand. Sensitivity, reflecting the ability to correctly identify positive instances, exhibited a range of 91%

to 96%, with a mean of 94%, a standard deviation of 1%, and a median of 94%. In terms of specificity, which gauges the

accurate identification of negative instances, the mean value approached 78%, accompanied by a sample standard

deviation of 2%, a median of 77%, and a range between 73% and 83%. The AUC value ranged from 92% to 94%,

attaining a mean and median value of 93% and demonstrating a standard deviation of less than 1%. By employing the

ensemble approach, the mean and median accuracy reached 94%, with a range of 91% to 96%. Furthermore, the mean

and median kappa values, indicative of inter-rater agreement, were calculated at 0.47, accompanied by a standard

deviation of 0.04, and ranged between 0.38 and 0.56. These findings underscore the effectiveness of the ensemble

method in enhancing specificity while preserving high AUC and accuracy levels. Notably, AUC emerges as the most

crucial metric due to its robustness in handling class imbalance and its ability to amalgamate sensitivity and specificity.
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Table 8. Test results of accuracy, kappa, sensitivity, specificity, and AUC, for the ensemble of 900-tree Random Forest

4. Discussion
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The successful classification outcomes achieved through the application of Random Forests provide compelling evidence

for the effectiveness of the pseudo-convolutional feature extraction method proposed in this study, pertaining to the

identification of complex transcribed RNA sequences with superior sensitivity, specificity, and AUC. Notably, the Random

Forest model with 900 trees exhibited the most optimal performance across the entirety of the test dataset.

Upon evaluating the parameters employed in the proposed sequence-based feature extraction technique, it is observed

that utilizing a window size equal to 50% of the sequence length, a step size equivalent to 50% of the window size, and

incorporating two hidden layers prove to be satisfactory in generating representative characteristics.

The Random Forest test utilizing 900 trees yielded notable outcomes, demonstrating the attainment of a high accuracy

level and a considerable kappa performance of 98% and 0.67, respectively (refer to Table 7). Although the sensitivity for

identifying non-interacting pairs exhibited a significantly high value of approximately 99.9%, the sensitivity for detecting

pairs of proteins amenable to docking was only 52.9%, slightly surpassing the baseline of 50%. Consequently, the

weighted sensitivity amounted to 98.1%, while the weighted specificity remained at a modest level of 54.8%. Despite the

considerably high AUC value of 96.6%, this outcome indicates a substantial influence of class imbalance on the estimator,

given that the population of undocked protein pairs is approximately 25 times greater than that of docked pairs.

To address this concern, a specific classification architecture was devised employing an ensemble approach with 25

Random Forest classifiers consisting of 900 trees each. Each classifier received a balanced fraction of the training set,

comprising a 1/25 fraction of undocked pair instances, with instances from the docking class being repeated in every

training subset. The results of this approach, as presented in Table 8, effectively improved specificity while maintaining a

comparable level of sensitivity: the mean sensitivity amounted to 94%, whereas the mean specificity reached 83%, and

the mean AUC achieved 93%. Furthermore, an analysis of individual classifier performance within the ensemble revealed

their ability to generate favorable docking prediction outcomes, ultimately contributing to the overall result characterized

by high accuracy, sensitivity, and AUC values, along with reasonably satisfactory specificity values.

5. Conclusion

This study endeavors to present a novel classifier architecture that leverages pseudo-convolutions and Random Forests

to computationally estimate the molecular docking between two proteins. Our approach solely utilizes the sequence of

characters representing the bases of each protein as input representation. These sequences undergo a pseudo-

convolutional process, where co-occurrence matrices are calculated at each layer and concatenated into a comprehensive

feature vector. The proposed architecture incorporates two layers of pseudo-convolutions. To assess its efficacy, we

conducted validation using two widely recognized protein pair databases for evaluating digital molecular docking methods,

namely Affinity Benchmark 3 and Negatome 2[2].

The output layer of the classification model was subjected to analysis, exploring the performance of a single Random

Forest classifier and an ensemble consisting of 25 Random Forests, each comprising 900 trees. Our experimental results

revealed that the hybrid architecture, comprising two layers of pseudo-convolution followed by a decision layer with an
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ensemble of 25 Random Forests, yielded substantial improvements in accuracy, AUC, sensitivity, and specificity. Notably,

this exploratory study, which focuses on classification rather than regression, demonstrates the feasibility of achieving

robust estimates of molecular docking without relying on 3D molecule modeling. This finding indicates promising

prospects for swiftly obtaining affinity estimates between proteins, offering valuable insights into drug interactions,

molecular dynamics, and facilitating the intelligent design of pharmaceuticals, including vaccines and antiviral drugs. Such

advancements are pivotal in reducing costs associated with laboratory analysis and expediting the delivery of solutions to

the market and the broader society, particularly during epidemic outbreaks, pandemics, and the pressing need for

additional vaccines.

As future directions, we aim to investigate the impact of augmenting the number of pseudo-convolution layers on the

sensitivity and specificity of the method. Additionally, we plan to develop a regression-based variant to enable

comparisons with state-of-the-art approaches based on 3D molecule modeling. Furthermore, we intend to explore the

potential benefits of integrating the proposed architecture with other cutting-edge methods, with the overarching objective

of achieving even higher levels of accuracy in predicting molecular docking outcomes.
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