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This study delves into the vital task of classifying chest X-ray (CXR) samples, particularly those related

to respiratory ailments, using advanced clinical image analysis and computer-aided radiology

techniques. Its primary focus is on developing a classifier to accurately identify COVID-19 cases.

Through the application of machine learning and computer vision methodologies, the research aims

to enhance the precision of COVID-19 detection. It investigates the effectiveness of Histogram of

Oriented Gradients (HOG) feature extraction techniques in conjunction with various classifiers, such

as Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), K-nearest neighbor (KNN),

and Tree Bagger (TB), alongside an innovative ensemble learning approach. Results indicate

impressive accuracy rates, with KNN, SVM, DT, NB, and TB all surpassing the 90% mark. However, the

ensemble learning method emerges as the standout performer. By leveraging HOG features extracted

from CXR images, this approach presents a robust solution for COVID-19 diagnosis, offering a

powerful tool to address the diagnostic challenges posed by the pandemic.
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1. Introduction

Radiology, a medical discipline employing radiation and imaging technology, aids in diagnosing and

treating diseases. Computer-aided diagnosis (CAD) serves as a valuable adjunct, offering radiologists a

"second opinion" in interpreting chest X-rays (CXRs) to detect illness  [1]. CAD assists in diagnosing

various conditions such as atelectasis, consolidation, pneumothorax, and pneumonia, critical in

infectious respiratory disorders diagnosis  [2]. Enhancing CAD capabilities aims to automate illness

identification and categorization during CXR interpretation, improving diagnostic precision and

consistency. This advancement streamlines radiological workflows, allowing radiologists to work more

effectively and efficiently  [3]. Computer processing of medical images encompasses acquisition,

generation, analysis, and visualization. Figure (1) illustrates the fundamental steps of image processing,

underscoring its pivotal role in modern medical diagnostics.
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Figure (1). Basic image processing steps

Pattern recognition, commonly known as image mining and machine learning, has emerged as a recent

technique for analyzing clinical images, aiding in the automatic detection and classification of various

diseases through Computer-Aided Diagnosis (CAD). With the World Health Organization declaring

COVID-19 a pandemic on March 11, 2020, the urgent need for efficient screening and rapid clinical

intervention for infected individuals became paramount. While real-time reverse transcription

polymerase chain reaction (RT-PCR) remains the primary diagnostic method for COVID-19, its costliness

and time-consuming nature necessitate the exploration of alternative diagnostic approaches. Chest X-ray

(CXR) imaging provides a timely means of assessing suspected cases, yet the overlapping features of viral

pneumonia with other lung infections underscore the need for improved diagnostic methods. This study

aims to address this challenge by developing an advanced classifier capable of swiftly categorizing

COVID-19 cases based on early X-ray findings as either positive or negative. Such a method holds promise

for expediting patient treatment and ensuring accurate disease diagnosis, vital for saving lives amidst the

ongoing pandemic. Observing a gap in existing literature, this study addresses the scarcity of research

utilizing KNN, SVM, DT, TB, NB, and ensemble learning techniques for COVID-19 detection. It endeavors

to construct a classifier employing these methods to discern COVID-19 cases as positive or negative. The

underlying points are contributions of recommended technique:

Introducing a novel classifier utilizing diverse machine learning techniques for COVID-19

classification.

Leveraging X-ray imaging to detect COVID-19, focusing on the lungs as the primary site of infection.

Proposing a machine learning-based approach using clinical data to identify COVID-19 in suspected

cases.

Developing a computer-aided design technique to analyze records from COVID-19 patients or

suspects, employing machine learning for enhanced processing speed and accuracy.
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The COVID-19 pandemic has underscored the crucial role of radiology and computer-aided diagnosis

(CAD) in disease detection. With the rapid transmission of respiratory illnesses like COVID-19, the

demand for accurate diagnostic tools has surged. Radiology, leveraging imaging modalities such as chest

X-rays (CXRs), plays a pivotal role in disease assessment, yet interpreting CXR images, especially for

COVID-19, presents challenges due to overlapping features with other respiratory conditions. CAD

systems offer invaluable support to radiologists by automating image analysis. Through advanced

machine learning and computer vision techniques, CAD enhances diagnostic precision and efficiency,

crucial in the urgent diagnosis and management of COVID-19 cases. This study explores innovative

methods like ensemble learning to classify COVID-19 cases from CXR images. By integrating diverse

machine learning classifiers and advanced feature extraction techniques, such as Histogram of Oriented

Gradients (HOG), the research aims to develop a robust and automated diagnostic approach. The

significance of this study lies in its contribution to advancing CAD systems for respiratory illness

diagnosis, particularly in the context of COVID-19. By addressing the need for precise and automated

methods in CXR interpretation, the research endeavors to empower radiologists with effective tools for

combating the pandemic and improving patient outcomes.

2. Related work

Artificial intelligence is revolutionizing the detection of medical conditions like breast cancer, brain

tumors, and COVID-19 using deep learning methods on CXR images. Yet, many studies rely on limited

COVID-19 datasets, making it hard to generalize results and ensure prototype efficacy on larger samples.

Related works in this fields are reviewed as follows.

Instead of traditional convolutional neural networks (CNNs) for COVID-19 identification, Afshar et al.

proposed the use of COVID-CAPS capsule network  [1]. Arman et al. introduced a Bayesian optimization

method, achieving a 94% accuracy in COVID-19 detection  [2]. Apostolopoulos recommended transfer

learning and CNNs for identifying COVID-19 from limited datasets [3]. Ranganath et al. suggested a pivot

distribution approach for COVID-19 identification from chest X-ray (CXR) images [4]. Das et al. proposed

the velocity-enhanced whale optimization algorithm hybridized by artificial neural networks for medical

data classification [5]. Han suggested a support vector machine (SVM) classification approach for COVID-

19 identification from X-ray data  [6]. Ko et al. proposed a technique employing random forest and local

wavelet-based CS-binary pattern for image classification  [7]. Hamed et al. advocated using k-nearest
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neighbor (KNN) variants to identify COVID-19 from incomplete heterogeneous data  [8]. Nayak et al.

introduced an automatic deep neural network for COVID-19 detection [9]. Khanna et al. recommended an

automatic method for timely COVID-19 identification [10].

Kör et al. utilized transfer learning to develop a multi-class convolutional neural network model for

automatic pneumonia identification and distinguishing between pneumonia with and without COVID-

19 [11]. Meanwhile, Mahin et al. proposed a deep learning technique for COVID-19 identification from chest

X-ray (CXR) data  [12]. Singh et al. recommended a multi-objective approach for categorizing COVID-19

using computed tomography (CT) scan images  [13]. In a similar vein, Islam suggested a CNN-based

method to detect chest abnormalities indicative of COVID-19  [14]. Taunk et al. introduced COVID-Net, a

deep CNN capable of analyzing 14k CXR images to detect COVID-19 cases  [15]. Furthermore, Wang et al.

presented a specialized CNN technique utilizing CXR images for COVID-19 recognition in patients  [16].

Lastly, Zhang et al. outlined guiding concepts and medical interventions for COVID-19  [17]. Lascu MR

utilized transfer learning to classify COVID-19, pneumonia, and healthy lungs from CXR and CT images,

achieving reliable results. The study emphasizes the importance of accurate diagnosis and proposes a

transfer learning model to aid medical professionals [18]. Varma, Kalra, and Kirmani conduct a systematic

review of prediction and classification techniques for COVID-19, highlighting the urgent need for accurate

diagnosis amidst the global health crisis. They survey machine learning and deep learning methods,

identify challenges, and recommend the establishment of benchmark datasets to enhance effectiveness

in real-time clinical settings  [19]. Muhammad et al. introduced the COVID-19 Chest X-Ray Database,

proposing AI-based rapid and accurate detection of COVID-19 pneumonia from chest X-ray images,

achieving high classification accuracy  [20]. Cohen et al. introduced the COVID-19 open image data

collection, comprising 123 frontal view X-rays sourced from medical websites and publications  [21][22].

Soares et al. introduced a large dataset of real patient CT scans for SARS-CoV-2 identification, aiming to

aid research in AI methods for COVID-19 detection. The dataset contains 1252 positive and 1230 negative

scans, sourced from hospitals in Sao Paulo, Brazil [23]. Sareeta and Manas represented a study about chest

X-Ray image classification for COVID-19 detection using various feature extraction techniques  [24].

Rahman TF investigated the impact of image enhancement on COVID-19 detection using chest X-rays. A

large dataset (COVQU) was compiled, including 18,479 images. Gamma correction proved most effective.

The proposed U-Net model achieved high accuracy (98.63%) for lung segmentation, enhancing COVID-19

detection reliability [25]. Kumar et al. proposed a COVID-19 classification method using deep features and
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correlation coefficient. Their approach, tested on extensive datasets, outperformed previous methods,

highlighting the potential of early detection via chest X-ray images [26]. Murugesan and Muthurajkumar

proposed a deep learning approach for product recommendation in social networks, achieving a 92.22%

positive score out of 2033 reviews, surpassing traditional methods in accuracy and quality [27].

COVID-19 is not only analyzed by machine learning approaches. Researchers explore the use of uncertain

SEIAR system dynamics modeling for community health management, focusing on COVID-19. Their

study employs Ensemble Kalman Filter and Metropolis-Hastings algorithms, offering insights into

outbreak control scenarios and mortality rates [28].

Ershadi et al. introduce a hierarchical machine learning model for analyzing treatment plans of

Glioblastoma Multiforme patients, integrating clinical, biomedical, and image data to improve decision-

making efficacy. They employ Fuzzy C-mean clustering, Wrapper feature selection, and twelve classifiers

to optimize outcomes  [29]. Rahimi Rise et al. advocate for stronger environmental considerations post-

COVID-19 to transition the global economy towards renewable energy and resilient public-health

systems, emphasizing the need for institutional reforms within the United Nations System [30]. Rise et al.

propose a hierarchical model combining expert knowledge, FCM clustering, and ANFIS classification to

detect severity levels of hospitalized symptomatic COVID-19 patients, achieving high accuracy using both

clinical and image data [31]. Rahimi Rise et al. analyze socioeconomic impacts of infectious diseases using

an uncertain SEIAR model with scenario-based analysis, emphasizing future GDP and social impact

predictions for policymaking  [32]. Ershadi and Seifi proposed a dynamic multi-classifier method for

disease diagnosis, combining feature reduction techniques and clustering selection to enhance accuracy

and computation time efficiency  [33]. Other authors proposed a multi-objective optimization model for

pharmaceutical supply chain logistics in pandemic situations, aiming to minimize unsatisfied requests

and transportation costs while considering various factors and employing a hybrid optimization

approach  [34]. Rahimi Rise et al. explored COVID-19 outbreak scenarios in Iran using system dynamics

modeling, emphasizing the transportation system's impact and proposing strategies for government

decision-making amid varying mortality rates and recovery scenarios [35]. Ershadi and Seifi represented

dynamic feature selection and clustering methods to enhance medical diagnosis. Their novel approach

combines feature selection, clustering, and deep learning to improve classification performance

significantly  [36]. They developed an efficient Bayesian network for differential diagnosis, integrating

expert knowledge and data-driven methods, achieving up to 87% accuracy, as well [37].
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According to the literature review, the motivation to develop a classifier for accurately identifying COVID-

19 cases using chest X-ray (CXR) samples stems from the urgent need for alternative diagnostic methods

amidst the COVID-19 pandemic. While RT-PCR testing is the gold standard, its limitations in terms of cost

and turnaround time prompted exploration of supplementary diagnostic tools. CXR imaging, with its

accessibility and potential for rapid assessment of lung pathology, emerged as a promising modality.

Leveraging advancements in machine learning and image analysis, researchers aimed to train

algorithms to automatically detect COVID-19 patterns in CXR images. Such a classifier could expedite

diagnosis, inform treatment decisions, and aid in disease surveillance efforts. Ultimately, the goal is to

improve patient care by providing timely and accurate identification of COVID-19 cases, thereby

contributing to the management and containment of the pandemic.

3. Proposed Methodology

This method utilizes machine learning to efficiently identify and categorize COVID-19 from X-rays,

streamlining the labor-intensive process of diagnosis. Employing a two-stage strategy, it extracts

features in the first stage and classifies images in the second. Various classifiers, including KNN, SVM,

decision tree (DT), Tree Bagger (TB), and ensemble learning, are evaluated post feature extraction.

Histogram of Oriented Gradients (HOG) is employed for this purpose. It is noteworthy that each classifier

was individually trained and tested using the extracted Histogram of Oriented Gradients (HOG) features

from chest X-ray (CXR) images. The selection criteria for these classifiers were based on their established

performance in medical image classification tasks, as well as their suitability for handling the

characteristics of CXR data. Specifically, classifiers were chosen for their ability to handle non-linear

relationships, interpretability, and scalability to large datasets. The subsequent sections detail the

techniques employed in this method to enhance COVID-19 detection from chest X-ray images.

3.1. Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a popular method for extracting features from image data,

focusing on object structure and shape. HOG identifies edge features by determining pixel edges and

their directions, calculating gradients and edge orientations within localized sections of the image. These

sections create histograms based on gradient orientations, producing distinct histograms for each

region. Each image block overlaps by 50% and is divided into cells, with cells potentially appearing in

multiple blocks due to overlap. For each pixel in each cell, x and y gradients (Gx and Gy) are computed.
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This process illustrates how gradients represent edges in two directions across an image (see Equation 1).

Additionally, Figure (2) illustrates standard HOG and viral HOG. Gradients' magnitudes and phases are

then determined accordingly.

where   is the magnitude, and θ is the angle.

Figure (2). HOG feature extraction of normal (left picture) and COVID-19 (right picture-Viral) CXR images

Histogram of Oriented Gradients (HOG) feature extraction was applied to chest X-ray (CXR) images by

dividing the images into small cells and computing gradient orientation histograms within each cell.

These histograms capture local intensity gradients, providing valuable texture information.

Subsequently, the histograms are normalized to improve robustness against variations in illumination

and contrast. Finally, the normalized histograms are concatenated to form a feature vector, which serves

as input to the machine learning classifiers. This process enables the extraction of discriminative

features from CXR images, enhancing the performance of the classifiers in COVID-19 diagnosis.

In the study on the application of ensemble learning in CXR classification for enhancing COVID-19

diagnosis, a single feature selection method was utilized. Specifically, the research focused on the

Histogram of Oriented Gradients (HOG) feature extraction technique, which was employed in conjunction

with various machine learning classifiers and ensemble learning approaches to enhance the accuracy of

COVID-19 diagnosis from chest X-ray images. This comprehensive evaluation demonstrated the efficacy

θ = arctan /Gx Gy (1)

r
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of HOG features in facilitating precise classification, particularly when combined with ensemble learning

methodologies.

3.2. K-Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) supervised classification technique is employed for sample

categorization. It operates by categorizing new data based on their features and labeled training data,

without the need to fit a model, making it memory-based. Utilizing Euclidean distance, it identifies the k

training points nearest to a query point, u0. The new data point is assigned to a group based on the

majority of its neighbors. The nearest neighbor classifier requires a dataset for accurate classification,

with the training sample representing the existing dataset. Each training vector, utp, represents a point

in the N-dimensional space, where Nv denotes all training patterns. The input test vector, up, is compared

with the training data to determine its category, denoted by the class labels, i, and compared with the

example vectors, mik, to ascertain the exact category (see Equation 2).

In this context, mik signifies the example vector, while the input test vector is represented as up. We

consider a collection of metric space points labeled 0 or 1. Given a query (S, T) and samples (S1, T1), (S2,

T2),... represented as (Sn, Tn), the k-nearest neighbor classifier determines the label of the query based on

the class with the highest prevalence among the k nearest points to s in the labeled sample. We employ

an odd integer for k to avoid ties. Ties can occur either when multiple points at the same distance from

the query fail to provide distinct answers or when multiple classes occur with the same frequency among

the query's k-nearest neighbors. To prevent distance ties, we demonstrate universal consistency without

assuming density distributions. Various techniques, including random selection, are discussed in the

literature to resolve ties in the voting process.

3.3. Support Vector Machine Classifier

The Support Vector Machine (SVM) operates by segmenting the search space to maximize distance to

data points. It excels in text data analysis, allowing flexible feature selection. Its linear method suits high-

dimensional text classification. However, excessive parameters hinder performance, mitigated by

parameter reduction and focused feature selection. SVM, a prominent kernel algorithm, employs

hyperplane separation for classification based on maximizing margins between classes and nearest

points.

=mik up (2)
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3.4. Decision Tree Classifier

Decision trees (DT) serve as a versatile non-parametric supervised learning method for classification and

regression tasks. Each internal node in a DT evaluates a specific attribute, with branches representing

test outcomes and leaf nodes signifying examined features. The tree comprises decision nodes, chance

nodes, and end nodes, with leaf nodes containing the final outcome. The path from root to leaf forms

conjunctions in decision tree conditions, enabling the generation of decision rules. These rules can

elucidate causal or temporal relationships, aiding in association rule building. DT's transparency as a

white box model renders it easily interpretable, and it demonstrates efficacy even with limited training

data, making it a valuable tool for various analytical tasks.

Decision tree methods, renowned for their widespread use in supervised learning, predict model

accuracy. However, ensemble methods, such as bagging, boosting, and random forest, surpass individual

decision trees. These ensemble techniques combine multiple decision trees to enhance predictive

performance. Decision trees serve as graphical representations of complex decision scenarios, extracting

knowledge from vast data. They efficiently classify new data and offer a concise and easily storable

format.

3.5. Naive Bayes (NB) Classifier

The Naive Bayes classifier, rooted in Bayesian statistics, assumes strong independence between features,

simplifying classification. It models each class feature independently, aiding in fruit classification, for

instance. Trained via supervised learning, it estimates parameters using maximum likelihood,

facilitating application with minimal training data. By assuming independence, only variable variances

need be determined, not the entire covariance matrix. The classifier employs the maximal a posteriori

choice rule, selecting the hypothesis with the greatest likelihood. This process involves increasing

conditional probabilities of features given the class label for each potential label. Overall, Naive Bayes

classifiers offer efficient classification, particularly suitable for scenarios with limited training data (see

Equation 3).

where p(Cj) is the conditional probability label, and p (Ti, Cj) represents every label and feature. As a

result, it appears that the only requirement to construct the classifier is to calculate every conditional

Classify( , , … … … … , ) = argmax p(C = c) p ( = ∣ C = c)t1 t2 tn ∏
i=1

n

Ti ti (3)
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probability, p (Ti, Cj), for every label and feature before multiplying the results by the prior probability for

that label, p(Cj). The label for which the classifier gets best product is returned by the classifier.

3.6. Tree Bagger Classifier

In the decision-making process of a decision tree, progression occurs from a root node to a leaf node,

with each step predicting the input variable. However, a single tree may overfit the model. To mitigate

this, bootstrap aggregation, a bagging-based technique, is employed. It generates multiple learners by

creating additional data points following the same uniform probability distribution. Typically, N learners

are averaged to determine the final learning error (see Equation 4). Components of the tree are drawn

using a bootstrap replica of the ensemble, growing independently. "Out of bag" observations refer to data

elements excluded from computation. This approach helps reduce overfitting and enhances the

robustness of the model.

where N is the learner, and e is the final error.

3.7. The proposed ensemble learning model

The proposed ensemble method combines predictions from these five classifiers through majority voting

to derive the final prediction. The steps involved in the proposed ensemble learning algorithm are

outlined as follows:

Step 1: Load the Dataset

Step 2: Prepare the Dataset

Perform data preprocessing, including removing non-numeric columns, converting columns to a

numeric format, and handling missing values.

Step 3: Define the Ensemble Classifier Function

Create a function, 'ensemble_classifier,' which inputs the training data (Xtrain, ytrain) and test data

(Xtest).

Within this function, obtain predictions from five classifiers

Combine these predictions using majority voting and return the ultimate ensemble prediction.

e =
1

 N
∑
i=1

i=N

ei (4)
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Step 4: Define Classifier Functions

Establish separate functions for each classifier

Each classifier possesses its unique architecture and hyperparameters.

Compile and train each classifier on the training data, returning predictions for the test data.

Step 5: Execute Ensemble Learning and Evaluation

Specify the number of train-test splits to perform (numsplits).

Initialize an empty list to collect evaluation results (results).

Iterate over a range of numsplits for repeated train-test splits.

Employ stratified sampling to divide the data into training and test sets.

Train the ensemble classifier on the training data and predict on the test data.

Calculate diverse evaluation metrics (e.g., accuracy, precision, recall, etc.).

Append the evaluation results to the results list.

Step 6: Construct a Results DataFrame

Create a DataFrame (resultsdf) to store the evaluation results, encompassing metrics, confusion

matrices, and timing details.

Step 7: Save the Results

This algorithm iterates through Steps 5 to 7 for each train-test split, yielding multiple sets of evaluation

metrics and confusion matrices. By leveraging predictions from various classification models, this

ensemble method enhances the robustness and accuracy of classifications.

The ensemble learning approach in this study combines the predictions of multiple individual classifier

models, such as Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), K-nearest neighbor

(KNN), and Tree Bagger (TB), to make a final decision. Unlike individual classifier models, ensemble

learning leverages the diversity of multiple models to improve overall performance. By aggregating the

predictions of diverse classifiers, ensemble learning mitigates the weaknesses of individual models and

enhances accuracy, robustness, and generalization capability, making it a powerful technique for CXR

classification, especially in the context of COVID-19 diagnosis.
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3.8. Used dataset

Data collection is paramount in machine learning research, especially in medical imaging. This study

requires a diverse set of chest X-ray (CXR) images encompassing pneumonia, COVID-19 positive and

negative cases, and normal cases. Unfortunately, standalone datasets representing each category

independently do not exist. Instead, samples are gathered from two sources: a dataset provided by Dr.

Joseph Paul, a postdoctoral scholar, and CXR datasets available on Kaggle [20]. Dr. Paul's dataset includes

CXR and CT scan samples not only of COVID-19 cases but also of other respiratory viruses such as ARDS,

SARS, and MERS [21][22]. For this research, COVID-19 image samples from Dr. Paul's dataset are utilized. A

total of 15,153 sample data points (from 512x512 pixels to 1024x1024 pixels) were selected for classification

in this study. This dataset comprised 3615 COVID-19 positive cases, 10,192 Normal cases, 6012 Lung

Opacity (Non-COVID lung infection) cases, and 1345 Viral Pneumonia cases. Additionally, Kaggle provides

free access to relevant data for research purposes  [23]. The collected images undergo organization,

preprocessing, and conversion into NumPy arrays to facilitate the training process. Notably, the Kaggle

dataset offers a variety of CXR images showcasing different chest perspectives of patients afflicted with

COVID-19, ARDS, SARS, MERS, and other disorders [23]. Figure 3 presents an illustrative example featuring

CXR images of both normal individuals and those affected by viral respiratory conditions. By leveraging

these datasets, researchers can access a rich pool of CXR images crucial for training machine learning

models. This comprehensive dataset not only aids in pneumonia and COVID-19 diagnosis but also

contributes to advancing the broader field of medical imaging research.
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Figure (3). Sample image of normal (left picture) and viral (right picture) CXR

3.9. Image preprocessing steps

To ensure the reliability and reproducibility of our study, rigorous preprocessing steps were applied to the

chest X-ray (CXR) images before training the machine learning models. The preprocessing pipeline

encompassed several key stages aimed at enhancing the quality and suitability of the dataset for

classification tasks.

Normalization: Prior to any further processing, pixel intensity normalization was performed on the

CXR images. Normalization ensures that the pixel values across different images are scaled to a

consistent range, typically between 0 and 1. This step is crucial for mitigating the effects of variations

in illumination and exposure settings across images, thus enabling more robust model training.

Augmentation Techniques: To augment the dataset and alleviate potential issues related to data

scarcity and class imbalance, various augmentation techniques were employed. Augmentation

techniques such as rotation, flipping, scaling, and random cropping were applied to generate

additional synthetic training samples. These augmentations not only increase the diversity of the

dataset but also enhance the model's ability to generalize to unseen data.

Addressing Class Imbalance: Class imbalance, where certain classes have significantly fewer samples

than others, is a common challenge in medical imaging datasets. To address this issue, oversampling

and/or under sampling techniques were implemented to ensure a more balanced distribution of
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samples across different classes. Techniques such as random oversampling, SMOTE (Synthetic

Minority Over-sampling Technique), or class-weighted loss functions were utilized to mitigate the

impact of class imbalance and prevent the model from being biased towards the majority class.

By adhering to these preprocessing practices, we aimed to enhance the quality of our dataset and improve

the robustness of our machine learning models for CXR classification, particularly in the context of

COVID-19 diagnosis.

4. Results and Discussion

Prior to presenting the results, the evaluation metrics are outlined as follows.

4.1. Evaluation Criteria

The confusion matrix, a pivotal metric in assessing machine learning algorithms [24], juxtaposes system

outputs with reference data. Derived from it are accuracy, sensitivity, specificity, precision, recall, F-

Measure, and G-Mean  [25]. True positive (TP), true negative (TN), false positive (FP), and false negative

(FN) are key statistical indices [25]. Figure 4 depicts a sample confusion matrix.

Figure (4). Confusion matrix for binary classification

A classifier’s accuracy is measured as the ratio proportion of positive measures to all measures. It

determines the degree of accuracy [24] (see Equation 5).

The sensitivity of a classifier is evaluated as a ratio proportion of true positive measures to all positive

measures (see Equation 6).

 Accuracy  = (TP + TN)/(TP + TN + FN + FP) (5)

 Sensitivity  = TP/(TP + FN) = TPR (6)
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The specificity of a classifier is measured by the ratio of true negative measures to all negative

measures [24] (see Equation 7).

The way in which the percent of all positives were correctly classified is by precision [26] (see Equation 8).

The words “recall” and “sensitivity” are interchangeable [27] (see Equation 9).

Compared to the classic accuracy metric, the F1 score gives a more precise illustration of the classifier’s

performance [26] (see Equation 10).

G-Mean evaluates the rest of classification performance through greater and lesser classes  [26]. Despite

the fact that negative situations are classified properly, a low G-Mean specifies poor performance in

categorizing the positive data [26] (see Equation 11).

4.2. Analysis and Discussion

After preprocessing the data and employing classifiers through 10-fold cross-validation, the average

results of 10 distinct test sets are shown in Table 1. In this study, employing a 10-fold validation or less

may not necessarily lead to higher accuracy percentages. While fewer folds might yield slightly inflated

accuracy rates due to the smaller validation sets, it could compromise the robustness of the model's

performance assessment. A 10-fold cross-validation ensures more reliable estimates of the model's

generalization ability by iteratively testing across diverse subsets of the data. This comprehensive

evaluation approach helps mitigate overfitting and provides a more accurate representation of the

model's true performance on unseen data, thus enhancing the study's credibility.

We conducted these experiments using Python 3.11.5 and Anaconda3 2023.03 on a personal computer

equipped with an Intel® Core™ i5-11400H CPU running at 2.70GHz and 16.00 GB of RAM for all

executions.

Related results with 60% training data samples, 10% validation and 30% testing data samples are

represented in Table (1) and Figure (5).

 Specificity  = TN/(FP + TN) = TNR (7)

 Precision  = TP/(TP + FP) (8)

 Recall =  Sensitivity  (9)

F −  Measure  = 2 ∗ (( Precision  ∗  Recall )/( Precision  +  Recall )) (10)

G −  Mean  = sqrt(TPR × TNR) (11)
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60% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.21 91.91 89.32 81.63 93.20 93.72

Sensitivity 94.62 96.27 93.42 79.72 97.66 98.14

Specificity 78.14 75.05 73.27 88.84 76.09 89.33

Precision 94.36 93.73 93.11 96.53 94.01 97.02

Recall 94.64 96.27 93.42 79.74 97.65 98.15

F-Measure 94.50 94.96 93.27 87.30 95.82 96.30

G-mean 86.01 84.97 82.70 84.18 86.21 86.73

Table (1). Results with 60% training data samples, 10% validation and 30% testing data samples

Figure (5). Bar plot of different classifier accuracies for 60% training data samples, 10% validation and 30%

testing data sample
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Related results with 70% training data samples, 10% validation and 20% testing data samples are

represented in Table (2) and Figure (6).

70% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.63 92.01 89.62 81.70 93.39 93.88

Sensitivity 94.91 96.37 93.70 79.90 97.71 98.18

Specificity 78.98 75.25 73.81 88.72 76.71 89.22

Precision 94.58 93.79 93.24 96.46 94.21 97.00

Recall 94.92 96.36 93.68 79.88 97.68 98.19

F-Measure 94.72 95.03 93.45 87.43 95.92 96.40

G-mean 86.55 85.15 83.14 84.17 86.51 87.04

Table (2). Results with 70% training data samples, 10% validation and 20% testing data samples

Figure (6). Bar plot of different classifier accuracies for 70% training data samples, 10% validation and 20%

testing data samples
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Related results with 80% training data samples, 10% validation and 10% testing data samples are

represented in Table (3) and Figure (7).

80% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.43 91.92 89.22 81.87 93.53 94.07

Sensitivity 94.70 96.17 93.41 80.09 97.64 98.12

Specificity 78.91 75.70 73.08 88.74 77.78 89.27

Precision 94.53 93.84 93.04 96.51 94.47 96.96

Recall 94.68 96.14 93.41 80.10 97.64 98.12

F-Measure 94.61 94.98 93.20 87.51 96.01 96.52

G-mean 86.46 85.30 82.59 84.30 87.16 87.64

Table (3). Results with 80% training data samples, 10% validation and 10% testing data samples

Figure (7). Bar plot of different classifier accuracies for 80% training data samples, 10% validation and 10%

testing data samples
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Related results with 90% training data samples, 5% validation and 5% testing data samples are

represented in Table (4) and Figure (8).

90% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.66 91.96 89.54 81.97 93.96 94.43

Sensitivity 94.98 96.20 93.69 80.17 97.86 98.37

Specificity 78.87 75.52 73.39 88.99 78.69 89.46

Precision 94.57 93.85 93.20 96.60 94.67 97.11

Recall 94.98 96.19 93.72 80.15 97.90 98.36

F-Measure 94.80 95.01 93.42 87.59 96.22 96.74

G-mean 86.55 85.19 82.90 84.43 87.73 88.20

Table (4). Results with 90% training data samples, 5% validation and 5% testing data samples

Figure (8). Bar plot of different classifier accuracies for 90% training data samples, 5% validation and 5%

testing data samples
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It is shown in Tables (1-4) and Figures (5-8) that the proposed ensemble classifier has better performance

among other classification methods. Figure 9 represents a radar chart to understand it better. The

performances of the proposed ensemble learning classifier cover other performances in this chart and it

is superior among other classifiers.

Figure (9). Radar chart of different metrics for various training/testing data samples

According to results, the ensemble learning method outperformed individual classifiers due to its ability

to harness the collective wisdom of diverse models. By aggregating predictions from multiple classifiers,

ensemble learning mitigates individual weaknesses and exploits complementary strengths, resulting in

improved classification accuracy and robustness. This collaborative approach effectively leverages the

diversity among classifiers, enhancing the model's ability to generalize and adapt to varying data

characteristics, ultimately leading to superior performance in COVID-19 diagnosis from chest X-ray

images.
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5. Conclusion, limitations and future works

This study delves into the realm of COVID-19 identification through the analysis of chest X-ray (CXR)

images, employing various classification approaches. Key methods including K-nearest neighbor (KNN),

Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), and Tree Bagger (TB) demonstrated

notable accuracies, all exceeding 90%. However, the standout performer proved to be ensemble learning,

showcasing superior performance compared to the individual classifiers utilized. This suggests that the

ensemble learning classifier, particularly when coupled with Histogram of Oriented Gradients (HOG)

features extracted from CXR images, holds promise as a robust tool for COVID-19 identification.

The findings of this study hold significant implications for clinical practice and COVID-19 diagnosis. By

demonstrating the effectiveness of ensemble learning techniques in CXR classification, particularly for

COVID-19 detection, the study offers a promising avenue for enhancing diagnostic accuracy and

efficiency. Implementing the proposed classifier in clinical settings could expedite the identification of

COVID-19 cases based on early X-ray findings, enabling prompt clinical intervention and containment

measures. Ultimately, the study's findings have the potential to improve patient outcomes by facilitating

timely diagnosis and treatment in the ongoing battle against the COVID-19 pandemic. The proposed

approach contributes to addressing the diagnostic challenges posed by the pandemic by offering a robust

and automated method for COVID-19 diagnosis. By leveraging advanced machine learning techniques

and ensemble learning, the classifier developed in this study demonstrates high accuracy in categorizing

COVID-19 cases from chest X-ray images. This automated diagnosis not only expedites patient treatment

but also ensures accurate disease detection, crucial for containing the spread of COVID-19 and mitigating

its impact on public health systems.

The main strength of this study lies in its innovative approach to COVID-19 diagnosis through ensemble

learning, demonstrating impressive accuracy rates. However, its reliance on existing datasets and limited

exploration of preprocessing techniques may pose limitations. Despite this, the study's contribution to

the field is significant, offering a promising avenue for enhancing diagnostic precision in respiratory

illnesses. Further research addressing dataset diversity and preprocessing rigor could strengthen its

impact and applicability in real-world clinical settings.
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5.1. Limitations

While our study demonstrates promising results in COVID-19 diagnosis through ensemble learning on

CXR images, limitations exist. These include the reliance on publicly available datasets, which may lack

diversity or contain inherent biases. Additionally, the generalizability of the findings may be constrained

by variations in image acquisition protocols and population demographics. Moreover, the performance of

the classifier may be influenced by the size and quality of the training dataset. Addressing these

limitations could further enhance the robustness and applicability of our methodology in real-world

clinical settings.

5.2. Future works

Moving forward, the exploration of deep learning techniques, transfer-based learning, and augmentation

strategies presents avenues for further refinement and enhancement of classification accuracy. By

delving deeper into these methodologies, researchers can potentially unlock new insights and improve

the efficacy of COVID-19 diagnosis.

Moreover, the scope of this study extends beyond COVID-19 detection alone. There exists the potential to

expand the capabilities of the existing model to not only ascertain the presence of COVID-19 but also to

identify other infectious diseases. This broader application could significantly contribute to the medical

field's diagnostic capabilities, facilitating prompt and accurate identification of various illnesses.
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