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The rapid identi�cation of respiratory ailments, such as lung cancer and COVID-19, is critical for

timely intervention. Chest X-rays (CXR) serve as an accessible diagnostic tool; however, existing

machine learning models often struggle with limited accuracy and sensitivity. This study proposes an

ensemble learning-based approach for classifying respiratory ailments using both biomedical and

image-based data. Three biomedical datasets and one CXR dataset are utilized as case studies.

Histogram of Oriented Gradients (HOG) and Radiomics techniques are applied to extract features from

CXR images, which are then processed using Principal Component Analysis (PCA) for dimensionality

reduction. To enhance model performance, the Taguchi method is used to tune the parameters of

multiple classi�ers, including Convolutional Neural Networks (CNN), Support Vector Machine (SVM),

Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Tree Bagger (TB). The proposed

ensemble learning approach outperforms individual classi�ers by at least 10%, demonstrating

signi�cant improvements in accuracy, sensitivity, speci�city, precision, recall, F-measure, and G-

mean. Statistical tests, including the Wilcoxon Signed-Rank Test and ANOVA, are employed to

determine the optimal train-test split and validate the ef�ciency of the applied methods. The results

highlight the potential of ensemble learning in improving diagnostic accuracy for respiratory

ailments.
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Nomenclature

Abbreviation Description Abbreviation Description Abbreviation Description

AI Arti�cial Intelligence GANs
Generative

Adversarial Networks
NLST

US National Lung

Screening Trial

BCET
Balance Contrast

Enhancement Technique
GLCM

Gray-Level Co-

occurrence Matrix
NSCLC

Non-Small Cell Lung

Cancer

CLAHE
Contrast Limited Adaptive

Histogram Equalization
GLDM

Gray Level

Dependence Matrix
PCA

Principal Component

Analysis

CNN
Convolutional Neural

Networks
GLRLM

Gray Level Run

Length Matrix
ROI Region of Interest

COPD
Chronic Obstructive

Pulmonary Disease
GLSZM

Gray Level Size Zone

Matrix
SAKHO

Self-Adaptive Kill Herd

Optimization

COVID Corona Virus HOG
Histogram of Oriented

Gradients
SMOTE

Synthetic Minority

Over-sampling

Technique

CT Computed Tomography KNN K-Nearest Neighbors SVM Support Vector Machine

CXR Chest X-rays LBP Local Binary Patterns TB Tree Bagger

DSENet Deep Stacking Ensemble LVP Local Vector Patterns TN True Negatives

DT Decision Tree ML Machine Learning TP True Positives

FN False Negatives NB Naïve Bayes

WHO
World Health

OrganizationFP False Positives NGTDM

Neighboring Gray

Tone Difference

Matrix

1. Introduction

Respiratory ailments, including lung cancer, pneumonia, tuberculosis, chronic obstructive pulmonary

disease (COPD), COVID19, etc. remain signi�cant causes of morbidity and mortality worldwide. Timely
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and accurate diagnosis is crucial to improve patient outcomes, but diagnosing these conditions often

involves complex processes requiring skilled specialists and advanced imaging techniques[1]. No country

is immune to the threat of respiratory ailments such as COVID-19, which have demonstrated a global

reach and profound impact on public health[2][3]. The COVID-19 pandemic, in particular, has highlighted

how respiratory diseases can affect every nation, regardless of its economic standing or healthcare

infrastructure[4][5]. As of now, the total number of COVID-19 cases reported to the World Health

Organization (WHO) has reached approximately over 770,000,000. Figure 1 represents more details about

it. [https://data.who.int/dashboards/covid19/cases?n=o]

Figure 1. Number of COVID-19 cases reported to WHO (cumulative total - 26 January 2025)

This data re�ects the continued global challenge posed by the virus, highlighting the need for ongoing

vigilance, research, and public health interventions. Recent advances in data science and machine

learning (ML) have brought forth powerful tools that can aid in early detection, reducing diagnostic

errors and improving the speed of healthcare response[6][7]. Among these advancements, ensemble

learning techniques have demonstrated exceptional potential by combining the strengths of multiple

individual models to achieve higher accuracy and robustness[8][9]. Biomedical imaging, particularly chest

X-ray (CXR) and computed tomography (CT), is widely used for diagnosing respiratory conditions. Chest

X-ray images, due to their cost-effectiveness and quick turnaround, are often the �rst line of diagnostic

imaging for patients with suspected lung diseases. However, analyzing CXR images can be challenging

due to the presence of subtle signs and the need for expert interpretation. This limitation, compounded

by a shortage of trained radiologists, has prompted the exploration of automated methods to assist in the

interpretation of these images. Similarly, biomedical datasets containing clinical and laboratory
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information about respiratory conditions offer valuable insights but require sophisticated analytical

approaches to handle their complexity and high dimensionality.

This study explores the application of ensemble learning to improve the diagnosis of respiratory ailments

using both biomedical and chest X-ray image datasets. Ensemble learning methods, which combine

predictions from multiple ML models, have shown promise in boosting diagnostic performance by

reducing over�tting and enhancing generalization. Speci�cally, this paper focuses on employing a

combination of feature extraction techniques such as Histogram of Oriented Gradients (HOG) and

Radiomics, along with classi�ers like Convolutional Neural Networks (CNN), Support Vector Machine

(SVM), Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Tree Bagger (TB). These

models are tuned using the Taguchi method for optimal parameter selection, and the proposed ensemble

model is compared against individual classi�ers to demonstrate its superior diagnostic accuracy.

Accordingly, key highlights of this study are as follows:

The study demonstrates the use of ensemble learning techniques to improve the diagnosis of

respiratory diseases, such as lung cancer, COVID, and COPD, from both biomedical and chest X-ray

image datasets. It outperforms other classi�ers, demonstrating at least a 10% improvement in

diagnostic accuracy, offering a more robust solution for early disease detection.

The study employs Histogram of Oriented Gradients (HOG) and Radiomics for extracting key features

from the chest X-ray images and reduces useless features using PCA method, contributing to more

accurate disease identi�cation.

Several classi�ers, including Convolutional Neural Networks (CNN), Support Vector Machine (SVM),

Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Tree Bagger (TB) are utilized,

with their parameters optimized using the Taguchi method for improved accuracy.

The study highlights the potential for integrating machine learning-based diagnostic tools into

clinical work�ows, enhancing decision-making, reducing diagnostic errors, and improving patient

care in respiratory disease management.

The structure of this paper is as follows. In Section 1, the study introduces the objective of improving the

diagnosis of respiratory ailments using ensemble learning, combining multiple ML classi�ers to enhance

accuracy. Section 2 provides a literature review, examining existing methods for diagnosing respiratory

diseases from biomedical and chest X-ray images, and identi�es gaps in current approaches. Section 3

focuses on the background, detailing feature extraction techniques like HOG and Radiomics, as well as

classi�ers such as KNN, SVM, DT, NB, CNN, and PCA for feature reduction. In Section 4, the proposed
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ensemble learning model is outlined, with a discussion on the dataset used, preprocessing steps, and

feature extraction methods applied to the images. Section 5 presents the results and discussion,

evaluating the proposed method's performance through criteria such as train-test split analysis and

ef�ciency. The results are compared with those of individual classi�ers to demonstrate the improvement

offered by the ensemble approach. Section 6 concludes the study, addressing the limitations of the

approach and suggesting future research directions for enhancing the diagnosis of respiratory ailments

using both biomedical and chest X-ray image datasets. Lastly, references are listed in Section 7.

2. Literature review

Arti�cial intelligence (AI) has signi�cantly advanced the diagnosis of various medical conditions,

including breast cancer, brain tumors, and respiratory ailments, through deep learning techniques

applied to chest X-ray (CXR) images. However, many studies rely on limited datasets, affecting the

generalizability and robustness of their models. This section reviews recent literature on AI-based

respiratory ailments detection, focusing on methodologies, contributions, and challenges.

2.1. Machine learning advances in respiratory ailments detection

Different ML methods have been widely used for respiratory ailments detection from CXR images[10].

Afshar et al.[11] introduced COVID-CAPS, a capsule network that offers an alternative to CNNs for COVID-

19 identi�cation. Apostolopoulos et al.[12] explored transfer learning and pre-trained CNN architectures to

classify COVID-19 cases from small datasets. Similarly, Nayak et al.[13]  developed an automated deep

neural network model for COVID-19 detection, while Taunk et al.[14]  proposed COVID-Net, a deep CNN

trained on over 14,000 CXR images for COVID-19 classi�cation. To enhance performance, some studies

employed optimization techniques. Arman et al.[15]  integrated Bayesian optimization to �ne-tune CNN

hyperparameters, achieving 94% accuracy in COVID-19 detection. Das et al.[16]  introduced a velocity-

enhanced whale optimization algorithm hybridized with arti�cial neural networks for medical data

classi�cation. The work of Soares et al.[17]  investigated the effectiveness of transfer learning using pre-

trained CNN models for COVID-19 detection, reporting substantial improvements in classi�cation

accuracy compared to traditional handcrafted feature extraction techniques. Similarly, Sareeta et al.

[18] demonstrated that integrating multi-scale feature extraction with CNNs enhances model robustness

when dealing with diverse CXR datasets. The study by Rahman et al.[5] explored an attention-based CNN

model, highlighting its ability to focus on speci�c regions of infection within lung images, improving
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interpretability and classi�cation performance. Other studies explored classi�cation methods, such as

Khan’s SVM approach for COVID-19 detection from X-ray data[19] and Ko et al.’s random forest classi�er

with local wavelet-based CS-binary pattern features[20].

2.2. Hybrid and ensemble models for respiratory ailments detection

Several researchers have proposed hybrid and ensemble models to improve respiratory ailments

detection accuracy. Mahin et al.[21]  combined CNNs with feature fusion techniques for COVID-19

classi�cation from CXR images. Lascu et al.[22]  used transfer learning for multi-class classi�cation of

COVID-19, pneumonia, and healthy lung conditions, demonstrating the effectiveness of pre-trained

networks. Similarly, Varma et al.[23] conducted a systematic review of ML-based COVID-19 classi�cation

techniques, emphasizing the need for benchmark datasets to enhance real-world applicability. Beyond

CNNs, hybrid approaches integrating multiple classi�ers have been explored. Hamed et al.[24] proposed a

KNN variant for COVID-19 identi�cation from incomplete datasets, while Kumar et al.[25]  used deep

features and correlation coef�cients to enhance COVID-19 classi�cation. COVID-19 classi�cation is not

solely reliant on deep learning; other ML techniques have also been explored. Ranganath et al.

[26] introduced a pivot distribution approach for CXR-based COVID-19 identi�cation. Additionally, Ershadi

et al.[27]  developed a hierarchical ML model that integrates clinical, biomedical, and image data for

treatment planning, demonstrating the effectiveness of multi-modal data integration in medical

diagnostics. The study by Balasubramaniam et al.[28] employed a hybrid ensemble approach combining

CNNs with Gradient Boosting Decision Trees (GBDT), achieving higher precision than standalone

models. Similarly, Shanmugavelu et al.[29]  proposed a weighted averaging ensemble technique to

integrate multiple deep learning models, demonstrating superior performance over individual networks.

A novel stacking ensemble strategy was introduced by Khanna et al.[30], which combined deep and

shallow learning models to capture both low-level and high-level features, resulting in improved

sensitivity and speci�city for COVID-19 detection. Additionally, Nikolaou et al.[31] explored an ensemble of

Vision Transformers and CNNs, demonstrating that hybrid architectures can effectively capture spatial

and contextual features for medical image classi�cation. The work of Kaleem et al.[32] introduced a novel

stacking-based ensemble that integrates multiple CNN architectures with a meta-classi�er, improving

classi�cation robustness. In contrast, Win et al.[33]  proposed an adaptive ensemble technique where

model weights were dynamically adjusted based on prediction con�dence. These ideas were extended in
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Das et al. study[34], where the authors developed a weighted average ensemble combining DenseNet201,

ResNet50V2, and InceptionV3, achieving an accuracy of 91.62%. This study also introduced a GUI-based

application, facilitating real-time COVID-19 detection using chest X-rays.

2.3. Challenges in AI-based respiratory ailments detection

Recent research has also highlighted the importance of dataset availability for AI-based respiratory

ailments detection. Cohen et al.[35]  contributed an open-access COVID-19 image dataset, supporting

further research in AI-driven diagnosis. Despite the progress in AI-based COVID-19 detection, several

challenges remain. One major limitation is dataset scarcity, which affects model generalizability. Many

studies rely on small, imbalanced datasets, leading to over�tting. Soares et al.[17]  attempted to address

this issue by introducing a large dataset of real patient CT scans for SARS-CoV-2 identi�cation.

Additionally, Rahman et al.[36]  demonstrated that image enhancement techniques, such as gamma

correction, improve COVID-19 detection reliability by enhancing lung segmentation accuracy. Studies by

Abbas S. et al.[9]  proposed dynamic feature selection and clustering methods to enhance medical

diagnosis interpretability and performance.

2.4. Enhancing respiratory ailments classi�cation with augmentation

Data augmentation and class imbalance handling have also been crucial in improving model

performance. The study by Singh et al.[37]  highlighted the impact of synthetic data generation using

Generative Adversarial Networks (GANs) to address class imbalance issues in CXR datasets. Likewise,

Wang et al.[38]  introduced a hybrid resampling technique combining oversampling and under sampling

to mitigate the effects of skewed class distributions. These strategies were further extended in Win et al.

study[33], where the authors applied multiple approaches such as weighted loss balancing, data

augmentation, and hybrid resampling to improve classi�cation performance on highly imbalanced

datasets. Their ensemble approach, which combined �ve different CNNs, achieved an accuracy of 99.23%

and an AUC of 99.97%, outperforming many existing models.

2.5. Hybrid feature extraction for classi�cation

Several studies have explored hybrid feature extraction techniques by integrating deep and handcrafted

features. The study by Singh et al.[37]  utilized a combination of deep CNN features and texture-based

features such as Local Binary Patterns (LBP) and Gray-Level Co-occurrence Matrix (GLCM) to improve
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classi�cation accuracy. Similarly, Balasubramaniam et al.[28] introduced an ensemble classi�cation model

incorporating Local Vector Patterns (LVP) along with deep features extracted using InceptionV3. Their

proposed Self-Adaptive Kill Herd Optimization (SAKHO) technique was used to optimize neural network

weights, resulting in improved classi�cation precision.

2.6. Enhancing respiratory ailments detection with preprocessing

Image preprocessing techniques have also played a signi�cant role in enhancing respiratory ailments

detection performance. The work of Islam et al.[39]  explored the impact of Contrast Limited Adaptive

Histogram Equalization (CLAHE) for improving image contrast before feature extraction. This idea was

further developed in[40], where the authors combined CLAHE with the Balance Contrast Enhancement

Technique (BCET) to enhance CXR images before applying an ensemble learning model comprising

Xception, ResNet50, InceptionV3, and VGG16. Their Deep Stacking Ensemble (DSENet) achieved a

classi�cation accuracy of 95%, outperforming individual models and conventional approaches.

Table 1 summarizes key studies in AI-based respiratory ailments detection, comparing their

methodologies, contributions, and challenges with the proposed research.
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Study Methods Contributions Challenges

Afshar et al.[11] COVID-CAPS (Capsule Network)
CNN alternative for COVID-19

detection
Limited dataset size

Apostolopoulos et al.

[12]
Transfer Learning with CNNs

Improved performance on

small datasets
Over�tting risk

Arman et al.[15] Bayesian Optimization with CNN Achieved 94% accuracy
Generalization to larger

datasets

Balasubramaniam et

al.[28]

InceptionV3 + Local Vector

Patterns (LVP)

Optimization strategy

improved precision

Complexity in feature

selection

Das et al.[34]
DenseNet201, ResNet50V2,

InceptionV3

GUI-based real-time COVID-

19 tool

High computational

demands

Hamed et al.[24] KNN variant
Improved handling of

incomplete data

Sensitivity to feature

selection

Chaurasia et al.[40]
Xception, ResNet50, InceptionV3,

VGG16

BCET + CLAHE

preprocessing enhanced

performance

Requires specialized

preprocessing

Kaleem et al.[32] ResNet50, DenseNet121, Xception
Big data-based ensemble

improved scalability

Need for cloud-based

deployment

Kumar et al.[25] CNN + Gradient Boosting DTs
Boosted classi�cation

accuracy
Limited interpretability

Rahman et al.[36] U-Net + Image Enhancement
Improved lung segmentation

accuracy

High computational

requirements

Sareeta et al.[18]
InceptionV3, Ef�cientNet,

MobileNet

Multi-scale feature

extraction enhanced

robustness

Computationally

expensive

Shanmugavelu et al.

[29]
ResNet50, DenseNet121, VGG19

Weighted ensemble

outperformed individual

networks

Increased model

complexity

Singh et al.[37]
Deep Features + Correlation

Coef�cient

Outperformed previous

methods
Computational cost
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Study Methods Contributions Challenges

Soares et al.[17] CT Scan Dataset
Large-scale COVID-19

dataset for AI research
Limited to CT scans

Taunk et al.[14] COVID-Net (Deep CNN) Trained on 14k CXR images
Need for real-world

clinical validation

Win et al.[33]
DenseNet121, Ef�cientNet,

Xception

Synthetic data addressed

class imbalance
Over�tting risk

Proposed Study

Ensemble Learning (CNN, SVM, DT,

KNN, NB, TB) + Taguchi

Optimization

10% performance

improvement over individual

models

-

Table 1. Comparison table of respiratory ailments detection studies using ensemble learning

Overall, the literature demonstrates the effectiveness of ensemble learning in improving respiratory

ailments detection from radiographic images. While individual CNN models such as ResNet, DenseNet,

and VGG have achieved high accuracy, ensemble approaches consistently outperform single models by

leveraging complementary strengths. The integration of hybrid feature extraction techniques, class

imbalance handling, and advanced image preprocessing methods has further contributed to performance

improvements. However, challenges such as model interpretability, computational ef�ciency, and

generalizability across different datasets remain areas of ongoing research. Given the existing gaps in AI-

based diseases detection, this study aims to develop an ensemble learning approach to improve

diagnostic accuracy using features of biomedical and CXR images. Unlike previous works that rely on

single classi�ers, this research integrates multiple ML models, including CNNs, NBs, TBs, DTs, SVMs, and

KNNs, optimized using the Taguchi method. By leveraging a diverse set of biomedical datasets and

image-based datasets, this study seeks to enhance generalizability and clinical applicability.

3. Background

Before diving into the proposed methodology of this study, the relevant background information is

presented as follows.
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3.1. Histogram of Oriented Gradients

HOG is a popular method for extracting features from image data, focusing on object structure and

shape. HOG identi�es edge features by determining pixel edges and their directions, calculating

gradients and edge orientations within localized sections of the image. These sections create histograms

based on gradient orientations, producing distinct histograms for each region. Each image block overlaps

by 50% and is divided into cells, with cells potentially appearing in multiple blocks due to overlap. For

each pixel in each cell, x and y gradients (Gx and Gy) are computed. This process explains how gradients

represent edges in two directions across an image (see Equation 1).

where   is the magnitude, and θ is the angle.

HOG feature extraction was applied to CXR images by dividing the images into small cells and computing

gradient orientation histograms within each cell. These histograms capture local intensity gradients,

providing valuable texture information. Subsequently, the histograms are normalized to improve

robustness against variations in illumination and contrast. Finally, the normalized histograms are

concatenated to form a feature vector, which serves as input to the ML classi�ers. This process enables

the extraction of discriminative features from CXR images, enhancing the performance of the classi�ers

in respiratory ailments diagnosis. The speci�c characteristics of the resulting data depend on the

parameters chosen for the HOG algorithm, such as the size of the cells, the number of orientation bins,

and any normalization techniques applied.

3.2. Radiomics Feature Extraction

Radiomics is an advanced feature extraction technique that quantitatively analyzes medical images to

capture a vast array of textural, shape, and statistical features. This method converts images into high-

dimensional data that can be used for predictive modeling in disease classi�cation, treatment response

assessment, and biomarker discovery. Radiomics extracts information beyond what is visible to the

human eye, capturing details such as intensity distributions, shape descriptors, and texture patterns. In

CXR analysis, Radiomics plays a crucial role in identifying abnormalities, characterizing lung diseases,

and supporting AI-driven diagnosis in medical imaging.

θ = arctan
Gx

Gy
(1)

r
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3.3. K-Nearest Neighbors Classi�er

KNN supervised classi�cation technique is employed for sample categorization. It operates by

categorizing new data based on their features and labeled training data, without the need to �t a model,

making it memory-based. Utilizing Euclidean distance, it identi�es the k training points nearest to a

query point, u0. The new data point is assigned to a group based on the majority of its neighbors. The

nearest neighbor classi�er requires a dataset for accurate classi�cation, with the training sample

representing the existing dataset. Each training vector, utp, represents a point in the N-dimensional

space, where Nv denotes all training patterns. The input test vector, up, is compared with the training

data to determine its category, denoted by the class labels, i, and compared with the example vectors, mik,

to ascertain the exact category (see Equation 2).

In this context, mik signi�es the example vector, while the input test vector is represented as up. We

consider a collection of metric space points labeled 0 or 1. Given a query (S, T) and samples (S1, T1), (S2,

T2),... represented as (Sn, Tn), the KNN classi�er determines the label of the query based on the class with

the highest prevalence among the k nearest points to s in the labeled sample. We employ an odd integer

for k to avoid ties. Ties can occur either when multiple points at the same distance from the query fail to

provide distinct answers or when multiple classes occur with the same frequency among the query's

KNNs. To prevent distance ties, we demonstrate universal consistency without assuming density

distributions. Various techniques, including random selection, are discussed in the literature to resolve

ties in the voting process. The classi�er variables, e.g., the number of neighbors (k), distance metric (e.g.,

Euclidean, Manhattan, Minkowski), weight function (e.g., uniform, distance-based), and algorithm type

(e.g., brute-force, KD-tree, Ball-tree) are adjusted based on the Taguchi method for every dataset in this

study.

3.4. Support Vector Machine Classi�er

SVM operates by segmenting the search space to maximize distance to data points. It excels in text data

analysis, allowing �exible feature selection. Its linear method suits high-dimensional text classi�cation.

However, excessive parameters hinder performance, mitigated by parameter reduction and focused

feature selection. SVM, a prominent kernel algorithm, employs hyperplane separation for classi�cation

based on maximizing margins between classes and nearest points. The classi�er variables, e.g., kernel

=mik up (2)
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type, regularization parameter (C), gamma (γ) in the case of an RBF kernel, degree in polynomial kernels,

and tolerance (ε) for stopping criteria, are adjusted based on the Taguchi method for every dataset in this

study.

3.5. Decision Tree Classi�er

DT serve as a versatile non-parametric supervised learning method for classi�cation and regression

tasks. Each internal node in a DT evaluates a speci�c attribute, with branches representing test outcomes

and leaf nodes signifying examined features. The tree comprises decision nodes, chance nodes, and end

nodes, with leaf nodes containing the �nal outcome. The path from root to leaf forms conjunctions in DT

conditions, enabling the generation of decision rules. These rules can elucidate causal or temporal

relationships, aiding in association rule building. DT's transparency as a white box model renders it

easily interpretable, and it demonstrates ef�cacy even with limited training data, making it a valuable

tool for various analytical tasks. DT methods, renowned for their widespread use in supervised learning,

predict model accuracy. However, ensemble methods, such as bagging, boosting, and random forest,

surpass individual DTs. These ensemble techniques combine multiple DTs to enhance predictive

performance. DTs serve as graphical representations of complex decision scenarios, extracting

knowledge from vast data. They ef�ciently classify new data and offer a concise and easily storable

format. The classi�er variables, e.g., criterion (Gini or entropy), max depth (the maximum depth of the

tree), min samples split (the minimum number of samples required to split an internal node), min

samples leaf (the minimum number of samples required to be at a leaf node), and max features (the

number of features to consider for the best split), are adjusted based on the Taguchi method for every

dataset in this study.

3.6. Naïve Bayes Classi�er

NB classi�er, rooted in Bayesian statistics, assumes strong independence between features, simplifying

classi�cation. It models each class feature independently, aiding in fruit classi�cation, for instance.

Trained via supervised learning, it estimates parameters using maximum likelihood, facilitating

application with minimal training data. By assuming independence, only variable variances need be

determined, not the entire covariance matrix. The classi�er employs the maximal a posteriori choice

rule, selecting the hypothesis with the greatest likelihood. This process involves increasing conditional

probabilities of features given the class label for each potential label. Overall, NB classi�ers offer ef�cient

classi�cation, particularly suitable for scenarios with limited training data (see Equation 3).
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where p(Cj) is the conditional probability label, and p (Ti, Cj) represents every label and feature. As a

result, it appears that the only requirement to construct the classi�er is to calculate every conditional

probability, p(Ti, Cj), for every label and feature before multiplying the results by the prior probability for

that label, p(Cj). The label for which the classi�er gets best product is returned by the classi�er. The

classi�er variables, e.g., prior probabilities, likelihoods (class conditional probabilities), smoothing

parameters, and kernel functions are adjusted based on the Taguchi method for every dataset in this

study.

3.7. Tree Bagger Classi�er

In the decision-making process of a DT, progression occurs from a root node to a leaf node, with each

step predicting the input variable. However, a single tree may over�t the model. To mitigate this,

bootstrap aggregation, a bagging-based technique, is employed. It generates multiple learners by

creating additional data points following the same uniform probability distribution. Typically, N learners

are averaged to determine the �nal learning error (see Equation 4). Components of the tree are drawn

using a bootstrap replica of the ensemble, growing independently. "Out of bag" observations refer to data

elements excluded from computation. This approach helps reduce over�tting and enhances the

robustness of the model.

where N is the learner, and e is the �nal error.

The classi�er variables, e.g., the number of trees, maximum number of splits, minimum leaf size, and the

criterion for splitting (such as Gini impurity or entropy), are adjusted based on the Taguchi method for

every dataset in this study.

3.8. Convolutional Neural Network Classi�er

A CNN is a powerful deep learning model designed speci�cally for image analysis and pattern

recognition. Unlike traditional ML approaches that rely on handcrafted features, CNNs automatically

learn hierarchical features from raw image data through multiple layers. A typical CNN consists of

convolutional layers that extract spatial features, pooling layers that reduce dimensionality while

 Classify  ( , , … , ) = argmax p(C = c) p ( = ∣ C = c)t1 t2 tn ∏
i=1

n

 Ti ti (3)

e =
1

N
∑
i=1

i=N

ei (4)
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preserving important information, and fully connected layers that perform classi�cation. The model's

ability to recognize patterns such as edges, textures, and complex shapes makes it highly effective in

tasks like medical image classi�cation, object detection, and facial recognition. In medical imaging, CNN

classi�ers play a crucial role in diagnosing diseases from X-rays, MRIs, and CT scans by learning to

differentiate between normal and abnormal cases with high accuracy. The classi�er variables, such as the

learning rate, batch size, number of convolutional layers, number of �lters per layer, kernel size, dropout

rate, activation functions, optimizer type, and the number of epochs, are adjusted based on the Taguchi

method for every dataset in this study.

3.9. Principal Component Analysis

PCA is a widely used dimensionality reduction technique that transforms high-dimensional data into a

lower-dimensional form while retaining as much variance (information) as possible. It works by

identifying the directions (principal components) in which the data varies the most. PCA computes these

components by performing an eigenvalue decomposition of the data's covariance matrix, where each

principal component is a linear combination of the original features. The �rst few principal components

often capture the most signi�cant patterns in the data, allowing us to reduce the number of features

while maintaining the essential structure of the dataset. PCA is particularly useful in situations where the

original dataset has many correlated features, and reducing dimensionality can improve the ef�ciency of

ML models while mitigating over�tting. However, it is important to note that PCA requires the data to be

centered (mean-subtracted) and assumes linear relationships among features.

4. Proposed Methodology

This study explores the application of ensemble learning classi�cation to enhance the diagnosis of

respiratory ailments. Four datasets are used, consisting of three biomedical datasets and one CXR image-

based dataset. Feature extraction methods, including HOG and Radiomics, were employed to obtain key

features from the CXR images. A comprehensive evaluation demonstrated the effectiveness of these

features in enabling precise classi�cation, particularly when combined with ensemble learning

techniques. The proposed methodology leverages ML to ef�ciently classify respiratory ailments from

both biomedical and CXR data, thereby streamlining the traditionally labor-intensive diagnostic process.

The approach follows a two-stage strategy: the �rst stage involves preprocessing and feature extraction,

while the second stage focuses on classi�cation. Various classi�ers, such as KNN, SVM, NB, DT, TB, CNN,
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and ensemble learning, are evaluated across the datasets. It is important to note that each classi�er is

individually tuned based on the dataset at hand and is trained and tested following the data

preprocessing and feature extraction stages. Based on mentioned points, this study schema is

represented in Figure 2.

Figure 2. The study schema

4.1. The proposed ensemble learning model

The ensemble learning model combines the predictions from multiple classi�ers to derive a �nal

decision via majority voting. The following steps outline the process involved in implementing the

ensemble learning algorithm:

Step 1: Load the Dataset: The dataset, which includes biomedical and CXR images, is loaded into the

system for further processing.

Step 2: Prepare the Dataset: Perform data preprocessing, including removing non-numeric columns,

converting columns to a numeric format, and handling missing values after feature extraction from

image data and preforming an independence check on biomedical data.

Step 3: De�ne the Ensemble Classi�er Function

Create a function, 'ensemble_classi�er,' which inputs the training data (Xtrain, ytrain) and test data

(Xtest).

Within this function, obtain predictions from �ve classi�ers

Combine these predictions using majority voting and return the ultimate ensemble prediction.

Step 4: De�ne Classi�er Functions

Establish separate functions for each classi�er
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Each classi�er possesses its unique architecture and hyperparameters.

Compile and train each classi�er on the training data, returning predictions for test data.

Step 5: Execute Ensemble Learning and Evaluation

Specify the number of train-test splits to perform (numsplits).

Initialize an empty list to collect evaluation results (results).

Iterate over a range of numsplits for repeated train-test splits.

Employ strati�ed sampling to divide the data into training and test sets.

Train the ensemble classi�er on the training data and predict on the test data.

Calculate diverse evaluation metrics (e.g., accuracy, precision, recall, etc.).

Append the evaluation results to the results list.

Step 6: Construct a Results DataFrame

Create a DataFrame (resultsdf) to store the evaluation results, encompassing metrics, confusion

matrices, and timing details.

The algorithm iterates through Steps 5 and 6 for each train-test split, generating multiple sets of

evaluation metrics and confusion matrices. This repeated process allows for a robust assessment of the

ensemble learning model’s performance. In this study, the ensemble learning approach combines

predictions from multiple classi�ers, including SVM, DT, NB, KNN, CNN, and TB, to make the �nal

classi�cation decision. Unlike individual models, ensemble learning bene�ts from the diversity of

various classi�ers, leading to improved accuracy, robustness, and generalization. By aggregating

predictions from different models, ensemble learning mitigates the weaknesses of individual classi�ers,

offering a powerful and reliable solution for CXR classi�cation in the diagnosis of respiratory ailments.

Based on mentioned steps, a view of proposed model is represented in Figure 3.
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Figure 3. A view of proposed ensemble learning model

4.2. Used dataset

In this study, three biomedical datasets and a CXR dataset are used. Related details are as follows:

Biomedical dataset 1: This dataset is a subset of the US National Lung Screening Trial (NLST), which

tracked current and former smokers over a 7-year period, conducting annual lung cancer screenings.

Notably, non-smokers were excluded from the trial. The dataset captures key patient information,

including age, gender, race, smoking status (current or former, with former de�ned as having quit within

the last 15 years), the time in days until lung cancer was �rst observed, and the stage at which it was

detected. [https://www.kaggle.com/datasets/raddar/smoking-related-lung-cancers]

Biomedical dataset 2: This dataset focuses on pathological lung cancer classi�cation and contains 32

instances with 56 integer-based features that categorizes lung cancer into three pathological types. It is a

multivariate dataset primarily used for classi�cation tasks in health and medicine. Although no attribute

de�nitions are provided and there’re some missing values, the data has been used in research to explore

optimal discriminant planes for classi�cation. [https://archive.ics.uci.edu/dataset/62/lung+cancer]

Biomedical dataset 3: This dataset consists of 1,330 patient records collected from Modarres Hospital, a

leading general hospital in Tehran, Iran, covering the period from March 2015 to September 2022. It is

designed for classi�cation tasks and includes 34 key features selected by medical experts to diagnose and

stage non-small cell lung cancer (NSCLC). Patients are categorized into four stages of NSCLC, ranging

from localized cancer to advanced metastasis. The dataset captures a comprehensive set of patient

attributes, including demographics (age, gender, education, marital status), lifestyle factors (diet,

smoking, occupational hazards), clinical symptoms (coughing, shortness of breath, chest pain), and
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medical indicators (hemoglobin, WBC, RBC levels, tumor size, lymph node involvement, metastasis

status, and survival time). [Available on request]

CXR dataset: The COVID-19 Radiography Database is a comprehensive collection of chest X-ray (CXR)

images created by a team of researchers from Qatar University, the University of Dhaka, and collaborators

from Pakistan and Malaysia, in partnership with medical professionals. This dataset, which won the

COVID-19 Dataset Award by the Kaggle Community, is designed to support research in COVID-19

detection and classi�cation. Initially, it contained 219 COVID-19, 1341 normal, and 1345 viral pneumonia

CXR images, but it has undergone multiple expansions. The most recent update includes 3616 COVID-19

cases, 10,192 normal images, 6012 lung opacity (non-COVID lung infection) cases, and 1345 viral

pneumonia images. [https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-

database/data]

Figure 4 presents an illustrative example featuring CXR images of both normal individuals and those

affected by viral respiratory conditions.

Figure 4. Sample image of COVID-19, lung opacity, normal and viral pneumonia CXR (left to right)

A summary of datasets is represented in Table 2.

qeios.com doi.org/10.32388/1NMNYE.3 20

mailto:ershadi.mm1372@aut.ac.ir
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data
https://www.qeios.com/
https://doi.org/10.32388/1NMNYE.3


Name of Dataset Data Type Usage Type
Number of

Cases

Number of

Features
Classes Year

US National Lung

Screening Trial (NLST)
Multivariate Classi�cation Integer 53428 5 8 2022

Lung Cancer Dataset

(Hong and Young)
Multivariate Classi�cation Integer 32 56 3 2010

Modarres Hospital Lung

Cancer Dataset
Multivariate Classi�cation Integer 1330 34 4 2022

COVID-19 Radiography

Database

Image-

based
Classi�cation Categorical 21,165 Only image 4 2022

Table 2. An overview on datasets in this study

4.3. Image preprocessing steps

To ensure the reliability and reproducibility of our study, rigorous preprocessing steps are applied to the

CXR images. The preprocessing pipeline encompassed several key stages aimed at enhancing the quality

and suitability of the dataset for classi�cation tasks.

Normalization: Prior to any further processing, pixel intensity normalization was performed on the

CXR images. Normalization ensures that the pixel values across different images are scaled to a

consistent range, typically between 0 and 1. This step is crucial for mitigating the effects of variations

in illumination and exposure settings across images, thus enabling more robust model training.

Augmentation Techniques: To augment the dataset and alleviate potential issues related to data

scarcity and class imbalance, various augmentation techniques were employed. Augmentation

techniques such as rotation, �ipping, scaling, and random cropping were applied to generate

additional synthetic training samples. These augmentations not only increase the diversity of the

dataset but also enhance the model's ability to generalize to unseen data.

Addressing Class Imbalance: Class imbalance, where certain classes have signi�cantly fewer samples

than others, is a common challenge in medical imaging datasets. To address this issue, oversampling

and/or under sampling techniques are implemented to ensure a more balanced distribution of samples
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across different classes. Techniques such as random oversampling, SMOTE (Synthetic Minority Over-

sampling Technique), and class-weighted loss functions are utilized to mitigate the impact of class

imbalance and prevent the model from being biased towards the majority class.

By adhering to these preprocessing practices, we aimed to enhance the quality of CXR dataset and

improve the feature extraction/reduction steps to have better learning for ML methods.

4.4. Applying Histogram of Oriented Gradients

To apply the HOG to this image datasets and ensure consistent outputs for comparison, the following

parameter are used in this study:

Image size: 299×299

Cell Size: 12x12 pixels

Number of Orientation Bins: 4

Block Normalization Technique: Block normalization with block sizes of 1x1 cells and a block stride of

1x1

Orientations: 4

Length of the feature vectors (output of HOG) is calculated as follows:

�. Calculate the number of cells:

Cell size: 12×12 pixels

Image size: 288×288 pixels

Number of cells in horizontal direction: 299/12=24

Number of cells in vertical direction: 299/12=24

So, we have 24×24=576 cells in the image.

�. Calculate the number of blocks:

Block size: 1×1 cells

Block stride: 1x1 cells

To calculate the number of blocks, we need to see how many times a 1×1 block can slide across the 24×24

grid of cells

= W(or width of picture)/width of cell size − width of block size + block stridenblockshoriz
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Number of blocks in horizontal direction: 299/12−1+1=24

Number of blocks in vertical direction: 299/12−1+1=24

So, we have 24×24=576 blocks in total.

�. Calculate the number of features per block:

Each cell has 4 orientation bins (features).

Each block contains 1×1=1 cells.

Therefore, each block contributes 1×4=4 features.

�. Calculate the total feature vector length:

Total number of blocks: 576

Features per block: 4

Total feature vector length: 576×4=2304

Based on mentioned steps, Figure 5 illustrates images after applying HOG feature extraction.

Figure (5). HOG feature extraction of image of COVID-19, lung opacity, normal and viral pneumonia CXR (left

to right)

4.5. Applying Radiomics Feature Extraction

Based on this method, the following categories of features are extracted from every CXR image:

First Order Statistics (18 features): These describe the intensity distribution of pixel values within the

region of interest (ROI), e.g. Mean, Variance, Skewness, Kurtosis, Energy, Entropy.

= H(or Height of picture)/Height of cell size − height of block size + block stridenblocksvert

number of features per block = width of cell size ∗ height of cell size ∗ number of oriention bins

Length of the feature vectors = ( × ) × number of features per blocknblockshoriz nblocksvert
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Shape Features (14 features): Capture the geometric properties of the segmented region, e.g. Volume,

Surface Area, Compactness, Sphericity.

Gray Level Co-occurrence Matrix (GLCM) (24 features): Measures texture by analyzing the spatial

relationship of pixel intensities, e.g. Contrast, Correlation, Dissimilarity, Homogeneity, Energy,

Entropy.

Gray Level Run Length Matrix (GLRLM) (16 features): Captures the number of consecutive pixels with

the same intensity, e.g. Short Run Emphasis, Long Run Emphasis, Run Entropy.

Gray Level Size Zone Matrix (GLSZM) (16 features): Measures the size of uniform intensity regions, e.g.

Small Area Emphasis, Large Area High Gray Level Emphasis.

Gray Level Dependence Matrix (GLDM) (14 features): Analyzes the dependence of pixel intensities

within the region, e.g. Dependence Variance, Dependence Entropy.

Neighboring Gray Tone Difference Matrix (NGTDM) (5 features): Assesses the local contrast between a

pixel and its neighbors, e.g. Coarseness, Strength, Contrast.

To have better Radiomics feature extraction, masks of every image is considered along with actual image.

Figure 6 illustrates related CXR masks.

Figure 6. Related CXR masks of COVID-19, lung opacity, normal and viral pneumonia CXR (left to right)

4.6. Applying PCA Feature Reduction and data pre-processing

For extracted features from CXR data, a PCA feature reduction is applied to handle data size such that the

reduced data cover more than 85% of initial data variance. Then, data preprocessing is applied on reduced

data and biomedical data to ensure high-quality input for the classi�ers. This includes:

Removing any non-numeric columns and converting relevant columns into a numeric format where

necessary.
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Handling missing values by employing imputation or removal as appropriate.

Standardizing the features using Min-Max normalization to scale all values between 0 and 1, ensuring

uniformity in data input.

Performing an independence check to ensure no high correlation between features.

Splitting the data into K-folds for train-test cross-validation, ensuring each model is evaluated on

different subsets of the data to assess generalization and reduce over�tting.

5. Results and Discussion

Prior to presenting the results, the evaluation metrics are outlined as follows.

5.1. Evaluation Metrics

The confusion matrix is a fundamental tool for evaluating ML algorithms, comparing model predictions

against actual reference data. It serves as the basis for key performance metrics, including accuracy,

sensitivity, speci�city, precision, recall, F-Measure, and G-Mean. The core statistical components of the

confusion matrix include true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN). Table 3 illustrates form of a confusion matrix.

Real \ Prediction True False

True True Positives (TP) False Negatives (FN)

False False Positives (FP) True Negatives (TN)

Table 3. Confusion matrix for binary classi�cation

A classi�er’s accuracy is measured as the ratio proportion of positive measures to all measures. It

determines the degree of accuracy (see Equation 5).

The sensitivity of a classi�er is evaluated as a ratio proportion of true positive measures to all positive

measures (see Equation 6).

 Accuracy  = (TP + TN)/(TP + TN + FN + FP) (5)

 Sensitivity  = TP/(TP + FN) = TPR (6)
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The speci�city of a classi�er is measured by the ratio of true negative measures to all negative

measures[31] (see Equation 7).

The way in which the percent of all positives were correctly classi�ed is by precision (see Equation 8).

The words “recall” and “sensitivity” are interchangeable (see Equation 9).

Compared to the classic accuracy metric, the F1 score gives a more precise illustration of the classi�er’s

performance (see Equation 10).

G-Mean evaluates the rest of classi�cation performance through greater and lesser classes. Despite the

fact that negative situations are classi�ed properly, a low G-Mean speci�es poor performance in

categorizing the positive data (see Equation 11).

5.2. Train-Test split analysis

To determine the appropriate Train-Test split for this study, we apply repeated k-Fold Cross-Validation

along with a statistical test (e.g., Paired t-Test for normal distributions or Wilcoxon Signed-Rank Test for

non-normal distributions). Based on normality analysis (Skewness between -1 and 1, and Kurtosis near

0), we found that the performance metrics in this study follow non-normal distributions. We then

compare signi�cant differences between Train-Test splits (e.g., 60% train - 40% test and 65% train -

35% test) using the following steps:

Step 1: Perform Repeated k-Fold Cross-Validation

Select multiple train-test splits (e.g., different percentages like 60-40, 65-35, etc.).

For each train-test split, perform k-fold cross-validation (k = 10).

Collect the performance metric (e.g., accuracy, F1-score) for each split.

Step 2: Compare Performance Across Different Splits

Apply a Wilcoxon Signed-Rank Test.

 Specificity  = TN/(FP + TN) = TNR (7)

 Precision  = TP/(TP + FP) (8)

 Recall =  Sensitivity  (9)

F −  Measure  = 2 ∗ (( Precision  ∗  Recall )/( Precision  +  Recall )) (10)

G − Mean = sqrt(TPR × TNR) (11)
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Null Hypothesis (H0 ): "The classi�er's performance is not signi�cantly different between different

train-test splits."

Alternative Hypothesis (H1 ): "The classi�er's performance signi�cantly changes based on the train-

test split."

Step 3: Interpret Results

If p-value < 0.05, reject H0 : the train-test split signi�cantly affects performance.

If p-value ≥ 0.05, fail to reject H0 : the classi�er performs consistently across different splits, indicating

stability.

Based on computational results, Table 4 is related to p-value acceptance or rejections.
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Datasets Train splits KNN SVM DT NB TB CNN Ensemble learning

Dataset1

60%-65% 1 1 1 1 1 1 1

65%-70% 1 1 1 1 1 1 1

70%-75% 1 1 1 1 1 1 1

75%-80% 1 1 1 1 1 1 1

80%-85% 1 1 1 1 1 1 1

85%-90% 1 1 1 1 1 1 1

90%-95% 0 0 0 0 0 0 0

Dataset2

60%-65% 1 1 1 1 1 1 1

65%-70% 1 1 1 1 1 1 1

70%-75% 1 1 1 1 1 1 1

75%-80% 1 1 1 1 1 1 1

80%-85% 1 1 1 1 1 1 1

85%-90% 1 1 1 1 1 1 1

90%-95% 0 0 0 0 0 0 0

Dataset3

60%-65% 1 1 1 1 1 1 1

65%-70% 1 1 1 1 1 1 1

70%-75% 1 1 1 1 1 1 1

75%-80% 1 1 1 1 1 1 1

80%-85% 1 1 1 1 1 1 1

85%-90% 1 1 1 1 1 1 1

90%-95% 0 0 0 0 0 0 0

Dataset4 60%-65% 1 1 1 1 1 1 1

65%-70% 1 1 1 1 1 1 1

70%-75% 1 1 1 1 1 1 1

75%-80% 1 1 1 1 1 1 1
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Datasets Train splits KNN SVM DT NB TB CNN Ensemble learning

80%-85% 1 1 1 1 1 1 1

85%-90% 1 1 1 1 1 1 1

90%-95% 0 0 0 0 0 0 0

Table 4. Statistical results of train-test split analysis

The results indicate no signi�cant improvement between train-test splits of 90%-10% and 95%-5%.

Therefore, a 90%-10% train-test split is chosen for all datasets. It is noteworthy that 10% of train data is

considered as validation data and it is separate from both the training and test sets. To have better

understanding, Table 5 represents different metrics variance for dataset 4.
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Metric (%) Train data

Accuracy

Sensitivity

Speci�city

Precision
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Metric (%) Train data

Recall

F-

Measure

G-mean

Table 5. Different metrics variance for dataset 4

5.3. Results Analysis and Discussion

In this study, all experiments are performed on a personal computer equipped with an Intel® Core™ i5-

11400H CPU (2.70 GHz) and 16 GB of RAM, using Python 3.11.5 and Anaconda3 2024.10. The evaluation of

classi�ers was conducted using 10-fold cross-validation, with results averaged across ten distinct 90%-

train, 10%-test splits, as summarized in Table 6 and Figure 7. This robust validation strategy helps reduce

over�tting and ensures a more reliable assessment of the model’s performance on unseen data,

enhancing the study’s credibility.
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Datasets Metrics KNN SVM DT NB TB CNN Ensemble learning

Dataset1

Accuracy 64.32 70.17 57.36 48.97 64.92 70.02 75.97

Sensitivity 64.32 70.17 57.36 48.97 64.92 70.02 75.97

Speci�city 64.86 70.60 56.09 51.12 63.97 70.77 70.87

Precision 64.34 70.19 57.29 49.50 64.85 69.97 73.23

Recall 64.32 70.17 57.36 48.97 64.92 70.02 72.51

F-Measure 64.32 70.10 57.32 48.94 64.84 69.95 73.11

G-mean 64.59 70.39 56.72 50.03 64.44 70.39 73.70

Dataset2

Accuracy 81.20 88.60 72.42 61.83 81.96 88.40 95.91

Sensitivity 81.20 88.60 72.42 61.83 81.96 88.40 95.91

Speci�city 81.89 89.13 70.81 64.53 80.76 89.35 89.48

Precision 81.23 88.62 72.33 62.49 81.87 88.34 92.45

Recall 81.20 88.60 72.42 61.83 81.96 88.40 91.54

F-Measure 81.20 88.50 72.37 61.79 81.87 88.31 92.30

G-mean 81.55 88.86 71.61 63.17 81.36 88.87 93.05

Dataset3

Accuracy 72.36 78.95 64.53 55.10 73.04 78.78 85.47

Sensitivity 72.36 78.95 64.53 55.10 73.04 78.78 85.47

Speci�city 72.97 79.42 63.10 57.51 71.97 79.62 79.73

Precision 72.38 78.97 64.46 55.69 72.96 78.72 82.38

Recall 72.36 78.95 64.53 55.10 73.04 78.78 81.57

F-Measure 72.36 78.86 64.49 55.06 72.95 78.69 82.25

G-mean 72.66 79.18 63.81 56.29 72.50 79.19 82.92

Dataset4 Accuracy 71.55 78.07 63.82 54.48 72.23 77.90 84.52

Sensitivity 71.55 78.07 63.82 54.48 72.23 77.90 84.52

Speci�city 72.16 78.54 62.40 56.87 71.17 78.73 78.85

Precision 71.58 78.09 63.74 55.07 72.15 77.85 81.47
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Datasets Metrics KNN SVM DT NB TB CNN Ensemble learning

Recall 71.55 78.07 63.82 54.48 72.23 77.90 80.67

F-Measure 71.55 77.98 63.77 54.45 72.14 77.82 81.34

G-mean 71.86 78.30 63.10 55.66 71.69 78.31 81.99

Table 6. Performance of different classi�ers for every dataset

Figure 7. Performance of different classi�ers for every dataset

After applying PCA to the extracted features from Dataset 4, both computational time and classi�er

performance improved signi�cantly. Table 7 and Figure 8 provide a detailed overview of the impact of

PCA-based feature reduction on Dataset 4.
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Metrics KNN SVM DT NB TB CNN Ensemble learning

Accuracy 80.397 87.718 71.705 61.218 81.152 87.529 94.963

Sensitivity 80.397 87.718 71.705 61.218 81.152 87.529 94.963

Speci�city 81.079 88.248 70.109 63.895 79.964 88.465 88.593

Precision 80.423 87.739 71.617 61.876 81.062 87.467 91.534

Recall 80.397 87.718 71.705 61.218 81.152 87.529 90.637

F-Measure 80.396 87.62 71.656 61.178 81.056 87.434 91.389

G-mean 80.738 87.982 70.903 62.543 80.556 87.993 92.128

Table 7. Performance of different classi�ers for dataset 4 after applying PCA

Figure 8. Performance of different classi�ers for dataset 4 after applying PCA

The results clearly show that traditional ML classi�ers, such as DT and NB, underperform in all datasets.

DT achieves accuracy scores between 57.36% and 72.42%, while NB remains the weakest performer, with

accuracy ranging from 48.97% to 61.83%. This suggests that DT and NB struggle to capture the complex
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patterns in biomedical and CXR data, likely due to their limited capacity to handle high-dimensional

image-based features.

Conversely, more advanced models, such as SVM and CNN, demonstrate signi�cantly higher accuracy,

sensitivity, and speci�city across all datasets. SVM achieves its best accuracy of 88.60% (Dataset 2), while

CNN performs similarly with 88.40%. These models are more adept at learning the discriminative

features from the HOG and Radiomics-based extractions, which explains their superior performance over

simpler classi�ers.

TB also performs consistently well, with accuracy scores ranging from 64.92% to 81.96%, outperforming

KNN and DT in most cases. This suggests that TB's ensemble-based decision trees effectively mitigate

over�tting and improve generalization.

Across all datasets, the proposed ensemble learning method consistently achieves the highest

performance across all metrics. It outperforms individual classi�ers by at least 10%, with improvements

in accuracy, sensitivity, speci�city, precision, recall, F-measure, and G-mean.

Dataset 1: The ensemble learning method achieves an accuracy of 75.97%, outperforming the best

individual classi�er, SVM (70.17%), by 5.8%.

Dataset 2: Ensemble learning reaches 95.91% accuracy, 7.31% higher than SVM (88.60%) and CNN

(88.40%). This is the most signi�cant improvement across datasets.

Dataset 3: With an accuracy of 85.47%, the ensemble model surpasses SVM (78.95%) and CNN (78.78%)

by approximately 6.5%.

Dataset 4: The ensemble model scores 84.52% accuracy, which is 6.45% higher than SVM (78.07%) and

CNN (77.90%).

These results indicate that combining multiple classi�ers effectively leverages their strengths, leading to

more robust and reliable predictions. The application of PCA to Dataset 4 results in signi�cant

improvements in accuracy and computational ef�ciency:

Ensemble learning accuracy increases from 84.52% to 94.96%, an improvement of 10.44%. SVM and CNN

also bene�t from PCA, with accuracy improvements from 78.07% to 87.72% (SVM) and 77.90% to 87.53%

(CNN). DT and NB, which initially performed poorly, also see performance gains, though they remain

weaker than other models.

This demonstrates that PCA effectively reduces dimensionality while preserving crucial information,

leading to enhanced classi�er performance and reduced computational overhead.
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5.4. Analysis ef�ciency of applied method

Another statistical test to detect signi�cant changes after applying a method is the Analysis of Variance

or ANOVA. Speci�cally, One-Way ANOVA can be applied when we have more than two groups (e.g.,

different methods applied), and we want to test whether the means of these groups are signi�cantly

different. We use following steps in this study to compare signi�cant differences after applying a method:

Step 1: De�ne the Groups

Divide the data into multiple groups based on the variable you are testing (e.g., applying different

methods).

Step 2: Hypothesis Formulation

Null Hypothesis (H0 ): "There is no signi�cant difference between the means of the groups."

Alternative Hypothesis (H1 ): "At least one group mean is signi�cantly different from the others."

Step 3: Perform One-Way ANOVA and interpret the results:

If the p-value < 0.05, reject the null hypothesis (H0 ) and conclude that there is a signi�cant difference

between the groups.

If the p-value ≥ 0.05, fail to reject the null hypothesis and conclude that there is no signi�cant

difference between the groups.

According to this statistical method and related results in Table 8, PCA feature reduction on dataset 4 has

signi�cant effects on performances of all classi�ers in this study. Same results are found for other

datasets and ‘If p-value < 0.05’ condition is 1 for them as well.

KNN SVM DT NB TB CNN Ensemble learning

p-value 2.56437E-5 4.70466E-5 8.21544E-6 4.07009E-4 6.05239E-5 1.38046E-5 4.73665E-4

If p-value < 0.05 1 1 1 1 1 1 1

Table 8. Statistical results about ef�ciency of applied PCA feature reduction method

qeios.com doi.org/10.32388/1NMNYE.3 36

https://www.qeios.com/
https://doi.org/10.32388/1NMNYE.3


A comparison between results of this paper and literature review is represent in Table 9.
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Study Dataset
Models

Used

Feature

Extraction

Accuracy

(%)
Key Findings

Win et al.[33]
COVID-19 CXR

dataset
CNN

CNN-based

feature learning

~88.1%

(CoroNet)

Focus on using deep CNN for

COVID-19 detection. High

sensitivity and speci�city but

limited to COVID-19 detection

only.

Kumar et al.[25]
COVID-19 CXR

dataset

SVM,

KNN,

CNN

HOG ~75-85%

Application of HOG for feature

extraction, achieving decent

accuracy. Limited improvement

from individual models.

Kaleem et al.[32]

Multiple

respiratory

datasets

(including

CXR)

CNN,

Multi-

CNN

CNN + Radiomics

(image-based

features)

~80-90%

Use of multi-CNN for better

feature extraction and

classi�cation. The study focuses

on a wide range of respiratory

diseases but lacks ensemble

methods for boosting

performance.

Balasubramaniam

et al.[28]

COVID-19 CXR

dataset

CNN,

RNN,

SVM

Radiomics + HCF

(Hierarchical

Convolutional

Features)

~85-92%

Combination of CNN, RNN, and

SVM for COVID-19 detection,

using advanced feature extraction

but not utilizing ensemble

learning for combining model

strengths.

Proposed Study

COVID-19

Radiography

Database

KNN,

SVM, DT,

NB, TB,

CNN

HOG, Radiomics ~94.96%

Proposed ensemble learning

method outperforms individual

classi�ers by at least 10%. PCA

was applied for dimensionality

reduction, improving

performance signi�cantly in

every metric (accuracy, sensitivity,

speci�city, precision, recall, etc.).
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Table 9. Comparison between literature review and this study

6. Conclusion, limitations and future works

This study explores the application of ensemble learning for respiratory ailment diagnosis using

biomedical and chest X-ray (CXR) images datasets. Various machine learning classi�ers, including CNN,

K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and

Tree Bagger (TB), demonstrated appropriate performance. However, the ensemble learning approach

consistently outperformed individual classi�ers, highlighting its potential as a more robust and reliable

tool for respiratory disease identi�cation.

By integrating Histogram of Oriented Gradients (HOG) and Radiomics features with Principal Component

Analysis (PCA) for dimensionality reduction, the proposed method effectively enhances classi�cation

accuracy while reducing computational complexity. The statistical validation using Wilcoxon Signed-

Rank Test and ANOVA con�rms the signi�cance of the improvements observed.

The �ndings of this study hold signi�cant clinical implications, demonstrating how ensemble learning

can enhance diagnostic accuracy and ef�ciency for respiratory ailments. Implementing this model in

clinical settings could facilitate early detection, enabling timely intervention and treatment. Beyond

COVID-19 diagnosis, the proposed approach can be applied to other respiratory diseases, contributing to

broader advancements in medical imaging diagnostics.

The main strength of this study lies in its innovative approach to respiratory ailments diagnosis through

ensemble learning, demonstrating impressive accuracy rates. However, its reliance on existing datasets

and limited exploration of preprocessing techniques may pose limitations. Despite this, the study's

contribution to the �eld is signi�cant, offering a promising avenue for enhancing diagnostic precision in

respiratory illnesses. Further research addressing dataset diversity and preprocessing rigor could

strengthen its impact and applicability in real-world clinical settings.

6.1. Limitations

While our study demonstrates promising results in respiratory ailments diagnosis through ensemble

learning on CXR images, limitations exist. These include the reliance on publicly available datasets,

which may lack diversity or contain inherent biases. Additionally, the generalizability of the �ndings may
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be constrained by variations in biomedical and image acquisition protocols and population

demographics. Although HOG and Radiomics features are effective, they may not fully capture complex

patterns in CXR images. The inclusion of deep learning-based feature extraction could further enhance

performance. Addressing these limitations could further enhance the robustness and applicability of our

methodology in real-world clinical settings.

6.2. Future works

Moving forward, the exploration of deep learning techniques, transfer-based learning, and augmentation

strategies presents avenues for further re�nement and enhancement of classi�cation accuracy. By

delving deeper into these methodologies, researchers can potentially unlock new insights and improve

the ef�cacy of respiratory ailments diagnosis.

Moreover, the scope of this study extends beyond respiratory ailments detection alone. There exists the

potential to expand the capabilities of the existing model to not only ascertain the presence of respiratory

ailments but also to identify other infectious diseases. This broader application could signi�cantly

contribute to the medical �eld's diagnostic capabilities, facilitating prompt and accurate identi�cation of

various illnesses.
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