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This study delves into the vital task of classifying chest X-ray (CXR) samples, particularly those related

to respiratory ailments, using advanced clinical image analysis and computer-aided radiology

techniques. Its primary focus is on developing a classi�er to accurately identify COVID-19 cases.

Through the application of machine learning and computer vision methodologies, the research aims

to enhance the precision of COVID-19 detection. It investigates the effectiveness of Histogram of

Oriented Gradients (HOG) feature extraction techniques in conjunction with various classi�ers, such

as Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), K-nearest neighbor (KNN),

and Tree Bagger (TB), alongside an innovative ensemble learning approach. Results indicate

impressive accuracy rates, with KNN, SVM, DT, NB, and TB all surpassing the 90% mark. However, the

ensemble learning method emerges as the standout performer. By leveraging HOG features extracted

from CXR images, this approach presents a robust solution for COVID-19 diagnosis, offering a

powerful tool to address the diagnostic challenges posed by the pandemic.
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1. Introduction

Radiology, a medical discipline employing radiation and imaging technology, aids in diagnosing and

treating diseases. Computer-aided diagnosis (CAD) serves as a valuable adjunct, offering radiologists a

"second opinion" in interpreting chest X-rays (CXRs) to detect illness  [1]. CAD assists in diagnosing

various conditions such as atelectasis, consolidation, pneumothorax, and pneumonia, critical in

infectious respiratory disorders diagnosis  [2]. Enhancing CAD capabilities aims to automate illness

identi�cation and categorization during CXR interpretation, improving diagnostic precision and

consistency. This advancement streamlines radiological work�ows, allowing radiologists to work more

effectively and ef�ciently  [3]. Computer processing of medical images encompasses acquisition,

generation, analysis, and visualization. Figure (1) illustrates the fundamental steps of image processing,

underscoring its pivotal role in modern medical diagnostics.
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Figure (1). Basic image processing steps

Pattern recognition, commonly known as image mining and machine learning, has emerged as a recent

technique for analyzing clinical images, aiding in the automatic detection and classi�cation of various

diseases through Computer-Aided Diagnosis (CAD). With the World Health Organization declaring

COVID-19 a pandemic on March 11, 2020, the urgent need for ef�cient screening and rapid clinical

intervention for infected individuals became paramount. While real-time reverse transcription

polymerase chain reaction (RT-PCR) remains the primary diagnostic method for COVID-19, its costliness

and time-consuming nature necessitate the exploration of alternative diagnostic approaches. Chest X-ray

(CXR) imaging provides a timely means of assessing suspected cases, yet the overlapping features of viral

pneumonia with other lung infections underscore the need for improved diagnostic methods. This study

aims to address this challenge by developing an advanced classi�er capable of swiftly categorizing

COVID-19 cases based on early X-ray �ndings as either positive or negative. Such a method holds promise

for expediting patient treatment and ensuring accurate disease diagnosis, vital for saving lives amidst the

ongoing pandemic. Observing a gap in existing literature, this study addresses the scarcity of research

utilizing KNN, SVM, DT, TB, NB, and ensemble learning techniques for COVID-19 detection. It endeavors

to construct a classi�er employing these methods to discern COVID-19 cases as positive or negative. The

underlying points are contributions of recommended technique:

Introducing a novel classi�er utilizing diverse machine learning techniques for COVID-19

classi�cation.

Leveraging X-ray imaging to detect COVID-19, focusing on the lungs as the primary site of infection.

Proposing a machine learning-based approach using clinical data to identify COVID-19 in suspected

cases.

Developing a computer-aided design technique to analyze records from COVID-19 patients or

suspects, employing machine learning for enhanced processing speed and accuracy.
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2. Related work

Arti�cial intelligence is revolutionizing the detection of medical conditions like breast cancer, brain

tumors, and COVID-19 using deep learning methods on CXR images. Yet, many studies rely on limited

COVID-19 datasets, making it hard to generalize results and ensure prototype ef�cacy on larger samples.

Related works in this �elds are reviewed as follows.

Instead of traditional convolutional neural networks (CNNs) for COVID-19 identi�cation, Afshar et al.

proposed the use of COVID-CAPS capsule network  [1]. Arman et al. introduced a Bayesian optimization

method, achieving a 94% accuracy in COVID-19 detection  [2]. Apostolopoulos recommended transfer

learning and CNNs for identifying COVID-19 from limited datasets [3]. Ranganath et al. suggested a pivot

distribution approach for COVID-19 identi�cation from chest X-ray (CXR) images [4]. Das et al. proposed

the velocity-enhanced whale optimization algorithm hybridized by arti�cial neural networks for medical

data classi�cation [5]. Han suggested a support vector machine (SVM) classi�cation approach for COVID-

19 identi�cation from X-ray data  [6]. Ko et al. proposed a technique employing random forest and local

wavelet-based CS-binary pattern for image classi�cation  [7]. Hamed et al. advocated using k-nearest

neighbor (KNN) variants to identify COVID-19 from incomplete heterogeneous data  [8]. Nayak et al.

introduced an automatic deep neural network for COVID-19 detection [9]. Khanna et al. recommended an

automatic method for timely COVID-19 identi�cation [10].

Kör et al. utilized transfer learning to develop a multi-class convolutional neural network model for

automatic pneumonia identi�cation and distinguishing between pneumonia with and without COVID-

19 [11]. Meanwhile, Mahin et al. proposed a deep learning technique for COVID-19 identi�cation from chest

X-ray (CXR) data  [12]. Singh et al. recommended a multi-objective approach for categorizing COVID-19

using computed tomography (CT) scan images  [13]. In a similar vein, Islam suggested a CNN-based

method to detect chest abnormalities indicative of COVID-19  [14]. Taunk et al. introduced COVID-Net, a

deep CNN capable of analyzing 14k CXR images to detect COVID-19 cases  [15]. Furthermore, Wang et al.

presented a specialized CNN technique utilizing CXR images for COVID-19 recognition in patients  [16].

Lastly, Zhang et al. outlined guiding concepts and medical interventions for COVID-19  [17]. Lascu MR

utilized transfer learning to classify COVID-19, pneumonia, and healthy lungs from CXR and CT images,

achieving reliable results. The study emphasizes the importance of accurate diagnosis and proposes a

transfer learning model to aid medical professionals [18]. Varma, Kalra, and Kirmani conduct a systematic
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review of prediction and classi�cation techniques for COVID-19, highlighting the urgent need for accurate

diagnosis amidst the global health crisis. They survey machine learning and deep learning methods,

identify challenges, and recommend the establishment of benchmark datasets to enhance effectiveness

in real-time clinical settings  [19]. Muhammad et al. introduced the COVID-19 Chest X-Ray Database,

proposing AI-based rapid and accurate detection of COVID-19 pneumonia from chest X-ray images,

achieving high classi�cation accuracy  [20]. Cohen et al. introduced the COVID-19 open image data

collection, comprising 123 frontal view X-rays sourced from medical websites and publications  [21][22].

Soares et al. introduced a large dataset of real patient CT scans for SARS-CoV-2 identi�cation, aiming to

aid research in AI methods for COVID-19 detection. The dataset contains 1252 positive and 1230 negative

scans, sourced from hospitals in Sao Paulo, Brazil [23]. Sareeta and Manas represented a study about chest

X-Ray image classi�cation for COVID-19 detection using various feature extraction techniques  [24].

Rahman TF investigated the impact of image enhancement on COVID-19 detection using chest X-rays. A

large dataset (COVQU) was compiled, including 18,479 images. Gamma correction proved most effective.

The proposed U-Net model achieved high accuracy (98.63%) for lung segmentation, enhancing COVID-19

detection reliability [25]. Kumar et al. proposed a COVID-19 classi�cation method using deep features and

correlation coef�cient. Their approach, tested on extensive datasets, outperformed previous methods,

highlighting the potential of early detection via chest X-ray images [26]. Murugesan and Muthurajkumar

proposed a deep learning approach for product recommendation in social networks, achieving a 92.22%

positive score out of 2033 reviews, surpassing traditional methods in accuracy and quality [27].

COVID-19 is not only analyzed by machine learning approaches. Researchers explore the use of uncertain

SEIAR system dynamics modeling for community health management, focusing on COVID-19. Their

study employs Ensemble Kalman Filter and Metropolis-Hastings algorithms, offering insights into

outbreak control scenarios and mortality rates [28].

Ershadi et al. introduce a hierarchical machine learning model for analyzing treatment plans of

Glioblastoma Multiforme patients, integrating clinical, biomedical, and image data to improve decision-

making ef�cacy. They employ Fuzzy C-mean clustering, Wrapper feature selection, and twelve classi�ers

to optimize outcomes  [29]. Rahimi Rise et al. advocate for stronger environmental considerations post-

COVID-19 to transition the global economy towards renewable energy and resilient public-health

systems, emphasizing the need for institutional reforms within the United Nations System [30]. Rise et al.

propose a hierarchical model combining expert knowledge, FCM clustering, and ANFIS classi�cation to
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detect severity levels of hospitalized symptomatic COVID-19 patients, achieving high accuracy using both

clinical and image data [31]. Rahimi Rise et al. analyze socioeconomic impacts of infectious diseases using

an uncertain SEIAR model with scenario-based analysis, emphasizing future GDP and social impact

predictions for policymaking  [32]. Ershadi and Sei� proposed a dynamic multi-classi�er method for

disease diagnosis, combining feature reduction techniques and clustering selection to enhance accuracy

and computation time ef�ciency  [33]. Other authors proposed a multi-objective optimization model for

pharmaceutical supply chain logistics in pandemic situations, aiming to minimize unsatis�ed requests

and transportation costs while considering various factors and employing a hybrid optimization

approach  [34]. Rahimi Rise et al. explored COVID-19 outbreak scenarios in Iran using system dynamics

modeling, emphasizing the transportation system's impact and proposing strategies for government

decision-making amid varying mortality rates and recovery scenarios [35]. Ershadi and Sei� represented

dynamic feature selection and clustering methods to enhance medical diagnosis. Their novel approach

combines feature selection, clustering, and deep learning to improve classi�cation performance

signi�cantly  [36]. They developed an ef�cient Bayesian network for differential diagnosis, integrating

expert knowledge and data-driven methods, achieving up to 87% accuracy, as well [37].

3. Proposed Methodology

This method utilizes machine learning to ef�ciently identify and categorize COVID-19 from X-rays,

streamlining the labor-intensive process of diagnosis. Employing a two-stage strategy, it extracts

features in the �rst stage and classi�es images in the second. Various classi�ers, including KNN, SVM,

decision tree (DT), Tree Bagger (TB), and ensemble learning, are evaluated post feature extraction.

Histogram of Oriented Gradients (HOG) is employed for this purpose. The subsequent sections detail the

techniques employed in this method to enhance COVID-19 detection from chest X-ray images.

3.1. Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is a popular method for extracting features from image data,

focusing on object structure and shape. HOG identi�es edge features by determining pixel edges and

their directions, calculating gradients and edge orientations within localized sections of the image. These

sections create histograms based on gradient orientations, producing distinct histograms for each

region. Each image block overlaps by 50% and is divided into cells, with cells potentially appearing in

multiple blocks due to overlap. For each pixel in each cell, x and y gradients (Gx and Gy) are computed.
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This process illustrates how gradients represent edges in two directions across an image (see Equation 1).

Additionally, Figure (2) illustrates standard HOG and viral HOG. Gradients' magnitudes and phases are

then determined accordingly.

where   is the magnitude, and θ is the angle.

Figure (2). HOG feature extraction of normal (left picture) and COVID-19 (right picture-Viral) CXR images

3.2. K-Nearest Neighbor Classi�er

The k-nearest neighbor (k-NN) supervised classi�cation technique is employed for sample

categorization. It operates by categorizing new data based on their features and labeled training data,

without the need to �t a model, making it memory-based. Utilizing Euclidean distance, it identi�es the k

training points nearest to a query point, u0. The new data point is assigned to a group based on the

majority of its neighbors. The nearest neighbor classi�er requires a dataset for accurate classi�cation,

with the training sample representing the existing dataset. Each training vector, utp, represents a point

in the N-dimensional space, where Nv denotes all training patterns. The input test vector, up, is compared

with the training data to determine its category, denoted by the class labels, i, and compared with the

example vectors, mik, to ascertain the exact category (see Equation 2).

θ = arctan /Gx Gy (1)

r

=mik up (2)
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In this context, mik signi�es the example vector, while the input test vector is represented as up. We

consider a collection of metric space points labeled 0 or 1. Given a query (S, T) and samples (S1, T1), (S2,

T2),... represented as (Sn, Tn), the k-nearest neighbor classi�er determines the label of the query based on

the class with the highest prevalence among the k nearest points to s in the labeled sample. We employ

an odd integer for k to avoid ties. Ties can occur either when multiple points at the same distance from

the query fail to provide distinct answers or when multiple classes occur with the same frequency among

the query's k-nearest neighbors. To prevent distance ties, we demonstrate universal consistency without

assuming density distributions. Various techniques, including random selection, are discussed in the

literature to resolve ties in the voting process.

3.3. Support Vector Machine Classi�er

The Support Vector Machine (SVM) operates by segmenting the search space to maximize distance to

data points. It excels in text data analysis, allowing �exible feature selection. Its linear method suits high-

dimensional text classi�cation. However, excessive parameters hinder performance, mitigated by

parameter reduction and focused feature selection. SVM, a prominent kernel algorithm, employs

hyperplane separation for classi�cation based on maximizing margins between classes and nearest

points.

3.4. Decision Tree Classi�er

Decision trees (DT) serve as a versatile non-parametric supervised learning method for classi�cation and

regression tasks. Each internal node in a DT evaluates a speci�c attribute, with branches representing

test outcomes and leaf nodes signifying examined features. The tree comprises decision nodes, chance

nodes, and end nodes, with leaf nodes containing the �nal outcome. The path from root to leaf forms

conjunctions in decision tree conditions, enabling the generation of decision rules. These rules can

elucidate causal or temporal relationships, aiding in association rule building. DT's transparency as a

white box model renders it easily interpretable, and it demonstrates ef�cacy even with limited training

data, making it a valuable tool for various analytical tasks.

Decision tree methods, renowned for their widespread use in supervised learning, predict model

accuracy. However, ensemble methods, such as bagging, boosting, and random forest, surpass individual

decision trees. These ensemble techniques combine multiple decision trees to enhance predictive

performance. Decision trees serve as graphical representations of complex decision scenarios, extracting
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knowledge from vast data. They ef�ciently classify new data and offer a concise and easily storable

format.

3.5. Naive Bayes (NB) Classi�er

The Naive Bayes classi�er, rooted in Bayesian statistics, assumes strong independence between features,

simplifying classi�cation. It models each class feature independently, aiding in fruit classi�cation, for

instance. Trained via supervised learning, it estimates parameters using maximum likelihood,

facilitating application with minimal training data. By assuming independence, only variable variances

need be determined, not the entire covariance matrix. The classi�er employs the maximal a posteriori

choice rule, selecting the hypothesis with the greatest likelihood. This process involves increasing

conditional probabilities of features given the class label for each potential label. Overall, Naive Bayes

classi�ers offer ef�cient classi�cation, particularly suitable for scenarios with limited training data (see

Equation 3).

where p(Cj) is the conditional probability label, and p (Ti, Cj) represents every label and feature. As a

result, it appears that the only requirement to construct the classi�er is to calculate every conditional

probability, p (Ti, Cj), for every label and feature before multiplying the results by the prior probability for

that label, p(Cj). The label for which the classi�er gets best product is returned by the classi�er.

3.6. Tree Bagger Classi�er

In the decision-making process of a decision tree, progression occurs from a root node to a leaf node,

with each step predicting the input variable. However, a single tree may over�t the model. To mitigate

this, bootstrap aggregation, a bagging-based technique, is employed. It generates multiple learners by

creating additional data points following the same uniform probability distribution. Typically, N learners

are averaged to determine the �nal learning error (see Equation 4). Components of the tree are drawn

using a bootstrap replica of the ensemble, growing independently. "Out of bag" observations refer to data

elements excluded from computation. This approach helps reduce over�tting and enhances the

robustness of the model.

Classify( , , … … … … , ) = argmax p(C = c) p ( = ∣ C = c)t1 t2 tn ∏
i=1

n

Ti ti (3)

e =
1

 N
∑
i=1

i=N

ei (4)
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where N is the learner, and e is the �nal error.

3.7. The proposed ensemble learning model

The proposed ensemble method combines predictions from these �ve classi�ers through majority voting

to derive the �nal prediction. The steps involved in the proposed ensemble learning algorithm are

outlined as follows:

Step 1: Load the Dataset

Step 2: Prepare the Dataset

Perform data preprocessing, including removing non-numeric columns, converting columns to a

numeric format, and handling missing values.

Step 3: De�ne the Ensemble Classi�er Function

Create a function, 'ensemble_classi�er,' which inputs the training data (Xtrain, ytrain) and test data

(Xtest).

Within this function, obtain predictions from �ve classi�ers

Combine these predictions using majority voting and return the ultimate ensemble prediction.

Step 4: De�ne Classi�er Functions

Establish separate functions for each classi�er

Each classi�er possesses its unique architecture and hyperparameters.

Compile and train each classi�er on the training data, returning predictions for the test data.

Step 5: Execute Ensemble Learning and Evaluation

Specify the number of train-test splits to perform (numsplits).

Initialize an empty list to collect evaluation results (results).

Iterate over a range of numsplits for repeated train-test splits.

Employ strati�ed sampling to divide the data into training and test sets.

Train the ensemble classi�er on the training data and predict on the test data.

Calculate diverse evaluation metrics (e.g., accuracy, precision, recall, etc.).

Append the evaluation results to the results list.

Step 6: Construct a Results DataFrame
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Create a DataFrame (resultsdf) to store the evaluation results, encompassing metrics, confusion

matrices, and timing details.

Step 7: Save the Results

This algorithm iterates through Steps 5 to 7 for each train-test split, yielding multiple sets of evaluation

metrics and confusion matrices. By leveraging predictions from various classi�cation models, this

ensemble method enhances the robustness and accuracy of classi�cations.

3.8. Used dataset

Data collection is paramount in machine learning research, especially in medical imaging. This study

requires a diverse set of chest X-ray (CXR) images encompassing pneumonia, COVID-19 positive and

negative cases, and normal cases. Unfortunately, standalone datasets representing each category

independently do not exist. Instead, samples are gathered from two sources: a dataset provided by Dr.

Joseph Paul, a postdoctoral scholar, and CXR datasets available on Kaggle [20]. Dr. Paul's dataset includes

CXR and CT scan samples not only of COVID-19 cases but also of other respiratory viruses such as ARDS,

SARS, and MERS [21][22]. For this research, COVID-19 image samples from Dr. Paul's dataset are utilized.

Additionally, Kaggle provides free access to relevant data for research purposes [23]. The collected images

undergo organization, preprocessing, and conversion into NumPy arrays to facilitate the training

process. Notably, the Kaggle dataset offers a variety of CXR images showcasing different chest

perspectives of patients af�icted with COVID-19, ARDS, SARS, MERS, and other disorders  [23]. Figure 3

presents an illustrative example featuring CXR images of both normal individuals and those affected by

viral respiratory conditions. By leveraging these datasets, researchers can access a rich pool of CXR

images crucial for training machine learning models. This comprehensive dataset not only aids in

pneumonia and COVID-19 diagnosis but also contributes to advancing the broader �eld of medical

imaging research.
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Figure (3). Sample image of normal (left picture) and viral (right picture) CXR

4. Results and Discussion

Prior to presenting the results, the evaluation metrics are outlined as follows.

4.1. Evaluation Criteria

The confusion matrix, a pivotal metric in assessing machine learning algorithms [24], juxtaposes system

outputs with reference data. Derived from it are accuracy, sensitivity, speci�city, precision, recall, F-

Measure, and G-Mean  [25]. True positive (TP), true negative (TN), false positive (FP), and false negative

(FN) are key statistical indices [25]. Figure 4 depicts a sample confusion matrix.

Figure (4). Confusion matrix for binary classi�cation
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A classi�er’s accuracy is measured as the ratio proportion of positive measures to all measures. It

determines the degree of accuracy [24] (see Equation 5).

The sensitivity of a classi�er is evaluated as a ratio proportion of true positive measures to all positive

measures (see Equation 6).

The speci�city of a classi�er is measured by the ratio of true negative measures to all negative

measures [24] (see Equation 7).

The way in which the percent of all positives were correctly classi�ed is by precision [26] (see Equation 8).

The words “recall” and “sensitivity” are interchangeable [27] (see Equation 9).

Compared to the classic accuracy metric, the F1 score gives a more precise illustration of the classi�er’s

performance [26] (see Equation 10).

G-Mean evaluates the rest of classi�cation performance through greater and lesser classes  [26]. Despite

the fact that negative situations are classi�ed properly, a low G-Mean speci�es poor performance in

categorizing the positive data [26] (see Equation 11).

4.2 . Analysis and Discussion

After preprocessing the data and employing classi�ers through 10-fold cross-validation, the average

results of 10 distinct test sets are shown in Table 1. We conducted these experiments using Python 3.11.5

and Anaconda3 2023.03 on a personal computer equipped with an Intel® Core™ i5-11400H CPU running

at 2.70GHz and 16.00 GB of RAM for all executions. Related results with 60% training data samples with

40% testing data samples are represented in Table (1) and Figure (5).

 Accuracy  = (TP + TN)/(TP + TN + FN + FP) (5)

 Sensitivity  = TP/(TP + FN) = TPR (6)

 Specificity  = TN/(FP + TN) = TNR (7)

 Precision  = TP/(TP + FP) (8)

 Recall =  Sensitivity  (9)

F −  Measure  = 2 ∗ (( Precision  ∗  Recall )/( Precision  +  Recall )) (10)

G −  Mean  = sqrt(TPR × TNR) (11)
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60% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.21 91.91 89.32 81.63 93.20 93.72

Sensitivity 94.62 96.27 93.42 79.72 97.66 98.14

Speci�city 78.14 75.05 73.27 88.84 76.09 89.33

Precision 94.36 93.73 93.11 96.53 94.01 97.02

Recall 94.64 96.27 93.42 79.74 97.65 98.15

F-Measure 94.50 94.96 93.27 87.30 95.82 96.30

G-mean 86.01 84.97 82.70 84.18 86.21 86.73

Table (1). Results with 60% training data samples with 40% testing data samples

Figure (5). Bar plot of different classi�er accuracies for 60% training data sample with 40% testing data

sample
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Related results with 70% training data samples with 30% testing data samples are represented in Table

(2) and Figure (6).

70% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.63 92.01 89.62 81.70 93.39 93.88

Sensitivity 94.91 96.37 93.70 79.90 97.71 98.18

Speci�city 78.98 75.25 73.81 88.72 76.71 89.22

Precision 94.58 93.79 93.24 96.46 94.21 97.00

Recall 94.92 96.36 93.68 79.88 97.68 98.19

F-Measure 94.72 95.03 93.45 87.43 95.92 96.40

G-mean 86.55 85.15 83.14 84.17 86.51 87.04

Table (2). Results with 70% training data sample with 30% testing data sample

Figure (6). Bar plot of different classi�er accuracies for 70% training data with 30% testing data
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Related results with 80% training data samples with 20% testing data samples are represented in Table

(3) and Figure (7).

80% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.43 91.92 89.22 81.87 93.53 94.07

Sensitivity 94.70 96.17 93.41 80.09 97.64 98.12

Speci�city 78.91 75.70 73.08 88.74 77.78 89.27

Precision 94.53 93.84 93.04 96.51 94.47 96.96

Recall 94.68 96.14 93.41 80.10 97.64 98.12

F-Measure 94.61 94.98 93.20 87.51 96.01 96.52

G-mean 86.46 85.30 82.59 84.30 87.16 87.64

Table (3). Results with 80% training data sample with 20% testing data sample

Figure (7). Bar plot of different classi�er accuracies for 80% training data sample with 20% testing data

sample.
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Related results with 90% training data samples with 10% testing data samples are represented in Table

(4) and Figure (8).

90% train KNN SVM DT NB TB Ensemble learning

Accuracy 91.66 91.96 89.54 81.97 93.96 94.43

Sensitivity 94.98 96.20 93.69 80.17 97.86 98.37

Speci�city 78.87 75.52 73.39 88.99 78.69 89.46

Precision 94.57 93.85 93.20 96.60 94.67 97.11

Recall 94.98 96.19 93.72 80.15 97.90 98.36

F-Measure 94.80 95.01 93.42 87.59 96.22 96.74

G-mean 86.55 85.19 82.90 84.43 87.73 88.20

Table (4). Results with 90% training data sample with 10% testing data sample
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Figure (8). Bar plot of different classi�er accuracies for 90% training data sample with 10% testing data

sample

It is shown in Tables (1-4) and Figures (5-8) that the proposed ensemble classi�er has better performance

among other classi�cation methods. Figure 9 represents a radar chart to understand it better. The

performances of the proposed ensemble learning classi�er cover other performances in this chart and it

is superior among other classi�ers.
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Figure (9). Radar chart of different metrics for various training/testing data samples

5. Conclusion and future works

This study delves into the realm of COVID-19 identi�cation through the analysis of chest X-ray (CXR)

images, employing various classi�cation approaches. Key methods including K-nearest neighbor (KNN),

Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), and Tree Bagger (TB) demonstrated

notable accuracies, all exceeding 90%. However, the standout performer proved to be ensemble learning,

showcasing superior performance compared to the individual classi�ers utilized. This suggests that the

ensemble learning classi�er, particularly when coupled with Histogram of Oriented Gradients (HOG)

features extracted from CXR images, holds promise as a robust tool for COVID-19 identi�cation.

Moving forward, the exploration of deep learning techniques, transfer-based learning, and augmentation

strategies presents avenues for further re�nement and enhancement of classi�cation accuracy. By
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delving deeper into these methodologies, researchers can potentially unlock new insights and improve

the ef�cacy of COVID-19 diagnosis.

Moreover, the scope of this study extends beyond COVID-19 detection alone. There exists the potential to

expand the capabilities of the existing model to not only ascertain the presence of COVID-19 but also to

identify other infectious diseases. This broader application could signi�cantly contribute to the medical

�eld's diagnostic capabilities, facilitating prompt and accurate identi�cation of various illnesses.
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