
28 April 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Active Learning with a Noisy Annotator

Netta Sha�r1, Guy Hacohen1, Daphna Weinshall1

1. School of Computer Science and Engineering, Hebrew University of Jerusalem, Israel

Active Learning (AL) aims to reduce annotation costs by strategically selecting the most informative

samples for labeling. However, most active learning methods struggle in the low-budget regime where

only a few labeled examples are available. This issue becomes even more pronounced when annotators

provide noisy labels. A common AL approach for the low- and mid-budget regimes focuses on

maximizing the coverage of the labeled set across the entire dataset. We propose a novel framework

called Noise-Aware Active Sampling (NAS) that extends existing greedy, coverage-based active learning

strategies to handle noisy annotations. NAS identi�es regions that remain uncovered due to the

selection of noisy representatives and enables resampling from these areas. We introduce a simple yet

effective noise �ltering approach suitable for the low-budget regime, which leverages the inner

mechanism of NAS and can be applied for noise �ltering before model training. On multiple computer

vision benchmarks, including CIFAR100 and ImageNet subsets, NAS signi�cantly improves

performance for standard active learning methods across different noise types and rates.

Corresponding author: Netta Sha�r, netta.sha�r@mail.huji.ac.il

1. Introduction

Deep learning typically relies on large amounts of annotated data. But while unlabeled data is often

abundant, the annotation process can be both time-consuming and expensive. This challenge is

particularly evident in �elds like medical imaging, where annotations demand expert knowledge and are

therefore costly. Active Learning (AL) offers a powerful approach to reducing annotation costs by

prioritizing the most informative samples for model training.

In pool-based active learning, the challenge is formulated as a "best-subset" problem: Given a large pool

 of unlabeled samples and an annotation budget , the objective is to identify a subset ,

which is optimal in the following sense: After annotators label , a model trained on obtains the

lowest generalization error compared to any other subset of the same size used for training . This

Qeios

U N B ≪ N ⊂ UQ∗

Q∗
M Q∗

Q B M

qeios.com doi.org/10.32388/1OPOX9 1

mailto:netta.shafir@mail.huji.ac.il
https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

problem is NP-hard, even if all labels are available. Nevertheless, various heuristic strategies have been

proposed that consistently outperform the baseline approach of random sampling.

Figure 1. Overall visualization of our framework for Noise Aware Query Selection (NAS). NAS

(illustrated with a dashed orange line) takes as input a query selection strategy and a noise-�ltering

algorithm . The framework alternates between selecting samples using , sending these samples to

the annotator, and �ltering the noisy samples with before selecting the next set of samples.

Another important topic in this work is Learning with Noisy Labels (LNL), which arises naturally due to

errors in human and AI-generated annotations[1]. Label noise becomes more likely as the annotator pool

expands, such as in crowd-sourcing.

In this work, we focus on sample selection in AL and ask whether it is possible to design query selection

strategies that account for noise when selecting samples for annotation. We propose a novel framework

that extends existing query selection methods, particularly those based on sample distances, enabling

them to intelligently account for label noise during sample selection.

Summary of Contributions

�. A query selection framework compatible with multiple state-of-the-art AL strategies, enhancing

their performance in the presence of label noise (see Fig. 1).

�. Introduction of a simple yet effective noise �ltering tool that performs well even with limited

samples and integrates with the query selection framework.

S

A b S

A

qeios.com doi.org/10.32388/1OPOX9 2

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

�. Addressing the challenge of instance-dependent noise.

2. Background and Related Work

2.1. Active Learning

In most approaches within the pool-based active learning framework, the total annotation budget is

allocated iteratively. In each iteration, a batch of samples is selected for annotation. Beginning with an

unlabeled set and a labeled set (which may or may not be initially empty), the process follows these

steps:

�. Query Selection - Select a query of size using a strategy .

�. Annotation - Send to the annotator to obtain labels, and update and .

�. Model Training - Train classi�er using the labeled set (or with for semi-supervised

learning).

Query selection strategies fall into two main categories: uncertainty-based and typicality-based, with

diversity as another key consideration. Uncertainty-based strategies select samples where the model is

least con�dent, based on its predictions for unlabeled data. This category includes methods like Margin[2],

Entropy[3], and BADGE[4].

Typicality-based strategies aim to identify a subset of "typical" samples in , under the rationale that a

model trained on such a subset would generalize well. This family includes methods like k-medoids[5],

Typiclust[6], ProbCover[7], and MaxHerding[8]. Typicality-based strategies rely on effective data

representations. Recent methods like SimCLR[9], MOCOv2[10], and DINO[11] have developed powerful self-

supervised representations, enabling typicality-based strategies to perform well in complex domains, like

natural images.

Previous works, such as[6][12], have shown that the annotation budget is a critical parameter in

determining the most suitable strategy. Uncertainty-based strategies are more effective when the

annotation budget is relatively high (hundreds of samples per class), whereas the low-budget regime (a few

examples per class) is better suited for typicality-based strategies. A query selection strategy applied in an

unsuitable budget regime may perform worse than random selection.

B

U L

Q ⊆ U B S

Q L = L ∪ Q U = U ∖ Q

M L {L, U}

U

qeios.com doi.org/10.32388/1OPOX9 3

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

2.2. Learning with Noisy Labels

In settings with mislabeled data, approaches can be categorized into four families: Robust Architecture,

Robust Regularization, Robust Loss Design, and Sample Selection (see review by Song et al.[13]). Some have

drawbacks, such as assuming a speci�c noise distribution. For instance, methods in the Robust Architecture

family[14][15][16][17] use a denoising layer to learn a noise transition matrix, later removed during inference.

However, this assumes a noisy channel model based on class confusion and overlooks instance-dependent

noise. Likewise, a few methods based on robust loss also assume such independence between label noise

and input features[18][19].

Sample Selection Methods

LNL methods in the Sample Selection family aim to distinguish between mislabeled (noisy) and correctly

labeled (clean) samples, allowing models to train primarily on clean data. Some methods exploit patterns

in deep neural network (DNN) training dynamics. For example, Arpit et al.[20]; Han et al.[21] show that

DNNs learn clean samples earlier than noisy ones, resulting in lower loss on clean samples during early

training, before over�tting occurs. One method that leverages this is Area-Under-the-Margin (AUM)[22],

which measures the margin between the assigned label’s logit and the highest other logit. The AUM score

is computed by summing these margins over early training epochs. With appropriate early stopping, noisy

samples tend to exhibit lower AUM scores. To establish a threshold for noise �ltering, the method assigns a

"fake" label (where is the number of classes) to a random subset of samples, treating them as an

additional noisy class. The threshold is then determined based on the AUM scores of this fake class, and

samples with AUM scores above the threshold are classi�ed as clean.

Semi-Supervised Methods

The most effective LNL approaches are Semi-Supervised Learning (SSL) methods, which fall within the

Sample Selection family. These methods identify clean and noisy samples and train an SSL model on all

data, treating noisy samples as unlabeled. SSL methods have achieved state-of-the-art performance on

standard LNL benchmarks. Examples include DivideMix[23], UNICON[24], ProMix[25], and PGDF[26].

However, in our experiments, we found that these methods performed poorly in the noisy low-budget

setting, where most samples are unlabeled, and the labeled set contains noise.

C + 1 C

qeios.com doi.org/10.32388/1OPOX9 4

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

2.3. Active Learning in the Presence of Label Noise

As Nuggehalli et al.[27] have already noted, the setting of label noise in active learning has rarely been

studied. Nevertheless, several papers address both topics of Active Learning and Label Noise. Gupta et al.

[17] examines the issue of noisy annotators in the active learning setting. Unlike us, they tackle this

challenge by adding a denoising layer to the neural network rather than through an adjusted query

selection strategy. Other works, such as[28], assume access to multiple noisy annotators and a clean

validation set, which simpli�es the task of identifying noisy labels. Similarly, Zhang and Chaudhuri[29];

Chen et al.[30] assume the availability of a perfect oracle that always provides correct labels in addition to

the noisy annotators. Our work is orthogonal to these approaches and can naturally integrate with

improved architectures as well as the presence of multiple annotators.

The study by Nuggehalli et al.[27] proposes a query selection method called DIRECT, which, like our

approach, is adapted to handle noisy scenarios. However, DIRECT is speci�cally designed for cases

involving noisy labels combined with extremely imbalanced data. Moreover, while DIRECT is better suited

for high-budget scenarios, our method is tailored for low-budget settings.

Another category of work, such as[31][32], uses the term Active Learning in the context of data cleaning,

where all data labels are available, and the goal is to identify suspicious samples for re-labeling by an

oracle. In a sense, this setting is the opposite of ours. While this line of research can be viewed as a subset

of the Learning with Noisy Labels (LNL) �eld incorporating active learning, our work is more appropriately

described as a branch of Active Learning (AL) that addresses label noise.

Low-Budget AL in the Presence of Label Noise

Some typicality-based active learning methods aim to maximize the coverage of the labeled set, where a

sample is considered to cover its neighbors in feature space. ProbCover[7] formalized this objective as a

greedy approximation of the Maximum Coverage problem, which is NP-hard. Typicality-based methods

tend to excel in the low-budget regime by avoiding excessive sampling from the same regions of the data.

However, label noise can be detrimental in this context. A noisy sample may be mistakenly treated as

representative of its neighborhood, undermining the effectiveness of coverage.

qeios.com doi.org/10.32388/1OPOX9 5

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

3. Proposed Method

As summarized above, methods that are suitable for the low-budget regime of active learning may be

detrimentally affected by label noise. Likewise, as DNN training requires substantial data in order to

generalize, DNN-based noise-�ltering methods are likely to fail in low-budget settings. Our method

addresses these two challenges.

3.1. Noise Filtering Algorithms for Low Budget

Naive Method for Noise Filtering

Assuming we have a good representation of our data, where the distances between embeddings re�ect the

semantic distances between samples, a mislabeled sample would behave as an outlier and thus be

detectable. Accordingly, we propose the following algorithm for noise �ltering: Train a k-fold cross-

validation linear model on the labeled data, and classify as noisy any sample for which fewer than half of

the models agree with its given label. We refer to this noise-�ltering method as CrossValidation.

DNN-based Noise Filtering

As noted earlier, DNN-based noise-�ltering algorithms often fail in the low-budget regime (as well as the

SOTA Semi-Supervised methods, like ProMix[25]). To adapt such algorithms to this setting, we propose the

following modi�cation: Instead of training a DNN directly on the images, we extract representations for

the images using a self-supervised pretrained model, and train a linear classi�er on these embeddings. As

a case study, we examine this adaptation in the context of the AUM method[22], that was mentioned before.

We introduce an adapted version of AUM for the low-budget setting, which we refer to as LowBudgetAUM.

Most importantly, we compute the AUM score using a linear classi�er on self-supervised representations

instead of training a DNN on the images directly. Additionally, we determine an earlier stopping point and

lower threshold, for the hyperparameters in the original paper are suboptimal in the low-budget regime

(see Appendix C).

The empirical results presented in Fig. 2 demonstrate that while the original AUM method performs poorly

in low-budget scenarios, LowBudgetAUM effectively predicts the noise rate while maintaining high recall

and precision (when noise �ltering is treated as a binary classi�cation task).

qeios.com doi.org/10.32388/1OPOX9 6

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 2. Performance of the AUM method in identifying mislabeled data selected by ProbCover in

the low-budget regime on CIFAR100 with symmetric noise. Each column represents a different

expected number of clean samples per class (), with the budget given by . Rows

show noise precision, recall, and predicted noise ratio. The orange line represents the original AUM,

while the blue line represents LowBudgetAUM. Unlike AUM, which predicts most samples as noisy,

LowBudgetAUM estimates noise rates more accurately—even with as few as two clean samples per

class—while maintaining high precision and recall. Each point shows the mean and standard error

across 10 repetitions.

3.2. NAS: Noise-Aware Strategy for Query Selection

Most state-of-the-art (SOTA) typicality-based query selection methods are greedy algorithms: in each

iteration, samples are scored by their contribution to some objective function, and the sample with the

E[SPC]
E[SPC]×C

1−%noise

qeios.com doi.org/10.32388/1OPOX9 7

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

highest score is added to the labeled set. Our goal is to design a query selection strategy that greedily

maximizes the same objective function while accounting for label noise. We propose the following

framework: given a greedy, typicality-based query selection strategy , a noise-�ltering algorithm for

low-budget settings (e.g., LowBudgetAUM as discussed above), and an annotation budget , the

following cycle is executed:

�. Apply to the current labeled set to obtain a partition into a clean subset and a noisy subset

.

�. Select a set of size from the current unlabeled set using the strategy , considering only

 as the labeled set and ignoring .

�. Add to and remove it from .

The cycle continues until the annotation budget is exhausted. We refer to this method as Noise-aware

Active Sampling (NAS). If the strategy seeks to cover areas in the data, this meta-strategy needs to

identify areas that remain uncovered after sampled from them, in the case the representative sampled

turned out to be noisy. Psuedo-code for this method is provided below in Alg. 1.

S

A B

A L Lclean

Lnoisy

Q b ≪ B U S

Lclean Lnoisy

Q L U

B

S

S S

qeios.com doi.org/10.32388/1OPOX9 8

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Algorithm 1. NAS: Noise-Aware Active Sampling

The Choice of

Determining the hyperparameter (the size of at each iteration) involves a tradeoff: As , our

framework becomes more precise in correcting , but the computational complexity increases since more

calls to are needed. Conversely, as , the runtime decreases, but the framework behaves more

similarly to . In all our experiments, we set , where is the number of classes in the dataset. In the

special case of using an ideal noise-�ltering algorithm (one that makes no mistakes), we set1 . The

complexity of the algorithm is dominated by the run-time of and , and is given by .

ProbCover as a Working Example

ProbCover[7] is a SOTA strategy for active learning in the low-budget regime. Like other typicality-based

strategies, it aims to maximize the coverage of . A sample is considered to cover all samples in

, where is a ball around with radius , de�ned with respect to some metric .

Both and metric are hyperparameters of ProbCover. Initially, ProbCover constructs a directed graph ,

b

b Q b → 1

S

A b → B

S b = C C

b = 1

S A + ⋅TS
B

b
TA

L x

(x)B(d,δ) (x)B(d,δ) x δ > 0 d(⋅, ⋅)

δ d G

qeios.com doi.org/10.32388/1OPOX9 9

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

where each vertex represents a sample, and there is an edge between two vertices if and only if

. At each iteration, ProbCover adds to the sample with the highest out-degree in ,

and then removes all incoming edges to the samples in . This step is crucial for preventing

excessive sampling from the same area, thereby maintaining high coverage of . The coverage of , in this

context, is the union of all the balls for samples in , i.e.,

.

Given ProbCover as the selection strategy , our framework functions as follows: After every query

selections and obtaining a partition , we remove all edges in as well as the

outgoing edges of the noisy samples. The latter step is essential to prevent re-selecting the noisy samples

themselves. This approach ensures that the density of an area — and consequently the query selection

score — remains high until we con�rm that a clean sample has been selected from it. In Appendix A, we

present the pseudo-code for the case where NAS employs ProbCover as , which we refer to as Noise-Aware

ProbCover (NPC).

Updating ProbCover’s radius

 is a crucial hyperparameter of ProbCover, and Bae et al.[8] have demonstrated its high sensitivity to this

parameter. The authors of ProbCover proposed an automatic algorithm for determining without requiring

a validation set (as the existence of a validation set is often unrealistic in low-budget scenarios). However,

this approach does not guarantee optimal results.

In our experiments, we observed an additional issue related to the radius : during the selection process,

the maximal degree in the graph diminishes, until the graph eventually becomes empty. When this occurs,

we update using the following policy: (i) Construct a series of graphs , each corresponding to a

different value. (ii) Remove from these graphs the samples already selected by ProbCover and their

associated edges in balls. (iii) Choose the corresponding to the graph with the highest maximal

degree.

The rationale behind this policy is as follows: The maximal degree, as a function of , is concave within the

range , where represents the value of previously used by ProbCover. As , the graph’s

maximal degree approaches zero, even before removing samples. Similarly, as , the graph

becomes empty by de�nition. Fig. 3 illustrates this behavior. The value of that maximizes the graph’s

maximal degree, while considering the already sampled points, yields the most informative distribution

for subsequent query selections.

(x,)x′

∈ (x)x′ B(d,δ) Q x ∈ U G

(x)B(d,δ)

L L

(x)B(d,δ) L

coverage(L) ≜ (L) ≜ (x)B(d,δ) ⋃x∈LB(d,δ)

S b

(,)Lclean Lnoisy ()B(d,δ) Lclean

S

δ

δ

δ

δ

δ Gδ

δ

B(d,δ) δ

δ

[0,]δinit δinit δ δ → 0

δ → δinit

δ

qeios.com doi.org/10.32388/1OPOX9 10

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 3. The maximal degree in graphs of CIFAR100, after removing 3200

samples picked by ProbCover with , as a function of . On this range,

this function is generally concave, regardlessly to the number of samples

ProbCover picked.

Adapting NPC to Instance-Dependent Noise

The above adaptation is well-suited for scenarios where the label noise is conditionally independent of the

sample’s features, such as the symmetric and asymmetric label noise cases described in[33]. However, in

many real-world scenarios, this independence assumption does not hold. When the annotator is a human

or even an AI model, some samples may be inherently "harder" to label than others, leading to a higher

probability of these samples being mislabeled. Furthermore, such "harder" samples tend to cluster in the

feature space of a Self-Supervised Learning (SSL) model, creating "noise clusters"—regions where noisy

samples are concentrated. An example of this phenomenon is provided in Appendix B.

To address this scenario, we adapt NPC as follows: ProbCover can be viewed as initializing a weighted graph

where all edges have an initial weight of . When a sample is selected, the algorithm reduces the weights of

edges in the ball around that sample to . The out-degree of a sample is then computed as the sum of

the weights of its outgoing edges. In our adaptation for instance-dependent noise, after obtaining

predictions from the noise-�ltering algorithm, we reweigh the edges. Speci�cally, for samples in

, we set the weights of their incoming edges to , where represents the

Gδ

δ = 0.22 δ

1

B(d,δ) 0

()B(d,δ) Lnoisy 1 − q̂ =q̂
| |Lnoisy

|L|

qeios.com doi.org/10.32388/1OPOX9 11

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

estimated noise rate. These modi�ed weights re�ect the motivation to sample from noisy regions as a

decreasing function of the estimated noise rate. This reweighing step thus balances the trade-off between

achieving suf�cient coverage of the data and avoiding excessive sampling from noisy regions. We refer to

this version of the algorithm as Weighted NPC.

Using Noise Dropout

Fig. 2 demonstrates that LowBudgetAUM performs well in the low-budget regime. Nevertheless, its

performance is in�uenced by the distribution of samples in the labeled set. In some cases of high noise

rates combined with speci�c distributions of the labeled data, we observed that LowBudgetAUM could

predict noise rates signi�cantly higher than the actual noise rates.

To address these pathological cases, we utilized the following solution: we de�ne

, where is the predicted noise rate. We then randomly select of the

samples that LowBudgetAUM predicts to be noisy and treat them as if they were clean samples in the next

iteration2. This addition to NAS was shown to resolve these pathological cases effectively. In Appendix F,

we demonstrate that noise dropout does not harm performance, even when applied in scenarios with low

predicted noise rates.

4. Empirical Evaluation

We evaluated two training frameworks:

�. A fully supervised framework, in which we trained a ResNet-18 on the labeled samples.

�. A linear model trained using the labeled samples, on features extracted from a self-supervised model,

pretrained on the unlabeled dataset.

�. A linear model trained using the labeled samples, on features extracted from a self-supervised model,

pretrained on the unlabeled dataset.

Both frameworks were evaluated with the symmetric noise scenario. For the other scenarios —

asymmetric noise, real-world noise, and most of the ablation study — only framework 2 was evaluated, for

it easier to train and usually outperforms framework 1 in the low-budget regime. The implementation

details are given in the Appendix C. In both frameworks and across all active learning (AL) strategies, noisy

samples were �ltered prior to the supervised training step using either LowBudgetAUM or CrossValidation,

depending on the noise-�lter that NAS used. The model was then trained exclusively on the clean samples,

a standard approach for learning with label noise (see 2.2). This preprocessing step improved the

η = max(min(, 1 −), 0.1)q̂ q̂ q̂ η%

qeios.com doi.org/10.32388/1OPOX9 12

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

performance of all query selection methods. Nevertheless, as demonstrated in the ablation study, this

�ltering process is not the sole factor contributing to the advantage of using NAS.

4.1. Methodology

Synthetic Noise

We used two benchmark datasets: (i) CIFAR100[34], and (ii) ImageNet-50[35]. ImageNet-50 is a subset of

ImageNet[36], containing 50 classes, 64K train images, and 2,500 test images. Different levels of symmetric

and asymmetric label noise were explored. Symmetric (or uniform) noise was introduced by randomly

selecting a subset of samples from the dataset and uniformly replacing their labels with other labels at

random. For the asymmetric (or label-dependent) noise scenario, prior work[37][19][13] modeled the noise as

a transition matrix , where represents the probability of a sample having a noisy

label given that its true label is . For a speci�ed noise ratio, determines both the proportion of noisy

samples in each class and the assignment of incorrect labels. To simulate a challenging transition matrix,

we trained a ResNet-18 on the full dataset for 10 epochs, generated a confusion matrix based on the

network’s predictions on the test set, and normalized each row of the confusion matrix to produce the

transition matrix .

Real-World Noisy Datasets

We tested our method on the real-world noisy dataset of CIFAR100N[38], which contains the images of

CIFAR100 with human-annotated labels and includes 40.2% noise, and on the dataset

Clothing1M[39] which contains clothing images with noisy labels collected from online shopping websites.

On these dataset, we compared ProbCover to NPC — our method NAS when using ProbCover as — and to

Weighted NPC.

Self-Supervised Representations

For pretrained features, we used SimCLR[9] for CIFAR100 and CIFAR100N and DINOv2[11] for ImageNet-50.

These embeddings used us as feature spaces for the coverage-based AL strategy and the low-budget

noise �lter algorithm , as well as feature spaces in which we trained the linear classi�er in framework 2.

In Appendix H, we examine additional feature spaces, demonstrating the robustness of our framework to

different representations.

T = P (= j ∣ y = i)Tij y~

y~ y T

T

S

S

A

qeios.com doi.org/10.32388/1OPOX9 13

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

4.2. Results

Figure 4. Framework 1, results on CIFAR100 and ImageNet-50 with varying symmetric noise

levels. The y-axis shows the mean accuracy difference from random query selection. A

ResNet-18 model is trained in a fully supervised manner.

qeios.com doi.org/10.32388/1OPOX9 14

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 5. Framework 2, see caption of Fig. 4. Here we evaluate a linear model trained on self-

supervised pretrained features.

Figures 4 and 5 show the results for the symmetric noise scenario under training frameworks 1 and 2,

respectively. The y-axis in all the plots presents the difference between the mean accuracy achieved by

each query selection method and the mean accuracy obtained by training a similar model using random

query selection, along with the Standard Error (STE) for 5 repetitions (all experiments in this paper

repeated 5 times). The x-axis counts the annotation budget, in units of expected clean samples per class (

), where the budget in each point equals . Fig. 6 shows the results for asymmetric noise,

and Fig. 7 presents the results for CIFAR100N. Results for Clothing1M can be found in Appendix E. To

E[SPC]
E[SPC]×C

1−%noise

qeios.com doi.org/10.32388/1OPOX9 15

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

demonstrate robustness to the noise-�ltering algorithm , in �gures 4 and 5 under the symmetric noise

scenario, we vary between subplots. In Framework 1, CrossValidation is employed when training with

CIFAR100, while LowBudgetAUM is employed when training with ImageNet-50. In Framework 2, the

selection of the noise-�ltering method is reversed. In Appendix G, we introduce additional noise-�ltering

algorithms tailored to the low-budget regime and show that NPC outperforms ProbCover regardless of the

noise-�ltering algorithm used.

Figure 6. Results given different levels of asymmetric noise.

Figure 7. Results on CIFAR100N, where noise �ltering is done with LowBudgetAUM in (a) and

CrossValidation in (b). Note that generally the Weighted NPC outperforms the naive ProbCover, and also

the regular NPC, with a small margin.

A

A

qeios.com doi.org/10.32388/1OPOX9 16

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Comparison to Other AL Methods

As mentioned in the Introduction, Nuggehalli et al.[27] propose a query selection method called DIRECT,

designed to handle noisy scenarios. However, its focus on imbalanced data and high-budget settings

makes it less directly comparable to our NAS. Nonetheless, we provide a comparison with DIRECT in

Appendix I.

Different Greedy AL Strategies

NAS enhances any greedy, coverage-oriented AL strategy , with the key comparison being between and

its NAS-adjusted version. Our evaluations primarily used ProbCover as for its simplicity and

effectiveness. Here, we assess NAS with other strategies, speci�cally Coreset[40] and MaxHerding[8], which

are also greedy and structure-based. Tested on CIFAR100 with 50% symmetric noise, our framework

consistently improved performance, demonstrating its generality (Fig. 8). Additional MaxHerding results

appear in Appendix D. Figure 8(b) examines initially using MaxHerding and switching to MaxHerding + NAS

after an initial budget has been reached. This approach makes sense because LowBudgetAUM may not

perform optimally when the budget is extremely low. Thus, one might consider incorporating NAS only

after a few iterations of query selection.

S S

S

qeios.com doi.org/10.32388/1OPOX9 17

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 8. Results of enhancing two additional AL strategies with NAS, on CIFAR100 with 50%

symmetric noise. (a)-(c) Compare MaxHering with Maxherding + NAS when (a) use training

framework 1, (b) uses framework 2 and (c) use framework 2 with ideal noise �lter. (d) compares Coreset

with Coreset + NAS using framework 2. In (a)-(c) a noise �ltering was applied before training, and in (d)

the training was conducted using all labeled samples without �ltering out noisy ones. The dark orange

line in (b) is MaxHerding until budget equals 4 , followed by MaxHerding + NAS.

4.3. Ablation Study

Contribution of the Noise Filter

To isolate the dependence of the improved performance of NAS on the quality of the noise �ltering

method, we replaced the �ltering module with an ideal Noise Filter capable of perfectly detecting noisy

samples. This ideal �lter was used both as an input to NAS and to remove noisy labels prior to model

training across all strategies. The results in Fig. 9 demonstrate that NAS continues to enhance the

performance of ProbCover, con�rming that the observed improvement is not an artifact of the

CrossValidation or LowBudgetAUM algorithms.

E[SPC]

qeios.com doi.org/10.32388/1OPOX9 18

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 9. Results when using an ideal noise �lter. (a-c) CIFAR100 with 20%, 50% and 80% symmetric

noise; (d) ImageNet-50 with 50% symmetric noise, when using framework 2 for training.

Fixing the Number of Samples

As previously mentioned, training involved cleaning the noisy samples beforehand. However, this

approach can lead to small variations in the exact number of training samples between methods, even

when the labeled sets have equal noise rates (e.g., in the symmetric noise setting) and the same noise-

�ltering algorithm is used. To isolate the dependence of the improved performance of NAS on this

component, we �xed an equal number of training samples across all AL strategies. This was accomplished

in one of two ways: (i) All labeled samples were used for training. (ii) LowBudgetAUM was applied before

training and the top most con�dent samples based on the AUM score were selected. Here, was

determined by the LowBudgetAUM prediction of the noise level after applying the NAS strategy. The

absolute test accuracies were lower in this settings, especially when training using all the samples. Not

p% p

qeios.com doi.org/10.32388/1OPOX9 19

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

surprisingly, since NAS allowed a more accurate selection of fraction , the gap between ProbCover and NPC

narrowed. Still, NPC improved performance over ProbCover with �xed in most cases, see Fig. 10.

Figure 10. Framework 2, results when �xing an equal number of samples, on CIFAR100 with 50%

symmetric noise. (a) Training on all samples. (b) Training on the most con�dent samples w.r.t the

AUM score; was determined using the noise estimation of the LowBudgetAUM when using NPC.

The contribution of Updating

As shown in Fig. 11, the update policy described above signi�cantly improved performance in the fully

supervised setting (Framework 1), while its impact in the linear model setting (Framework 2) was mostly

negligible, with a slight negative effect observed for the largest budget. This component of NPC is not

directly related to the noisy label scenario but rather addresses a limitation in the ProbCover algorithm,

which serves as our test-bed AL method for evaluating NAS. Selecting an appropriate value and

dynamically updating it during the execution of ProbCover remains an open question for future work.

p

p

p%

p

δ

δ

δ

qeios.com doi.org/10.32388/1OPOX9 20

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 11. Accuracy improvement results for CIFAR100 with 50% symmetric noise are presented, where (a)

corresponds to the fully supervised model (Framework 1) and (b) represents a linear model trained on

pretrained self-supervised features (Framework 2).

5. Summary and Discussion

We investigated the problem of active learning in the presence of label noise and proposed a framework

that extends query selection strategies, particularly greedy coverage-oriented approaches, by

incorporating noise-awareness through a low-budget noise-�ltering algorithm. Our framework identi�es

regions in the data that remain uncovered due to noisy representatives being selected by the underlying

strategy, and resamples from these regions.

Two key assumptions suggest that noisy samples should not be sent back to the annotator: (i) the pool of

unlabeled data contains enough similar samples to serve as alternatives, and (ii) the same annotator is

likely to repeat a labeling error on a sample they previously mislabeled. In terms of the exploration-

exploitation tradeoff, this approach prioritizes exploration of new samples over exploitation of existing

data.

However, in scenarios involving multiple annotators[41], or that we have a strong prior about the

probability of the annotator to change her mind[42][43], the second assumption becomes less compelling,

and resampling previously mislabeled samples could prove bene�cial . This opens up new directions for

future research, particularly in settings where annotator diversity can be utilized to mitigate label noise

effectively.

qeios.com doi.org/10.32388/1OPOX9 21

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Appendix A. Pseudo Code for NPC (ProbCover + NAS)

In this paper, we propose the NAS algorithm that derives a strategy for query selection, though most of

our results present NAS using ProbCover as . Algorithm 2 presents the pseudo-code for this ProbCover +

NAS combination, which we refer to as Noise-Aware ProbCover (NPC).

Algorithm 2. NPC: Noise-Aware ProbCover

S

S

qeios.com doi.org/10.32388/1OPOX9 22

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Appendix B. Noise Clusters in CIFAR100N

In Section 3.2, we describe the phenomenon of noise clusters in datasets with instance-dependent noise.

To investigate this phenomenon, we conducted the following experiment: Using SimCLR representations

of CIFAR100, we imported the labels from CIFAR100N[38], which contain human annotations for CIFAR100

with a label noise rate of 40.2%. We assigned pseudo-label to correctly labeled samples and pseudo-label

 to noisy samples in CIFAR100N. We then trained a 20-NN classi�er on the SimCLR features and the

pseudo-labels. The classi�er achieved a training accuracy of , signi�cantly higher than the

expected accuracy of if the noise were uniformly distributed across samples.

To visualize the noise clusters in CIFAR100N, we present a t-SNE visualization in Figure 12 (based on the

SimCLR features of CIFAR100), where noisy samples are colored red, and clean samples are colored black.

For comparison, we include a similar visualization for CIFAR100 with a symmetric noise rate of 40.2%. The

stark difference between the two plots highlights the presence of areas in CIFAR100N where noisy samples

are concentrated, forming distinct noise clusters.

Figure 12. A t-SNE visualization of noisy and clean samples in (a) CIFAR100N and (b) CIFAR100 with a

comparable symmetric noise rate. Noisy samples are shown in red, while clean samples are shown in black.

In the context of active learning, the presence of noise clusters creates a tension between two con�icting

goals: (i) achieving suf�cient coverage of the data and (ii) The risk of "getting bogged down in the noise

mud" by repeatedly sampling from noisy areas while seeking clean samples, thus wasting a signi�cant

portion of the annotation budget. To address this challenge, in cases where there is a strong dependence

1

0

≈ 0.65

≈ 0.5

qeios.com doi.org/10.32388/1OPOX9 23

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

between a sample’s features and its probability of being mislabeled, we propose Weighted NPC, as described

in Section 3.2.

Appendix C. Implementation Details

Active Learning methods

Our experimental setup is based on the codebase of[44], after adjusting it to the noise scenario. The

implementation of the Coreset[40] was taken from that codebase. The implementation of ProbCover

algorithm was sourced from the of�cial repository https://github.com/avihu111/TypiClust. As for

MaxHerding[8], we used an implementation that was sent to us by the paper’s authors.

For the hyperparameter in ProbCover, we used the values speci�ed in the original paper.

Noise-Filtering methods

For CrossValidation, we used three folds and trained a multi-class logistic regression model for each fold

pair. As for LowBudgetAUM, in the original AUM paper, the early stopping point is �xed at 150 epochs, and

the threshold is set at the percentile AUM score of the fake class. However, in the low-budget regime,

these hyperparameters are suboptimal: over�tting occurs earlier, requiring an earlier stopping point, and

the percentile threshold is often a single sample, which might achieve a high AUM score by chance.

Therefore, for LowBudgetAUM, we set the early stopping to 40 epochs, and determined the threshold above

which samples are considered clean to be the percentile of the fake-class AUM score.

In addition, the samples from the fake-class are randomly sampled from the unlabeled dataset, in contrast

to the original AUM method that set aside some of the labeled dataset for this purpose, and consequently

the original AUM must be executed multiple times for all samples in the dataset will receive predictions.

Supervised Learning Training (Framework 1)

For CIFAR100 and all noise levels, we utilized a ResNet-18 architecture trained for 200 epochs. Our

optimization strategy involved using an SGD optimizer with a Nesterov momentum of 0.9, weight decay

set to 0.0003, and cosine learning rate scheduling starting at a base rate of 0.025. Training was performed

with a batch size of 100 examples, and horizontal �ips were applied for data augmentation.

For ImageNet-50, the only changes were that the training batch size was 50, and the base learning rate was

0.01.

δ

99th

99th

80th

qeios.com doi.org/10.32388/1OPOX9 24

https://github.com/avihu111/TypiClust
https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

As for the linear model in Framework 2, the hyperparameters were the same, except for the number of

training epochs, which was set to 500.

Appendix D. Additional Results for MaxHerding

MaxHerding[8] is a state-of-the-art (SOTA) algorithm for active learning in the low-budget regime. The

paper introduces a generalized de�nition of coverage that depends on a kernel function, with certain

choices of this function recovering the ProbCover algorithm. Like ProbCover, MaxHerding also has a

hyperparameter (the lengthscale of the kernel function), but the authors show that MaxHerding with a

Gaussian kernel is signi�cantly less sensitive to than ProbCover is sensitive to 3. Since MaxHerding is

both greedy and coverage-based, it can also serve as the query selection strategy in the NAS framework.

Here, we present additional results for MaxHerding on CIFAR100 under different levels of symmetric noise,

comparing it with MaxHerding + NAS. Figures 14 and 15 show the results using training frameworks 2

and 1, respectively.

Figure 14(b) explores the strategy of initially using MaxHerding and later switching to MaxHerding + NAS

after an initial budget has been reached. This approach makes sense because LowBudgetAUM may not

perform optimally when the budget is extremely low. Thus, one might consider incorporating NAS only

after a few iterations of query selection.

Fig. 13 show results when using an ideal noise �lter, both for query selection in NAS and for noise �ltering

before training. Fig 14 shows results when the noise �ltering algorithm is LowBudgetAUM.

Figure 13. Results of MaxHerding compared to MaxHerding+ NAS when using Ideal noise �lter . The training is

done by framework 2.

σ

σ δ

S

qeios.com doi.org/10.32388/1OPOX9 25

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 14. Results of MaxHerding compared to MaxHerding+ NAS when using training framework 2.

Figure 15. Results of MaxHerding compared to MaxHerding + NAS when using training framework 1.

Appendix E. Clothing1M dataset

Clothing1M[39] is a real-world large-scale dataset designed for studying learning with noisy labels. It

consists of approximately 1 million clothing images collected from online shopping websites, annotated

with noisy labels derived from surrounding text. The dataset contains 14 classes and is known to have

about 38% estimated label noise. In addition to the noisy set, Clothing1M provides 10k test samples with

manually veri�ed labels.

In this experiment, the following modi�cations were made:

�. Since the LowBudgetAUM algorithm did not predict the noise ratio accurately in preliminary

experiments on Clothing1M, we injected the known noise level (38%) as a prior. Concretely, we

directly selected the 38% of samples with the lowest AUM scores as noisy, instead of relying solely on

qeios.com doi.org/10.32388/1OPOX9 26

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

the estimated threshold from LowBudgetAUM. This adjustment improved the stability of the noise

�ltering step.

�. We found that training on the entire set of labeled samples, including the noisy ones, yielded better

performance. Therefore, we trained the model on all labeled samples selected by the active learning

procedure without discarding the samples predicted to be noisy.

�. For the NPC-based methods, samples were selected using the regular ProbCover method until the

budget reached 4 , and afterward the selection switched to the NPC variant. This approach

makes sense because LowBudgetAUM may not perform optimally when the budget is extremely low,

and it’s also held in Figure 8b of the main paper.

For feature extraction, We used DINOv2 pretrained on the LVD-142M dataset. The results obtained under

this setup are shown in Fig. 16.

Figure 16. Results on Clothing1M dataset, under the setting described in E, when using

training framework 2.

Appendix F. Applying Noise Dropout When the Predicted Noise Is

Low

We suggested incorporating the noise dropout practice into NAS in cases where the predicted noise is

particularly high. Nevertheless, we observed that when the predicted noise ratios are low, this practice

does not affect the results.

E[SPC]

qeios.com doi.org/10.32388/1OPOX9 27

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

In Fig. 17, the performance of NAS is compared to the performance of NAS with noise dropout added, across

different levels of symmetric noise. It is evident that while noise dropout resolves the failure of NAS when

utilizing LowBudgetAUM in the high noise scenario, it has no effect on performance in the low noise

scenario.

The numbers above and below the orange and brown lines indicate the predicted noise ratios of

LowBudgetAUM prior to training. Note that noise dropout is not applied during training but is only used

when utilizing LowBudgetAUM during NAS query selection.

Examining the predicted noise rates in the 80% symmetric noise scenario, it becomes clear from the plot

that while LowBudgetAUM predicts nearly all samples to be noisy without noise dropout (orange line),

applying noise dropout during query selection (brown line) signi�cantly improves noise prediction before

the training. However, the use of noise dropout can be determined automatically during runtime, based on

extremely high predicted noise rates. Additionally, this method can be applied when using any noise-

�ltering algorithms, such as CrossValidation.

Figure 17. Results of accuracy differece from random strategy, when applying noise dropout as part of NAS given

different levels of symmetric noise. The numbers above and under the results of NAS versions presented the

predicted noise ratio by LowBudgetAUM, when utilizing for noise-�ltering before training.

Appendix G. Comparison Between Different Noise Filtering Methods

In the main body of the paper, we presented results using two noise �ltering algorithms: a naive algorithm,

CrossValidation, and a DNN-based algorithm, LowBudgetAUM, adapted to the low-budget regime. Here, we

compare the performance of various noise �ltering algorithms, including CrossValidation, LowBudgetAUM,

and four additional methods—two naive and two DNN-based methods adapted for this setting.

qeios.com doi.org/10.32388/1OPOX9 28

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

�. Train a kNN classi�er on the labeled set and classify as noisy any sample whose majority label among

its neighbors differs from its own label. For , we use , where is the number of classes. This

simple method shares similarities with the TopoFilter[45] method. We refer to this noise-�ltering

method as kNN.

�. Compute a centroid for each class and classify as noisy any sample whose closest centroid differs

from the centroid of its given class. To reduce the in�uence of noisy samples on the centroids, we use

the RANSAC algorithm: For each class, we compute multiple centroids using random subsets of the

class and select the one whose subset produces the covariance matrix with the smallest determinant.

We refer to this method as Centroids.

�. An adapted version of the DisagreeNet[46] method, which uses the consensus between different

ensemble checkpoints to classify samples as noisy. We refer to this method as LowBudgetDisagreeNet.

�. An adapted version of the FINE[47] method, which classi�es samples as noisy based on their low

alignment with the �rst eigenvector of the Gram matrix for their given class. The adaptation involves

using SSL representations instead of DNN-based features. We refer to this method as LowBudgetFINE.

All these methods use a self-supervised learning (SSL) representation of the dataset. Similar to

LowBudgetAUM, LowBudgetDisagreeNet trains an ensemble of linear models on SSL representations instead

of training a DNN on the raw images. Likewise, LowBudgetFINE utilizes SSL representations rather than

DNN-generated features4.

Figure 18 compares the performance of NPC variants with different noise �ltering algorithms at varying

levels of symmetric noise on CIFAR100. Each noise �ltering algorithm is used both during query selection

(within the inner mechanism of NPC) and for noise �ltering before training. Additionally, each NPC variant

is compared with ProbCover, which uses the same noise �ltering algorithm only prior to training. The

different colors in the plots represent the various noise �ltering algorithms. Solid lines correspond to NPC

versions, while dashed lines represent ProbCover versions.

The results demonstrate that NPC outperforms ProbCover for most noise �ltering algorithms and budget

levels. Furthermore, LowBudgetAUM achieves the best results beyond a certain budget, with results for

80% noise further improvable using noise dropout, as shown in Figures 4 and 17(c).

k
|L|

C
C

qeios.com doi.org/10.32388/1OPOX9 29

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 18. (a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

Figure 18. Comparison of different noise �ltering methods for CIFAR100 at varying levels of symmetric noise. We

used training framework 2 with SimCLR features. The results of NPC in this �gure are without the updating.

Appendix H. Using Different Feature Spaces

As discussed in this paper, the functionality of NAS relies on the existence of a strong Self-Supervised

Learning (SSL) representation of the data. This representation is essential for both the query selection

strategy , which NAS extends, and the noise �ltering algorithm that it utilizes.

Figure 19 demonstrates that NPC (the NAS framework when using ProbCover as) outperforms ProbCover

on the CIFAR100 dataset with 50% symmetric noise across different feature spaces learned by common

SSL algorithms.

δ

S A

S

qeios.com doi.org/10.32388/1OPOX9 30

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 19. Comparison between NPC and ProbCover for CIFAR100 with 50% symmetric noise, given different

representation spaces. We used training framework 2. The results of NPC in this �gure are without the

 updating.

Appendix I. Comparison with the DIRECT Method

As described in the introduction, the DIRECT[27] method is a query selection strategy that takes into

account the presence of noisy labels. Nevertheless, a major part of the DIRECT method is intended to

address scenarios of extremely imbalanced data (their results present datasets with an imbalance ratio

 of , where is the ratio between the number of samples in the smallest class and the number of

samples in the largest class).

The issue of imbalanced data is indeed very important but is orthogonal to our research, as NAS can

integrate strategies like MaxHerding[8], which are designed to handle such scenarios. Additionally, the

scoring criterion used by DIRECT is more suitable for the high-budget scenario, whereas the strategies NAS

is most suited to are more tailored to the low-budget regime.

Therefore, we did not consider DIRECT as a fair baseline for NAS and did not include its performance in our

main results. In Figure 20, the results of DIRECT in the low-budget regime are compared to ProbCover and

NPC. The dataset used is CIFAR100, under varying levels of symmetric noise when training in

framework 2. We utilized the implementation of DIRECT from the LabelBench framework[48] and

integrated it into our codebase with minimal necessary changes.

δ

γ ≈ 0.1 γ

qeios.com doi.org/10.32388/1OPOX9 31

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

Figure 20. Comparison with the DIRECT method.

Acknowledgments

This work was supported by AFOSR award FA8655-24-1-7006 and the Gatsby Charitable Foundation.

Footnotes

1 In this discussion, we have not accounted for the annotator, to whom we also send more separate queries

as becomes smaller. For now, we assume that this is not a limiting factor in our setting.

2 The noise dropout is only suggested as part of NAS, i.e., during the utilization of LowBudgetAUM for query

selection, and not when using LowBudgetAUM to �lter noisy samples before training.

3 As in the MaxHerding paper, our experiments involving MaxHerding also used a Gaussian kernel with

.

4 In detail, the original FINE method states: ”after warmup training, at every epoch, FINE selects the clean

data with the eigenvectors generated from the gram matrices of data predicted to be clean in the previous

round, and then the neural networks are trained with them.”

References

�. ^Song Y, Liu Y, Lin Z, Zhou J, Li D, Zhou T, Leung M (2024). "Learning from ai-generated annotations for medi

cal image segmentation." IEEE Transactions on Consumer Electronics. pp. 1–1.

�. ^Scheffer T, Decomain C, Wrobel S (2001). "Active hidden markov models for information extraction." In Inter

national symposium on intelligent data analysis, pp. 309–318.

b

σ = 1

qeios.com doi.org/10.32388/1OPOX9 32

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

�. ^Wang D, Shang Y (2014). "A new active labeling method for deep learning." In 2014 International joint confe

rence on neural networks (IJCNN), pp. 112–119.

�. ^Ash JT, Zhang C, Krishnamurthy A, Langford J, Agarwal A (2019). "Deep batch active learning by diverse, un

certain gradient lower bounds." arXiv preprint arXiv:1906.03671.

�. ^Ghadiri M, Aghaee A, Baghshah MS (2015). "Active distance-based clustering using k-medoids." arXiv prepri

nt arXiv:1512.03953.

�. a, bHacohen G, Dekel A, Weinshall D (2022). "Active learning on a budget: opposite strategies suit high and lo

w budgets." In International Conference on Machine Learning, pp. 8175–8195.

�. a, b, cYehuda O, Dekel A, Hacohen G, Weinshall D (2022). "Active learning through a covering lens." Advances i

n Neural Information Processing Systems 35:22354–22367.

�. a, b, c, d, e, fBae W, Noh J, Sutherland DJ (2025). "Generalized coverage for more robust low-budget active learn

ing." In European Conference on Computer Vision, pp. 318–334.

�. a, bChen T, Kornblith S, Norouzi M, Hinton G (2020a). "A simple framework for contrastive learning of visual r

epresentations." In International conference on machine learning, pp. 1597–1607.

��. ^Chen X, Fan H, Girshick R, He K (2020b). "Improved baselines with momentum contrastive learning." arXiv

preprint arXiv:2003.04297.

��. a, bCaron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P, Joulin A (2021). "Emerging properties in self-

supervised vision transformers." In Proceedings of the IEEE/CVF international conference on computer visio

n, pp. 9650–9660.

��. ^Hacohen G, Weinshall D (2023). "How to select which active learning strategy is best suited for your speci�c

problem and budget." In Proceedings of the 37th International Conference on Neural Information Processing

Systems, pp. 13395–13407.

��. a, bSong H, Kim M, Park D, Shin Y, Lee J (2022). "Learning from noisy labels with deep neural networks: a sur

vey." IEEE Transactions on Neural Networks and Learning Systems.

��. ^Sukhbaatar S, Bruna J, Paluri M, Bourdev L, Fergus R (2014). "Training convolutional networks with noisy la

bels." arXiv preprint arXiv:1406.2080.

��. ^Chen X, Gupta A (2015). "Webly supervised learning of convolutional networks." In Proceedings of the IEEE i

nternational conference on computer vision, pp. 1431–1439.

��. ^Goldberger J, Ben-Reuven E (2017). "Training deep neural-networks using a noise adaptation layer." In Inter

national conference on learning representations.

qeios.com doi.org/10.32388/1OPOX9 33

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

��. a, bGupta G, Sahu AK, Lin W (2019). "Noisy batch active learning with deterministic annealing." arXiv preprint

arXiv:1909.12473.

��. ^Bekker AJ, Goldberger J (2016). "Training deep neural-networks based on unreliable labels." In 2016 IEEE Int

ernational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2682–2686.

��. a, bYao Y, Liu T, Han B, Gong M, Deng J, Niu G, Sugiyama M (2020). "Dual t: reducing estimation error for trans

ition matrix in label-noise learning." Advances in neural information processing systems 33:7260–7271.

��. ^Arpit D, Jastrzębski S, Ballas N, Krueger D, Bengio E, Kanwal MS, Maharaj T, Fischer A, Courville A, Bengio Y,

et al. (2017). "A closer look at memorization in deep networks." In International conference on machine learn

ing, pp. 233–242.

��. ^Han B, Yao Q, Yu X, Niu G, Xu M, Hu W, Tsang I, Sugiyama M (2018). "Co-teaching: robust training of deep ne

ural networks with extremely noisy labels." Advances in neural information processing systems 31.

��. a, bPleiss G, Zhang T, Elenberg E, Weinberger KQ (2020). "Identifying mislabeled data using the area under th

e margin ranking." Advances in Neural Information Processing Systems 33, pp. 17044–17056.

��. ^Li J, Socher R, Hoi SC (2020). "Dividemix: learning with noisy labels as semi-supervised learning." arXiv prep

rint arXiv:2002.07394.

��. ^Karim N, Rizve MN, Rahnavard N, Mian A, Shah M (2022). "Unicon: combating label noise through uniform

selection and contrastive learning." In Proceedings of the IEEE/CVF conference on computer vision and patte

rn recognition, pp. 9676–9686.

��. a, bXiao R, Dong Y, Wang H, Feng L, Wu R, Chen G, Zhao J (2022). "Promix: combating label noise via maximiz

ing clean sample utility." arXiv preprint arXiv:2207.10276.

��. ^Chen W, Zhu C, Li M (2023). "Sample prior guided robust model learning to suppress noisy labels." In Joint E

uropean Conference on Machine Learning and Knowledge Discovery in Databases, pp. 3–19.

��. a, b, c, dNuggehalli S, Zhang J, Jain L, Nowak R (2023). "DIRECT: deep active learning under imbalance and lab

el noise." arXiv preprint arXiv:2312.09196.

��. ^Chakraborty S (2020). "Asking the right questions to the right users: active learning with imperfect oracles."

In Proceedings of the AAAI conference on arti�cial intelligence, 34, pp. 3365–3372.

��. ^Zhang C, Chaudhuri K (2015). "Active learning from weak and strong labelers." Advances in Neural Informa

tion Processing Systems 28.

��. ^Chen Y, Sankararaman K, Lazaric A, Pirotta M, Karamshuk D, Wang Q, Mandyam K, Wang S, Fang H (2022).

"Improved adaptive algorithm for scalable active learning with weak labeler." arXiv preprint arXiv:2211.0223

3.

qeios.com doi.org/10.32388/1OPOX9 34

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

��. ^Lin C, Mausam, Weld D (2016). "Re-active learning: active learning with relabeling." In Proceedings of the A

AAI Conference on Arti�cial Intelligence, 30.

��. ^Younesian T, Zhao Z, Ghiassi A, Birke R, Chen LY (2021). "Qactor: active learning on noisy labels." In Asian C

onference on Machine Learning, pp. 548–563.

��. ^Tanaka D, Ikami D, Yamasaki T, Aizawa K (2018). "Joint optimization framework for learning with noisy lab

els." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5552–5560.

��. ^Krizhevsky A, Hinton G, et al. (2009). "Learning multiple layers of features from tiny images."

��. ^Van Gansbeke W, Vandenhende S, Georgoulis S, Proesmans M, Van Gool L (2020). "Scan: learning to classify

images without labels." In European conference on computer vision, pp. 268–285.

��. ^Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009). "Imagenet: a large-scale hierarchical image database."

In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.

��. ^Patrini G, Rozza A, Krishna Menon A, Nock R, Qu L (2017). "Making deep neural networks robust to label noi

se: a loss correction approach." In Proceedings of the IEEE conference on computer vision and pattern recogni

tion, pp. 1944–1952.

��. a, bWei J, Zhu Z, Cheng H, Liu T, Niu G, Liu Y (2021). "Learning with noisy labels revisited: a study using real-w

orld human annotations." arXiv preprint arXiv:2110.12088.

��. a, bXiao T, Xia T, Yang Y, Huang C, Wang X (2015). "Learning from massive noisy labeled data for image classi

�cation." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2691–2699.

��. a, bSener O, Savarese S (2017). "Active learning for convolutional neural networks: a core-set approach." arXiv

preprint arXiv:1708.00489.

��. ^Kałuża D, Janusz A, Ślęzak D (2023). "Robust assignment of labels for active learning with sparse and noisy

annotations." arXiv preprint arXiv:2307.14380.

��. ^Du J, Ling CX (2010). "Active learning with human-like noisy oracle." In 2010 IEEE international conference

on data mining, pp. 797–802.

��. ^Schubert M, Riedlinger T, Kahl K, Rottmann M (2023). "Deep active learning with noisy oracle in object dete

ction." arXiv preprint arXiv:2310.00372.

��. ^Munjal P, Hayat N, Hayat M, Sourati J, Khan S (2020). "Towards robust and reproducible active learning usi

ng neural networks." ArXiv abs/2002.09564.

��. ^Wu P, Zheng S, Goswami M, Metaxas D, Chen C (2020). "A topological �lter for learning with label noise." Ad

vances in neural information processing systems 33:21382–21393.

qeios.com doi.org/10.32388/1OPOX9 35

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

��. ^Shwartz D, Stern U, Weinshall D (2022). "The dynamic of consensus in deep networks and the identi�cation

of noisy labels." arXiv preprint arXiv:2210.00583.

��. ^Kim T, Ko J, Choi J, Yun S, et al. (2021). "Fine samples for learning with noisy labels." Advances in Neural Info

rmation Processing Systems 34, pp. 24137–24149.

��. ^Zhang J, Chen Y, Canal G, Das AM, Bhatt G, Mussmann S, Zhu Y, Bilmes J, Du SS, Jamieson K, et al. (2024). "L

abelBench: a comprehensive framework for benchmarking adaptive label-ef�cient learning." Journal of Data

-centric Machine Learning Research.

Declarations

Funding: This work was supported by AFOSR award FA8655-24-1-7006 and the Gatsby Charitable

Foundation.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/1OPOX9 36

https://www.qeios.com/
https://doi.org/10.32388/1OPOX9

