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1. Independent researcher

When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this
leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of
angular distances from the response to the question versus the context on the unit hypersphere s,
Our central finding is semantic laziness: hallucinated responses remain angularly proximate to
questions rather than departing toward retrieved contexts. On HaluEval (n = 5,000), we observe large
effect sizes (Cohen’s d ranging from 0.92 to 1.28) across five embedding models with mean cross-
model correlation » = 0.85. Crucially, we derive from the spherical triangle inequality that SGI’s
discriminative power should increase with question-context angular separation 6(g, c) —a theoretical
prediction confirmed empirically: effect size rises monotonically from d = 0.61 (low (g, c)) to

d = 1.27 (high 6(q, ¢) ), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI
excels on long responses (d = 2.05) and short questions (d = 1.22), while remaining robust across
context lengths. Calibration analysis yields ECE = (.10, indicating SGI scores can serve as probability
estimates, not merely rankings. A critical negative result on TruthfulQA (AUC = 0.478) establishes
that angular geometry measures topical engagement rather than factual accuracy. SGI provides
computationally efficient, theoretically grounded infrastructure for identifying responses that

warrant verification in production RAG deployments.
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1. Introduction

LLMs generate text through autoregressive next-token prediction, optimizing for distributional statistics
of training corporaﬂlm. This objective produces fluent continuations without maintaining explicit
correspondence to external reality, a characteristic that manifests as hallucination24], Retrieval-
Augmented Generation (RAG) architectures condition generation on retrieved documents[216] yet
hallucination persists: models fabricate claims absent from context or fail to substantively engage with

retrieved information[Z181091

We investigate a geometric question: when a RAG system fails to ground its response in the provided
context, what signature does this leave in embedding space? Modern sentence transformers are trained
via contrastive objectives that explicitly optimize angular relationships on the unit hyperspherel0l[111,

This makes S¢! the natural geometric setting for analyzing response behavior.

Our central contribution is the identification, theoretical characterization, and empirical validation of a
geometric pattern we term semantic laziness. When models hallucinate in RAG systems, their responses
remain angularly proximate to the question rather than departing toward the context’s semantic
territory. We formalize this through the Semantic Grounding Index (SGI)—the ratio of angular distances
6(r,q)/0(r,c)—and demonstrate that it provides a robust, theoretically grounded signal for detecting

context disengagement.

Contributions

1. We introduce SGI as an intrinsic quantity on S ! and derive geometric bounds from the spherical
triangle inequality that predict when discrimination will be most effective.

2. We confirm this theoretical prediction empirically: effect size increases monotonically with question-
context angular separation (d = 0.61 — 0.90 — 1.27 across 6(q, ¢) terciles).

3. We establish cross-model robustness at scale (n = 5,000): five architecturally distinct embedding
models correlate at » = 0.85 with ranking agreement p = 0.87.

4. We characterize operational boundaries: SGI excels on long responses and short questions,
maintains calibration (ECE = 0.10), and fails predictably on TruthfulQA where angular geometry

cannot discriminate factual accuracy.
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2. Theoretical Foundations

2.1. The Embedding Hypersphere

Contrastive learning objectives for sentence embeddings decompose into alignment and uniformity
terms on the unit hyperspherellll. The InfoNCE loss encourages matched pairs to cluster while spreading

unrelated points apart, inducing structure on S%! where L2-normalized embeddings reside.

Let ¢: S — R? denote a sentence embedding model and qg(s) = ¢(s)/|l¢(s)|| the L2-normalized
representation. The normalized embeddings lie on:

5 = {2 € R': o] = 1} (1)

This is a compact Riemannian manifold with constant positive curvaturell2l, The intrinsic distance is the

geodesic (great-circle arc length):
6(a,b) = arccos ($(a) ' $(3)) (2)
This angular distance 6 € [0, 7] satisfies all metric axioms on S?~!, including the triangle inequality[2l

We note that while cosine similarity is ubiquitous in applications, it does not satisfy the triangle

inequality; angular distance is the proper metric for geometric analysis24l.

2.2. The Semantic Grounding Index

For a RAG instance (g, ¢,r) with question ¢, retrieved context ¢, and generated response r, we define the

Semantic Grounding Index as:

SGI(r;q,c) = ZEr’q) Dl Sl (3)

T, c) arccos ((;AS(T)TJ’(C))

Equation 3 measures the ratio of angular departures, how far the response has traveled from the question
relative to its distance from the context. When SGI > 1, the response is angularly farther from the
question than from the context—it has “departed” toward the context’s semantic territory. When

SGI < 1, the response remains closer to the question than to the context.
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Valid response:

Figure 1. Angular geometry of SGI on the unit hypersphere. Question q and context ¢ define anchor points;

their angular separation (g, c) determines the geometric “room” for response differentiation. A valid

response (blue) departs from q toward c, yielding SGI > 1. A hallucination (red) remains angularly proximate

to the question—the semantic laziness signature—yielding SGI < 1.

2.3. Geometric Bounds and Theoretical Predictions

The spherical triangle inequality constrains admissible SGI values. For any g, ¢, 7 € SERRE
|0(Q7 c) - 9(7’, C)‘ < 9(7’, q) < 0(q, C) + 9(7’, c)
Dividing by 6(r, c) yields bounds on SGI:

6(g,c) N

0(r,c)

1

'H(q,c) —1/ <SGI<

0(r,c)

These bounds form the basis of our theoretical contribution:

SGI’s discriminative power should increase with 6(g,c). When question and context are
semantically similar (small (6(g, c))), the triangle inequality constrains SGI values near 1
regardless of response quality. When 6(g,c) is large, the constraint relaxes, permitting

greater separation between grounded and ungrounded responses.
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This is the mathematical consequence of the triangle inequality. If SGI captures something real about
semantic grounding, we should observe effect sizes that increase monotonically with (g, ¢). We test this

prediction explicitly in Section 5.3.

2.4. The Semantic Laziness Hypothesis

We hypothesize that hallucinated responses in RAG systems exhibit semantic laziness: rather than
introducing vocabulary and concepts from the retrieved context, they produce completions that remain

in the question’s semantic neighborhood.

Let Ryaiqa and Ryanue denote distributions over valid and hallucinated responses. The semantic laziness

hypothesis predicts:
IE7"‘7€valid [SGI(T? q, C)] > IE7"”'Rhalluc [SGI(T7 q, C)] (6)
This hypothesis connects to how autoregressive models handle uncertainty. When a model lacks

confidence in how to use retrieved context, it may default to “safe” completions that echo the question’s

framing rather than venturing into the context’s semantic territory.

3. Related Work

3.1. Geometric Methods for Hallucination Detection

Li et al,!22) compute semantic volume from batches of responses to quantify uncertainty. Catak et al.,

0361 apply convex hull analysis to embedding spaces. Gao et al,[7) found that hallucinated responses
exhibit smaller deviations from prompts in hidden state space—an observation consistent with our
semantic laziness characterization. Our work differs by focusing on the triangular geometry of question-

context-response relationships, deriving theoretical bounds, and establishing cross-model robustness.

3.2. Semantic Entropy and Consistency Methods

Farquhar et al.,ml introduced semantic entropy for hallucination detection via multiple sampling. Kuhn

et al.,ml developed linguistic invariances for uncertainty estimation. These methods require multiple

generation passes; SGI operates on single responses.
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3.3. NLI-Based Detection

Summac‘@l, HALT—RAG@]-, and LettuceDetect!2Z] frame detection as entailment classification. These
methods detect logical contradiction; SGI detects semantic disengagement. The signals are

complementary.

34. Spherical Geometry in Representation Learning

The unit hypersphere is well-studied in directional statistics!2/(23], Wang and Isola,! ] analyzed
contrastive learning through alignment and uniformity on S* *. Meng et al,,[24] developed spherical text

embeddings. You,¥! provided comprehensive analysis of when cosine similarity succeeds and fails,

noting that angular distance—unlike cosine similarity—satisfies the triangle inequality.
4. Experimental Design

4.1. Implementation Details

Text Preprocessing

We use spaCy[22l with the en core web sm pipeline for sentence boundary detection and basic
tokenization when segmenting long contexts. This lightweight model (12MB) provides sufficient
accuracy for our preprocessing needs without introducing computational overhead. Alternative pipelines
include en_core web md (40MB) and en_core web lg (560MB), which incorporate word vectors but offer
no advantage for boundary detection. For purely rule-based segmentation, spaCy’s sentencizer
component or NLTK’s punkt tokenizer are viable alternatives; we observed no significant difference in

downstream SGI scores across these choices, suggesting robustness to preprocessing variations.

Embedding Computation

We compute sentence embeddings using the sentence-transformers library (v2.2.2)29, For each RAG
instance (g, c,7), we encode the question, context, and response as separate strings without additional
prompting or instruction prefixes. Embeddings are L2-normalized to unit length before angular distance

computation.
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SGI Computation

Algorithm 41 specifies the complete procedure. Angular distances are computed via
6(a,b) = arccos (clip(a'b,—1,1)), where clipping prevents numerical errors from domain violations.

We add e = 10® to the denominator to avoid division by zero when (r, c) ~ 0.

Algorithm 1 Semantic Grounding Index Computation

Require: Question ¢, Context c, Response r, Embedding model ¢
Ensure: SGI score
1: q ¢ ¢(q)/[¢(g)|l {L2 normalize}

¢+ ¢(c)/| ()l

r < ¢(r)/ll¢(r)ll
6,4 < arccos(clip(r
6, < arccos(clip(r
return 0,.,/(0,. + €)

q, _1’ 1))
c,—1,1))

A
o

Sampling and Splits

From HaluEval QA (10,000 samples), we randomly sample n = 5,000 instances stratified by
hallucination label. For TruthfulQA, we use all 817 questions, constructing paired samples by treating
each question’s correct and incorrect answers as separate instances (n = 800 after filtering incomplete

entries). No train/test split is applied; we report descriptive statistics on the full samples.

Statistical Analysis

Effect sizes use Cohen’s d with pooled standard deviation. Group comparisons use Welch’s ¢-test (unequal
variances). Cross-model correlations use Pearson r for linear agreement and Spearman p for rank

agreement. Calibration analysis uses expected calibration error (ECE) with 10 equal-frequency bins.

4.2. Datasets

HaluEval QA

26] provides question-knowledge-answer triples with hallucination labels. The knowledge field serves as
retrieved context. We use n = 5,000 samples for comprehensive analysis, enabling stratified evaluation

with sufficient statistical power.
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Truthful QA

27) contains 817 questions targeting common misconceptions, with truthful and false answers. We

construct n = 800 paired samples to test whether angular geometry can discriminate factual accuracy.

4.3. Embedding Models

A critical question is whether SGI measures a property of the text or an artifact of a particular embedding

model. We evaluate five sentence transformers with distinct architectures and training regimes:

e all-mpnet-base-v2 (768d): General-purpose, contrastive training[l—o]

¢ all-MinilM-L6-v2 (384d): Knowledge-distilled from larger models28)
+ bge-base-en-v1.5 (768d): BAAD's contrastive model!2%]
e e5-base-v2 (768d): Microsoft’s weakly-supervised embeddings@]‘

e gte-base (768d): Alibaba’s multi-stage contrastive model3l

If SGI captures something fundamental about text, scores should correlate strongly across these models
despite their different training objectives and architectures.

44. Evaluation Metrics

We compute Cohen’s d effect sizes and Welch'’s t-test for group comparisons. Classification performance
uses ROC-AUC. For cross-model validation, we compute Pearson correlation (linear agreement),

Spearman p (ranking agreement), and expected calibration error (ECE) for probability estimation quality.
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5. Results

5.1. Cross-Model Validation on HaluEval

Model SGI (Valid) SGI (Halluc) Cohen’s d AUC p-value
mpnet 1142 0921 +0.92 0.776 < 0.01
minilm 1.203 0.856 +1.28 0.824 < 0.01
bge 1.231 0948 +1.27 0.823 < 0.01
e5 1138 0912 +1.03 0.794 < 0.01
gte 1.224 0927 +1.13 0.811 < 0.01
Mean 1.188 0913 +1.13 0.806 —

Table 1. Effect sizes and classification performance across five embedding models on HaluEval (n = 5, 000).
All models show significant separation with large effect sizes, demonstrating that SGI captures a property of

the text rather than an embedding artifact.

Table 1 presents the primary result. Across all five embedding models, valid responses have higher SGI
(mean 1.19) than hallucinations (mean 091), confirming the semantic laziness hypothesis. Effect sizes
range from d = 0.92 to d = 1.28, all conventionally “large.” With n = 5,000, all p-values are below 10—,

and AUC values range from 0.78 to 0.82.

The consistency across models trained by different organizations (Sentence-Transformers, BAAI,
Microsoft, Alibaba), with different architectures (384d vs. 768d), and different training objectives
(contrastive, instruction-tuned, distilled) provides strong evidence that SGI measures a property of the

text itself.
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5.2. Cross-Model Correlation Analysis

Cross-Model SGI Correlation
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(a) Pearson correlation matrix for SGI scores across embedding (b) Cross-model distributions.

models. Mean off-diagonal correlation: » = 0.85.

Figure 2. Cross-model agreement for SGI scores on HaluEval (n = 5, 000). High correlations across
architecturally distinct embedding models indicate that SGI captures an intrinsic property of text rather than

an artifact of any particular embedding space.

Figure 2 shows the cross-model correlation structure. The Pearson correlation matrix reveals mean
pairwise correlation r = 0.85, with minimum r = 0.80 (mpnet—bge) and maximum r = 0.95 (bge—gte).
Spearman rank correlations are comparably high (mean p = 0.87), indicating that models agree not just

on absolute SGI values but on the ranking of which samples are most and least grounded.

The bge—gte correlation of r = 0.95 is particularly striking: these models were trained by different
organizations (BAAI vs. Alibaba) with different training procedures, yet they “see” nearly identical

semantic laziness behaviors. This does not happen unless SGI measures something intrinsic to the text.
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5.3. Confirming the Theoretical Prediction: Stratified Analysis

0(g, c) Tercile n 0(g, c) Range SGI (Valid) SGI (Halluc) Cohen’s d AUC
Low 1,667 [0.42,0.89] 108 094 +0.61 0721
Medium 1,666 [0.89,1.12] 119 091 +0.90 0.768
High 1,667 [1.12,1.57] 131 0.88 +1.27 0.832

Table 2. Stratified analysis by question-context angular separation 6(g, c). Effect size increases monotonically

with (g, ¢), confirming the theoretical prediction derived from the triangle inequality.

Effect Size Increases with
Question-Context Separation

Classification Performance by
Question-Context Separation

1.0 1
1.4 4
1.27
0.9 1
121 0.832
1.0 1
0.8

Cohen's d
ROC-AUC

Medium
0(q,c) Tercile

Low High Medium

0(q,c) Tercile

Figure 3. Effect size and AUC increase monotonically with question-context angular separation 6(g, c),
confirming the theoretical prediction. When 6(g, c) is small, the triangle inequality constrains SGI near 1

regardless of response quality. When 6(g, c) is large, there is geometric “room” for discrimination.

Table 2 and Figure 3 present the critical result: effect size increases monotonically with (g, c). This
confirms the theoretical prediction derived from the spherical triangle inequality. The bounds in

Equation 5 predict that when 6(q, ¢) is small, SGI values are geometrically constrained near ~ 1. When
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0(g,c) is large, the constraint relaxes, allowing greater separation between valid and hallucinated

respomnses.

The monotonic increase transforms SGI from “useful heuristic” to “principled method with predictable
behavior” Practitioners can assess expected discriminative power by measuring 6(g,c) before

deployment.

54. Subgroup Robustness: Where Does SGI Excel and Fail?

Feature Level n Cohen’s d AUC
Short 1,667 +1.22 0.812

Question Length Medium 1,666 +0.99 0.781
Long 1,667 4+0.65 0.714

Short 1,667 +0.91 0.763

Context Length Medium 1,666 +0.92 0.768
Long 1,667 +1.00 0.782

Short 1,667 +0.95 0.771

Response Length Medium 1,666 +1.18 0.804
Long 1,667 +2.05 0.893

Table 3. Subgroup analysis by text characteristics. SGI effect size varies substantially with response length
(strongest on long responses) and question length (strongest on short questions), while remaining stable

across context lengths.
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Effect Size by Question Length Effect Size by Context Length Effect Size by Response Length

12 2.5
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Cohen's d
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Medium Medium
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Figure 4. Subgroup robustness analysis. Response length shows the strongest effect: long responses yield
d = 2.05, nearly double the overall average. Short questions (d = 1.22) outperform long questions (d = 0.65).

Context length has minimal impact.

Table 3 and Figure 4 allows some interesting conclusions:

1. Response length is critical. Effect size increases from d = 0.95 (short) to d = 2.05 (long). Longer
responses provide more “signal” for embedding estimation—the response vector is a more stable
representation of semantic content. This is geometrically intuitive: a single sentence may be
ambiguously positioned, while a paragraph establishes a clearer location on % .

2. Short questions work better. Effect size decreases from d = 1.22 (short) to d = 0.65 (long). Short
questions create tighter semantic anchors. Long questions may span multiple semantic regions,
making “distance from question” a noisier measurement. A question like “What is the capital of
France?” has a precise embedding; a multi-clause question has a centroid that may not represent
any single semantic intent.

3. Context length is stable. Effect sizes remain consistent (d ~ 0.91-1.00) across context lengths. SGI
is robust to context verbosity, likely because the context embedding averages over content in a way

that remains geometrically stable.

These findings shows that SGI is most reliable for long-form responses to focused questions—

particularly the setting where manual verification is most costly.
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5.5. Calibration Analysis
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Figure 5. Calibration analysis. Left: reliability diagram showing SGI probabilities vs. actual hallucination rates

(ECE = 0.10). Right: hallucination rate by SGI decile, illustrating a monotonic relationship.

Figure 5 shows the calibration analysis. Converting SGI to probability estimates via min-max
normalization yields ECE = 0.10, at the boundary of “well-calibrated.” The reliability diagram shows

SGI-derived probabilities track actual hallucination rates with moderate fidelity.

Figure 5 right plot illustrates the monotonic relationship. Samples in the lowest SGI decile have ~100%
hallucination rate, while those in the highest decile have ~65% rate. The gradient is consistent, proving

that SGI can be used as a probability estimate for risk stratification, not only a binary classifier.

5.6. Negative Result: Truthful QA

Table 4 shows the results of our experiments using TruthfulQA dataset. On this dataset, where both
truthful and false responses concern the same topic, AUC score is 0.478—worse than random guessing.

False responses are slightly but non-significant closer to questions (d = —0.14).

This confirms our theoretical prediction that angular distance on S*~! measures topical similarity, not
factual accuracy. Two statements about the same topic occupy nearby regions regardless of truth value.
TruthfulQA targets misconceptions—plausible false beliefs that often use simpler vocabulary than
technical truths. The misconception “the Sun’s distance causes seasons” is topically identical to “axial tilt
causes seasons”; they cannot be distinguished geometrically. This negative result is methodologically

important because establishes clear boundaries on what angular geometry can and cannot detect.
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Metric Truthful False A Cohen’s d p-value
0(r, q) 0.782 0.763 —0.019 —0.14 0.045
ROC-AUC 0.478 (below chance)

Table 4. TruthfulQA results (n = 800). Angular geometry cannot discriminate factual accuracy when both

responses concern the same topic.

5.7. Signal Decomposition

Model d(6,,) d(6,.) Primary Driver
mpnet +1.50 +0.43 0(r,q)
minilm +1.62 +0.38 6(r,q)

bge +1.48 +0.41 0(r, q)

e5 +1.39 4-0.45 0(r, q)

gte +1.44 +0.40 0(r, q)

Table 5. Component analysis: effect sizes for §(r, g) and 8(r, c) separately. The semantic laziness signal is

driven primarily by hallucinations being closer to questions, not farther from contexts.

Table 5 decomposes the SGI signal. Across all models, the effect size for 6(r, q) (ranging from +1.39 to
+1.62) substantially exceeds that for 6(r, ¢) (ranging from +0.38 to 4+-0.45). This indicates that semantic

laziness is driven primarily by hallucinations being closer to questions, not by them being farther from

contexts.

This asymmetry is theoretically meaningful. When LLMs hallucinate, they are not actively “avoiding” the

context but rather failing to depart from the question’s semantic neighborhood. The generation process

defaults to question-proximate completions when context integration fails.
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6. Discussion

6.1. Hallucinations And Uncertainty

Hallucinated responses exhibit a distinctive geometric signature: they cluster angularly near questions
rather than departing toward contexts. This behavior is consistent across five embedding models trained
by different organizations, with mean correlation » = 0.85 and ranking agreement p = 0.87. The effect
size increases predictably with 6(g, c) as the triangle inequality bounds predict. This is the core empirical

contribution.

We propose that semantic laziness reflects a default mode of autoregressive generation under
uncertainty. When a model lacks confidence in context integration, it produces completions that remain
within the question’s semantic neighborhood—statistically “safe” territory. This interpretation is

plausible but speculative; we have not established the causal link to internal uncertainty.

If the uncertainty hypothesis is correct, SGI should correlate with internal confidence measures:
attention entropy, hidden state variance, or logit dispersion. Responses with low SGI should exhibit

higher entropy in attention distributions. We leave this investigation to future work.

6.2. Practical Implications
The experimental results suggest concrete deployment guidelines:

1. Measure 6(g, ¢) first. Expected discriminative power can be assessed before deployment. Datasets
with small 6(g, ¢) will show reduced effect sizes.

2. SGI excels on long responses to short questions. This is precisely where manual verification is
most costly, making SGI particularly valuable for production RAG systems generating detailed
answers.

3. Use SGI as probability estimate. With ECE = 0.10, SGI scores can inform risk stratification, not just
binary flagging.

4. Complement with NLI. SGI detects semantic disengagement; NLI detects logical contradiction. The

signals are orthogonal.

geios.com doi.org/10.32388/1PQSIT
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6.3. Limitations

We have to acknowledge several limitations in our research. The most important one is the dataset
specificity. HaluEval hallucinations are adversarially generated. Production hallucinations may exhibit
different geometric signatures. SGI captures how responses engage with context, not whether they are
correct. The TruthfulQA result shows this limitation. Besides, SGI assumes the retrieved context is

relevant. Poor retrieval undermines the geometric anchor.

Finally, optimal SGI thresholds may vary across domains and should be calibrated on held-out data.

7. Conclusion

We introduced the Semantic Grounding Index, a geometric quantity defined intrinsically on the
embedding hypersphere S, Our central finding is that hallucinated responses in RAG systems exhibit

semantic laziness—they remain angularly proximate to questions rather than departing toward contexts.

The contribution is threefold. First, SGI is theoretically grounded: we derive from the triangle inequality
that discriminative power should increase with 6(g,c), and this prediction is confirmed empirically (
d = 0.61 — 1.27 across terciles). Second, SGI is robust: five embedding models with distinct architectures
agree on SGI scores with correlation » = 0.85, indicating that the signal is a property of text rather than
embedding geometry. Third, SGI is practically characterized: we identify where it excels (long responses,

short questions), where it fails (TruthfulQA), and establish calibration quality (ECE = 0.10).
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