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When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this

leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of

angular distances from the response to the question versus the context on the unit hypersphere  .

Our central finding is semantic laziness: hallucinated responses remain angularly proximate to

questions rather than departing toward retrieved contexts. On HaluEval ( ), we observe large

effect sizes (Cohen’s   ranging from   to  ) across five embedding models with mean cross-

model correlation  . Crucially, we derive from the spherical triangle inequality that SGI’s

discriminative power should increase with question-context angular separation  —a theoretical

prediction confirmed empirically: effect size rises monotonically from   (low  ) to 

 (high  ), with AUC improving from   to  . Subgroup analysis reveals that SGI

excels on long responses ( ) and short questions ( ), while remaining robust across

context lengths. Calibration analysis yields ECE  , indicating SGI scores can serve as probability

estimates, not merely rankings. A critical negative result on TruthfulQA (AUC  ) establishes

that angular geometry measures topical engagement rather than factual accuracy. SGI provides

computationally efficient, theoretically grounded infrastructure for identifying responses that

warrant verification in production RAG deployments.
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1. Introduction

LLMs generate text through autoregressive next-token prediction, optimizing for distributional statistics

of training corpora[1][2]. This objective produces fluent continuations without maintaining explicit

correspondence to external reality, a characteristic that manifests as hallucination[3][4]. Retrieval-

Augmented Generation (RAG) architectures condition generation on retrieved documents[5][6], yet

hallucination persists: models fabricate claims absent from context or fail to substantively engage with

retrieved information[7][8][9].

We investigate a geometric question: when a RAG system fails to ground its response in the provided

context, what signature does this leave in embedding space? Modern sentence transformers are trained

via contrastive objectives that explicitly optimize angular relationships on the unit hypersphere[10][11].

This makes   the natural geometric setting for analyzing response behavior.

Our central contribution is the identification, theoretical characterization, and empirical validation of a

geometric pattern we term semantic laziness. When models hallucinate in RAG systems, their responses

remain angularly proximate to the question rather than departing toward the context’s semantic

territory. We formalize this through the Semantic Grounding Index (SGI)—the ratio of angular distances 

—and demonstrate that it provides a robust, theoretically grounded signal for detecting

context disengagement.

Contributions

1. We introduce SGI as an intrinsic quantity on   and derive geometric bounds from the spherical

triangle inequality that predict when discrimination will be most effective.

2. We confirm this theoretical prediction empirically: effect size increases monotonically with question-

context angular separation (  across   terciles).

3. We establish cross-model robustness at scale ( ): five architecturally distinct embedding

models correlate at   with ranking agreement  .

4. We characterize operational boundaries: SGI excels on long responses and short questions,

maintains calibration (ECE  ), and fails predictably on TruthfulQA where angular geometry

cannot discriminate factual accuracy.
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2. Theoretical Foundations

2.1. The Embedding Hypersphere

Contrastive learning objectives for sentence embeddings decompose into alignment and uniformity

terms on the unit hypersphere[11]. The InfoNCE loss encourages matched pairs to cluster while spreading

unrelated points apart, inducing structure on   where L2-normalized embeddings reside.

Let    denote a sentence embedding model and    the L2-normalized

representation. The normalized embeddings lie on:

This is a compact Riemannian manifold with constant positive curvature[12]. The intrinsic distance is the

geodesic (great-circle arc length):

This angular distance   satisfies all metric axioms on  , including the triangle inequality[13].

We note that while cosine similarity is ubiquitous in applications, it does not satisfy the triangle

inequality; angular distance is the proper metric for geometric analysis[14].

2.2. The Semantic Grounding Index

For a RAG instance   with question  , retrieved context  , and generated response  , we define the

Semantic Grounding Index as:

Equation 3 measures the ratio of angular departures, how far the response has traveled from the question

relative to its distance from the context. When  , the response is angularly farther from the

question than from the context—it has “departed” toward the context’s semantic territory. When 

, the response remains closer to the question than to the context.
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Figure 1. Angular geometry of SGI on the unit hypersphere. Question   and context   define anchor points;

their angular separation   determines the geometric “room” for response differentiation. A valid

response (blue) departs from   toward  , yielding SGI  . A hallucination (red) remains angularly proximate

to the question—the semantic laziness signature—yielding SGI  .

2.3. Geometric Bounds and Theoretical Predictions

The spherical triangle inequality constrains admissible SGI values. For any  :

Dividing by   yields bounds on SGI:

These bounds form the basis of our theoretical contribution:

SGI’s discriminative power should increase with  . When question and context are

semantically similar (small ( )), the triangle inequality constrains SGI values near 1

regardless of response quality. When    is large, the constraint relaxes, permitting

greater separation between grounded and ungrounded responses.
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This is the mathematical consequence of the triangle inequality. If SGI captures something real about

semantic grounding, we should observe effect sizes that increase monotonically with  . We test this

prediction explicitly in Section 5.3.

2.4. The Semantic Laziness Hypothesis

We hypothesize that hallucinated responses in RAG systems exhibit semantic laziness: rather than

introducing vocabulary and concepts from the retrieved context, they produce completions that remain

in the question’s semantic neighborhood.

Let   and   denote distributions over valid and hallucinated responses. The semantic laziness

hypothesis predicts:

This hypothesis connects to how autoregressive models handle uncertainty. When a model lacks

confidence in how to use retrieved context, it may default to “safe” completions that echo the question’s

framing rather than venturing into the context’s semantic territory.

3. Related Work

3.1. Geometric Methods for Hallucination Detection

Li et al.,[15]  compute semantic volume from batches of responses to quantify uncertainty. Catak et al.,

[16]  apply convex hull analysis to embedding spaces. Gao et al.,[17]  found that hallucinated responses

exhibit smaller deviations from prompts in hidden state space—an observation consistent with our

semantic laziness characterization. Our work differs by focusing on the triangular geometry of question-

context-response relationships, deriving theoretical bounds, and establishing cross-model robustness.

3.2. Semantic Entropy and Consistency Methods

Farquhar et al.,[18]  introduced semantic entropy for hallucination detection via multiple sampling. Kuhn

et al.,[19]  developed linguistic invariances for uncertainty estimation. These methods require multiple

generation passes; SGI operates on single responses.

θ(q, c)

Rvalid Rhalluc

[SGI(r; q, c)] > [SGI(r; q, c)]Er∼Rvalid Er∼Rhalluc (6)
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3.3. NLI-Based Detection

SummaC[20], HALT-RAG[21], and LettuceDetect[22]  frame detection as entailment classification. These

methods detect logical contradiction; SGI detects semantic disengagement. The signals are

complementary.

3.4. Spherical Geometry in Representation Learning

The unit hypersphere is well-studied in directional statistics[12][23]. Wang and Isola,[11]  analyzed

contrastive learning through alignment and uniformity on  . Meng et al.,[24] developed spherical text

embeddings. You,[14]  provided comprehensive analysis of when cosine similarity succeeds and fails,

noting that angular distance—unlike cosine similarity—satisfies the triangle inequality.

4. Experimental Design

4.1. Implementation Details

Text Preprocessing

We use spaCy[25]  with the en_core_web_sm pipeline for sentence boundary detection and basic

tokenization when segmenting long contexts. This lightweight model (12MB) provides sufficient

accuracy for our preprocessing needs without introducing computational overhead. Alternative pipelines

include en_core_web_md (40MB) and en_core_web_lg (560MB), which incorporate word vectors but offer

no advantage for boundary detection. For purely rule-based segmentation, spaCy’s sentencizer

component or NLTK’s punkt tokenizer are viable alternatives; we observed no significant difference in

downstream SGI scores across these choices, suggesting robustness to preprocessing variations.

Embedding Computation

We compute sentence embeddings using the sentence-transformers library (v2.2.2)[10]. For each RAG

instance  , we encode the question, context, and response as separate strings without additional

prompting or instruction prefixes. Embeddings are L2-normalized to unit length before angular distance

computation.

S
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(q, c, r)

qeios.com doi.org/10.32388/1PQ8IT 6

https://www.qeios.com/
https://doi.org/10.32388/1PQ8IT


SGI Computation

Algorithm  4.1 specifies the complete procedure. Angular distances are computed via 

, where clipping prevents numerical errors from domain violations.

We add   to the denominator to avoid division by zero when  .

Sampling and Splits

From HaluEval QA (   samples), we randomly sample    instances stratified by

hallucination label. For TruthfulQA, we use all 817 questions, constructing paired samples by treating

each question’s correct and incorrect answers as separate instances (  after filtering incomplete

entries). No train/test split is applied; we report descriptive statistics on the full samples.

Statistical Analysis

Effect sizes use Cohen’s   with pooled standard deviation. Group comparisons use Welch’s  -test (unequal

variances). Cross-model correlations use Pearson    for linear agreement and Spearman    for rank

agreement. Calibration analysis uses expected calibration error (ECE) with 10 equal-frequency bins.

4.2. Datasets

HaluEval QA

[26] provides question-knowledge-answer triples with hallucination labels. The knowledge field serves as

retrieved context. We use   samples for comprehensive analysis, enabling stratified evaluation

with sufficient statistical power.

θ(a, b) = arccos (clip( b, −1, 1))a⊤

ϵ = 10−8 θ(r, c) ≈ 0

10, 000 n = 5, 000

n = 800

d t

r ρ
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TruthfulQA

[27]  contains 817 questions targeting common misconceptions, with truthful and false answers. We

construct   paired samples to test whether angular geometry can discriminate factual accuracy.

4.3. Embedding Models

A critical question is whether SGI measures a property of the text or an artifact of a particular embedding

model. We evaluate five sentence transformers with distinct architectures and training regimes:

all-mpnet-base-v2 (768d): General-purpose, contrastive training[10]

all-MiniLM-L6-v2 (384d): Knowledge-distilled from larger models[28]

bge-base-en-v1.5 (768d): BAAI’s contrastive model[29]

e5-base-v2 (768d): Microsoft’s weakly-supervised embeddings[30]

gte-base (768d): Alibaba’s multi-stage contrastive model[31]

If SGI captures something fundamental about text, scores should correlate strongly across these models

despite their different training objectives and architectures.

4.4. Evaluation Metrics

We compute Cohen’s   effect sizes and Welch’s  -test for group comparisons. Classification performance

uses ROC-AUC. For cross-model validation, we compute Pearson correlation (linear agreement),

Spearman   (ranking agreement), and expected calibration error (ECE) for probability estimation quality.

n = 800

d t

ρ
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5. Results

5.1. Cross-Model Validation on HaluEval

Model SGI (Valid) SGI (Halluc) Cohen’s  AUC -value

mpnet 1.142 0.921 0.776

minilm 1.203 0.856 0.824

bge 1.231 0.948 0.823

e5 1.138 0.912 0.794

gte 1.224 0.927 0.811

Mean 1.188 0.913 0.806 —

Table 1. Effect sizes and classification performance across five embedding models on HaluEval ( ).

All models show significant separation with large effect sizes, demonstrating that SGI captures a property of

the text rather than an embedding artifact.

Table 1 presents the primary result. Across all five embedding models, valid responses have higher SGI

(mean 1.19) than hallucinations (mean 0.91), confirming the semantic laziness hypothesis. Effect sizes

range from   to  , all conventionally “large.” With  , all  -values are below  ,

and AUC values range from 0.78 to 0.82.

The consistency across models trained by different organizations (Sentence-Transformers, BAAI,

Microsoft, Alibaba), with different architectures (384d vs.  768d), and different training objectives

(contrastive, instruction-tuned, distilled) provides strong evidence that SGI measures a property of the

text itself.

d p

+0.92 < 0.01

+1.28 < 0.01

+1.27 < 0.01

+1.03 < 0.01

+1.13 < 0.01

+1.13

n = 5, 000

d = 0.92 d = 1.28 n = 5, 000 p 10−50
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5.2. Cross-Model Correlation Analysis

Figure 2. Cross-model agreement for SGI scores on HaluEval ( ). High correlations across

architecturally distinct embedding models indicate that SGI captures an intrinsic property of text rather than

an artifact of any particular embedding space.

Figure  2 shows the cross-model correlation structure. The Pearson correlation matrix reveals mean

pairwise correlation  , with minimum   (mpnet–bge) and maximum   (bge–gte).

Spearman rank correlations are comparably high (mean  ), indicating that models agree not just

on absolute SGI values but on the ranking of which samples are most and least grounded.

The bge–gte correlation of    is particularly striking: these models were trained by different

organizations (BAAI vs.  Alibaba) with different training procedures, yet they “see” nearly identical

semantic laziness behaviors. This does not happen unless SGI measures something intrinsic to the text.

n = 5, 000

r = 0.85 r = 0.80 r = 0.95

ρ = 0.87

r = 0.95
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5.3. Confirming the Theoretical Prediction: Stratified Analysis

 Tercile  Range SGI (Valid) SGI (Halluc) Cohen’s  AUC

Low 1,667 1.08 0.94 0.721

Medium 1,666 1.19 0.91 0.768

High 1,667 1.31 0.88 0.832

Table 2. Stratified analysis by question-context angular separation  . Effect size increases monotonically

with  , confirming the theoretical prediction derived from the triangle inequality.

Figure 3. Effect size and AUC increase monotonically with question-context angular separation  ,

confirming the theoretical prediction. When   is small, the triangle inequality constrains SGI near 1

regardless of response quality. When   is large, there is geometric “room” for discrimination.

Table  2 and Figure  3 present the critical result: effect size increases monotonically with  . This

confirms the theoretical prediction derived from the spherical triangle inequality. The bounds in

Equation 5 predict that when   is small, SGI values are geometrically constrained near  . When 

θ(q, c) n θ(q, c) d

[0.42, 0.89] +0.61

[0.89, 1.12] +0.90

[1.12, 1.57] +1.27

θ(q, c)

θ(q, c)

θ(q, c)

θ(q, c)

θ(q, c)

θ(q, c)

θ(q, c) ≈ 1
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  is large, the constraint relaxes, allowing greater separation between valid and hallucinated

responses.

The monotonic increase transforms SGI from “useful heuristic” to “principled method with predictable

behavior.” Practitioners can assess expected discriminative power by measuring    before

deployment.

5.4. Subgroup Robustness: Where Does SGI Excel and Fail?

Feature Level Cohen’s  AUC

Question Length

Short 1,667 0.812

Medium 1,666 0.781

Long 1,667 0.714

Context Length

Short 1,667 0.763

Medium 1,666 0.768

Long 1,667 0.782

Response Length

Short 1,667 0.771

Medium 1,666 0.804

Long 1,667 0.893

Table 3. Subgroup analysis by text characteristics. SGI effect size varies substantially with response length

(strongest on long responses) and question length (strongest on short questions), while remaining stable

across context lengths.

θ(q, c)

θ(q, c)

n d

+1.22

+0.99

+0.65

+0.91

+0.92

+1.00

+0.95

+1.18

+2.05
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Figure 4. Subgroup robustness analysis. Response length shows the strongest effect: long responses yield 

, nearly double the overall average. Short questions ( ) outperform long questions ( ).

Context length has minimal impact.

Table 3 and Figure 4 allows some interesting conclusions:

1. Response length is critical. Effect size increases from    (short) to    (long). Longer

responses provide more “signal” for embedding estimation—the response vector is a more stable

representation of semantic content. This is geometrically intuitive: a single sentence may be

ambiguously positioned, while a paragraph establishes a clearer location on  .

2. Short questions work better. Effect size decreases from    (short) to    (long). Short

questions create tighter semantic anchors. Long questions may span multiple semantic regions,

making “distance from question” a noisier measurement. A question like “What is the capital of

France?” has a precise embedding; a multi-clause question has a centroid that may not represent

any single semantic intent.

3. Context length is stable. Effect sizes remain consistent ( – ) across context lengths. SGI

is robust to context verbosity, likely because the context embedding averages over content in a way

that remains geometrically stable.

These findings shows that SGI is most reliable for long-form responses to focused questions—

particularly the setting where manual verification is most costly.

d = 2.05 d = 1.22 d = 0.65

d = 0.95 d = 2.05

S
d−1

d = 1.22 d = 0.65

d ≈ 0.91 1.00
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5.5. Calibration Analysis

Figure 5. Calibration analysis. Left: reliability diagram showing SGI probabilities vs. actual hallucination rates

(ECE  ). Right: hallucination rate by SGI decile, illustrating a monotonic relationship.

Figure  5 shows the calibration analysis. Converting SGI to probability estimates via min-max

normalization yields ECE  , at the boundary of “well-calibrated.” The reliability diagram shows

SGI-derived probabilities track actual hallucination rates with moderate fidelity.

Figure 5 right plot illustrates the monotonic relationship. Samples in the lowest SGI decile have  100%

hallucination rate, while those in the highest decile have  65% rate. The gradient is consistent, proving

that SGI can be used as a probability estimate for risk stratification, not only a binary classifier.

5.6. Negative Result: TruthfulQA

Table  4 shows the results of our experiments using TruthfulQA dataset. On this dataset, where both

truthful and false responses concern the same topic, AUC score is 0.478—worse than random guessing.

False responses are slightly but non-significant closer to questions ( ).

This confirms our theoretical prediction that angular distance on   measures topical similarity, not

factual accuracy. Two statements about the same topic occupy nearby regions regardless of truth value.

TruthfulQA targets misconceptions—plausible false beliefs that often use simpler vocabulary than

technical truths. The misconception “the Sun’s distance causes seasons” is topically identical to “axial tilt

causes seasons”; they cannot be distinguished geometrically. This negative result is methodologically

important because establishes clear boundaries on what angular geometry can and cannot detect.

= 0.10

= 0.10

∼

∼

d = −0.14

S
d−1
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Metric Truthful False Cohen’s  -value

0.782 0.763 0.045

ROC-AUC 0.478 (below chance)

Table 4. TruthfulQA results ( ). Angular geometry cannot discriminate factual accuracy when both

responses concern the same topic.

5.7. Signal Decomposition

Model Primary Driver

mpnet

minilm

bge

e5

gte

Table 5. Component analysis: effect sizes for   and   separately. The semantic laziness signal is

driven primarily by hallucinations being closer to questions, not farther from contexts.

Table 5 decomposes the SGI signal. Across all models, the effect size for   (ranging from   to 

) substantially exceeds that for   (ranging from   to  ). This indicates that semantic

laziness is driven primarily by hallucinations being closer to questions, not by them being farther from

contexts.

This asymmetry is theoretically meaningful. When LLMs hallucinate, they are not actively “avoiding” the

context but rather failing to depart from the question’s semantic neighborhood. The generation process

defaults to question-proximate completions when context integration fails.

Δ d p

θ(r, q) −0.019 −0.14

n = 800

d( )θr,q d( )θr,c

+1.50 +0.43 θ(r, q)

+1.62 +0.38 θ(r, q)

+1.48 +0.41 θ(r, q)

+1.39 +0.45 θ(r, q)

+1.44 +0.40 θ(r, q)

θ(r, q) θ(r, c)

θ(r, q) +1.39

+1.62 θ(r, c) +0.38 +0.45
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6. Discussion

6.1. Hallucinations And Uncertainty

Hallucinated responses exhibit a distinctive geometric signature: they cluster angularly near questions

rather than departing toward contexts. This behavior is consistent across five embedding models trained

by different organizations, with mean correlation   and ranking agreement  . The effect

size increases predictably with   as the triangle inequality bounds predict. This is the core empirical

contribution.

We propose that semantic laziness reflects a default mode of autoregressive generation under

uncertainty. When a model lacks confidence in context integration, it produces completions that remain

within the question’s semantic neighborhood—statistically “safe” territory. This interpretation is

plausible but speculative; we have not established the causal link to internal uncertainty.

If the uncertainty hypothesis is correct, SGI should correlate with internal confidence measures:

attention entropy, hidden state variance, or logit dispersion. Responses with low SGI should exhibit

higher entropy in attention distributions. We leave this investigation to future work.

6.2. Practical Implications

The experimental results suggest concrete deployment guidelines:

1. Measure   first. Expected discriminative power can be assessed before deployment. Datasets

with small   will show reduced effect sizes.

2. SGI excels on long responses to short questions. This is precisely where manual verification is

most costly, making SGI particularly valuable for production RAG systems generating detailed

answers.

3. Use SGI as probability estimate. With ECE  , SGI scores can inform risk stratification, not just

binary flagging.

4. Complement with NLI. SGI detects semantic disengagement; NLI detects logical contradiction. The

signals are orthogonal.

r = 0.85 ρ = 0.87

θ(q, c)

θ(q, c)

θ(q, c)

= 0.10
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6.3. Limitations

We have to acknowledge several limitations in our research. The most important one is the dataset

specificity. HaluEval hallucinations are adversarially generated. Production hallucinations may exhibit

different geometric signatures. SGI captures how responses engage with context, not whether they are

correct. The TruthfulQA result shows this limitation. Besides, SGI assumes the retrieved context is

relevant. Poor retrieval undermines the geometric anchor.

Finally, optimal SGI thresholds may vary across domains and should be calibrated on held-out data.

7. Conclusion

We introduced the Semantic Grounding Index, a geometric quantity defined intrinsically on the

embedding hypersphere  . Our central finding is that hallucinated responses in RAG systems exhibit

semantic laziness—they remain angularly proximate to questions rather than departing toward contexts.

The contribution is threefold. First, SGI is theoretically grounded: we derive from the triangle inequality

that discriminative power should increase with  , and this prediction is confirmed empirically (

 across terciles). Second, SGI is robust: five embedding models with distinct architectures

agree on SGI scores with correlation  , indicating that the signal is a property of text rather than

embedding geometry. Third, SGI is practically characterized: we identify where it excels (long responses,

short questions), where it fails (TruthfulQA), and establish calibration quality (ECE  ).
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