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Cardiovascular disease (CVD) is the leading cause of death globally, demanding

accurate risk prediction models for early intervention and prevention. This

project aimed to develop a Machine Learning (ML) model for predicting the

10-year risk of CVD. A comprehensive review of existing literature was

conducted, discussing the methods, algorithms, and data sources used in

different studies, to evaluate the performance of various models. The review

highlighted the potential of ML for improving CVD risk assessment, and the

challenges and limitations of current research.

The UCI Heart dataset served as the training data for various ML models,

including Logistic Regression (LR), Decision Trees (DT), Random Forests (RF),

Support Vector Machines (SVM), Arti�cial Neural Networks (ANN), and K-

Nearest Neighbors (KNN). To optimize model performance, Cross Validation

(CV), normalization techniques, and hyperparameter tuning were employed.

We report the results, comparing them with traditional models.

The implications of this research extend to improved preventive strategies and

interventions, potentially alleviating the burden of CVD on individuals and

healthcare systems by more targeted interventions, and the optimization of

healthcare resources.
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of

death globally, accounting for 17.9 million deaths in

2019 [1]. Traditional CVD risk prediction models, such as

the American College of Cardiology/American Heart

Association (ACC/AHA) risk model  [2], Reynolds Risk

Score (RRS) [3] and the Framingham Risk Score [4], have

shown limited accuracy in predicting long-term CVD

risk  [5]. Though these have become increasingly

common in clinical practice over the last decades, they

tend to be limited in scope, lack personalization, and

lack transparency, due to the complex interplay of

various factors.

More recently, several studies have shown the potential

of Machine learning (ML) algorithms in improving CVD

risk prediction with more robust, more precise, and

personalized prediction models  [5][6][7]. These models

have exhibited superior validation performance

compared to traditional models by incorporating a

wider range of risk factors and their interactions  [5].

ML-based models can help identify high-risk

individuals and motivate them to change their

behaviors for preventive medicine purposes [6].

In this study, we aimed to develop an ML-based model

to predict 10-year CVD risk. To begin with, a

comprehensive review of the existing literature on

traditional tools and ML models for CVD risk prediction
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was conducted, examining the methodologies,

algorithms, and datasets used in previous studies to

evaluate the performance of different models. The

review highlighted the potential of ML approaches and

gaps in the existing research.

Our study contributes to the growing body of research

on ML-based CVD risk prediction and has the potential

to improve clinical decision-making and patient

outcomes [8].

2. Related Works

In this section, we explore existing research on CVD

risk prediction, including traditional models and the

emerging use of ML techniques.

2.1. CVD risk prediction using traditional models

Traditional models for CVD risk prediction have been

developed over the last decades, including the FRS  [4],

RRS  [3], QRISK  [9], ASCVD 2013 Risk Calculator from

AHA/ACC Pooled Cohort Equations  [2], and ASSIGN

Score [10].

These models are widely used in clinics, but according

to a scoping review by Mohammed Abd ElFattah, et al.,

there are limitations such as limited factors,

overestimation or underestimation, and inapplicability

to different ethnicities  [11]. The FRS, developed

predominantly for the white US population, has been

found to have limited accuracy in predicting CVD risk in

non-white populations, such as African Americans and

Hispanics, highlighting the need for more accurate risk

assessment tools  [12][13][14]. A systematic review

assessing the use and validity of prediction models to

estimate the risk of CVD in Latin America and among

Hispanic populations in the United States found that

FRS overestimated CVD risk for Hispanics  [13]. The

QRISK, a CVD risk predictive model developed over UK

population data, tends to overestimate CVD risk,

particularly in older patients and those with a history of

CVD  [15][16]. However, a prospective open cohort study

found that QRISK is better calibrated to the UK

population than Framingham and has better

discrimination  [15]. The AHA/ACC Pooled Cohort

Equations [2] and the ASSIGN Score [10] were developed

using speci�c populations, such as the US and Scottish

populations, respectively, which limits their accuracy in

other populations  [11][17]. Another study comparing

AHA/ACC Pooled Cohort Equations [2] estimated 10-year

CVD risk in Black versus White individuals with

identical risk factor pro�les using pooled cohort

equations found differences in estimates  [18]. A

systematic review assessing the use and validity of

prediction models to estimate the risk of CVD in Latin

America and among Hispanic populations in the United

States found that the FRS overestimated CVD risk for

Hispanics with an AUC of 0.69 [19]. The RRS [3], derived

in a cohort of 25,000 healthy US women, has

limitations, such as being derived from a cohort of only

healthy US women  [20], which may limit its

generalizability to other populations  [21]. Additionally,

the RRS has been shown to overestimate the risk of

CVD in some populations, such as African

Americans [22].

A systematic review of 13 CVD risk prediction models

highlighted the limitations of traditional models and

emphasized the need for personalized risk assessment

and inclusion of additional factors, such as genetic and

environmental factors, to improve individual risk

prediction  [23]. Alternative approaches, such as using

ML methods, have been proposed to overcome these

challenges by incorporating a wide range of data,

handling missing data, and identifying novel

predictors  [8][24]. Another study compared well-

established risk prediction algorithms based on

conventional CVD risk factors with a ML based

prediction model focused on CVD events  [25]. The

performance metrics of these tools can be found in

Table 1.
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Tool AUC-ROC

FRS 0.6-0.8

RRS 0.80

AHA/ACC Pooled Cohort Equations 0.72

ASSIGN Score 0.75

QRISK 0.70-0.85

Table 1. Area Under The Receiver Operating Characteristic Curve (AUC-ROC) For Traditional Models. FRS; Framingham

Risk Score, RRS; Reynolds Risk Score [26]

In conclusion, traditional models for CVD risk

prediction have limitations, including limited factors,

overestimation or underestimation, and inapplicability

to different ethnicities. Alternative approaches, such as

using ML methods, have been proposed to overcome

these challenges.

2.2. CVD risk prediction using ML

In the last decade, several studies have explored the use

of ML models for predicting CVD risk, offering potential

improvements over traditional models [24][25][27]. These

ML models leverage large datasets from sources such as

Electronic Medical Records (EMRs), clinical databases,

and population-based surveys. Various ML algorithms,

including Logistic Regression (LR), Decision Trees (DT),

Random Forests (RF), Support Vector Machines (SVM),

K-Nearest Neighbor (KNN), AdaBoost (AdB), XGBoost

(XGB), and Neural Networks, have been employed  [24]

[25][28].

In terms of performance, different studies have

reported varying results, with the Area Under the

Receiver Operating Characteristic Curve (AUC-ROC)

values ranging from 0.7 to 0.9  [25][27][28]. The most

in�uential predictors identi�ed by these models include

age, sex, blood pressure, cholesterol levels, smoking

status, and diabetes status  [24][25][27][28]. Additionally,

some studies have incorporated novel predictors such

as genetic data and socioeconomic status, enabling the

development of personalized and more accurate

predictive models compared to traditional

approaches  [24]. For instance, a study by Ward, et al.

found that the development of improved risk prediction

may require richer data or incorporation of novel

variables, such as genetic information across different

racial/ethnic groups  [29]. The study by Alaa, et al.

developed an ML-based model called AutoPrognosis,

which incorporated 473 available variables, including

genetic data, to predict CVD risk  [24]. These studies

demonstrate the potential bene�ts of incorporating

novel predictors in ML-based models for CVD risk

prediction.

A comprehensive review by Subramani, et al. focused on

ML and Deep Learning (DL) models for CVD risk

prediction, encompassing the use of Electronic Health

Records (EHRs) and imaging data. This review

demonstrated that ML and DL models have the

potential to enhance CVD risk prediction accuracy by

incorporating a broad range of risk factors, including

genetic, lifestyle, and environmental factors [30]. These

models can also analyze complex relationships between

risk factors to provide more personalized risk

estimates. However, their complexity may limit

interpretability, and challenges related to data

availability and standardization exist.

Several notable studies have showcased the

effectiveness of ML models for CVD risk prediction,

with their results in Table 2.

Although these studies highlight the potential bene�ts

of ML in CVD risk prediction, they also have certain

limitations. Some studies were limited to speci�c

populations or datasets, limiting the generalizability of

their �ndings  [25][27][30]. Additionally, the

interpretability of some ML models, particularly DL

models, may pose challenges, which can hinder their

clinical utility. The accuracy and usefulness of ML

models are highly dependent on the quality and

completeness of the input data, and their performance
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may not generalize well to different populations or

settings [24][27][30].

Despite these limitations, ML models hold promise for

improving CVD risk prediction by incorporating a wide

array of risk factors and analyzing complex interactions

among them. Continued research and advancements in

ML techniques may lead to more accurate and clinically

useful predictive models for CVD risk assessment. In

our study, we attempt to address these limitations.
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Name Accuracy (%) Precision Recall F1 Score ROC-AUC

LR 85.25 0.842 0.871 0.85 0.916

DT 80.32 0.812 0.828 0.814 0.864

SVM 90.2 0.906 0.906 0.9 0.916

RF 87 0.875 0.848 0.87 0.916

NBC 89.2 0.876 0.904 0.893 0.917

KNN 90.2 0.906 0.906 0.9 0.912

AdB 90.2 0.938 0.882 0.901 0.912

XGB 89 0.875 0.875 0.88 0.912

SGD 89 0.906 0.879 0.9 0.919

QDA 84.43 0.753 0.925 0.872 0.883

EVCH 92 0.906 0.936 0.921 0.927

EVCS 92 0.906 0.936 0.92 0.927

Table 2. Performance Metrics of Different ML Algorithms Using Various Optimization Methods (DHP, GSCV, RSCV, See

Appendix 1)

3. Methodology

We used Python 3.9.13 on Anaconda Jupyter Notebook

for the study, following the Project Plan given in Fig 1.

3.1. Data

The dataset plays the most signi�cant role in ML. In

this study, we used the UCI Heart dataset for training

and testing of our models. The UCI Heart Dataset

contains information on individuals with and without

heart disease, consisting of 303 instances and 76

attributes  [31]. This dataset has been widely used for

classi�cation tasks, such as predicting whether a

person has heart disease or not, using ML

techniques  [28][32]. The dataset was created by the

Hungarian Institute of Cardiology and is available on

the UCI Machine Learning Repository [31].

3.2. Feature selection and Data Engineering

For feature selection and engineering, we examined all

76 variables in the dataset. However, we determined

that only 14 variables were both relevant and complete

for our analysis, including age, sex, chest pain type,

resting blood pressure, serum cholesterol, fasting blood

sugar, resting electrocardiographic results, maximum

heart rate achieved, exercise-induced angina, and ST

depression induced by exercise relative to rest.

The target variable represents the presence of heart

disease, de�ned by an integer value ranging from 0 to 4.

It indicates different levels of heart disease presence—

class 0 represents the absence of heart disease, while

classes 1, 2, 3, and 4 represent varying degrees of heart

disease presence. However, we transformed the target

variable into a binary form to simplify the target

variable into a two-class classi�cation problem. In this

binary transformation, class 0 is labelled as 0 to

represent the absence of heart disease. Conversely,

classes 1, 2, 3, and 4 are labelled as 1, to indicate the

presence of heart disease.
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Fig 1. Project Work�ow. LR, Logistic Regression; DT, Decision

Trees; RF, Random Forests; SVM, Support Vector Machines;

ANN, Arti�cial Neural Networks; ADB, Adaboost; NBC, Naïve

Bayes Classi�er; XGB, Xgboost; HPO, Hyperparameter

Optimization; DHP, Default Hyperparamater

To assess the relationships and signi�cance among

these variables, we constructed a Correlation Matrix

using Pandas library  [33], which can be found in Fig 2.

The correlation matrix allowed us to examine the

pairwise correlations between the selected variables. By

evaluating the correlation coef�cients, we assessed the

strength and direction of the relationship.

We considered variables with high positive or negative

correlations (correlation>0.40 or correlation<-0.40) as

potentially in�uential predictors of CVD risk. Variables

that exhibited a strong correlation with the outcome

variable (CVD risk) were deemed essential for our

predictive model. Additionally, we took note of any

variables that showed minimal or no correlation with

the outcome, as these were deemed less informative

and were not included in the subsequent analysis. The

highly correlated variables have been summarized in

Table 3.

It is worth noting that the feature selection process may

be subjective to some extent and dependent on the

speci�c dataset used. Our selection was based on the

UCI dataset, and it is possible that different datasets or

different expert opinions may yield slightly different

sets of relevant variables.
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Fig 2. Correlation Heatmap

According to the correlation heat map chest pain (cp),

thalach, slope, exang, ca, and thal were highly

correlated with the target variable. Table I denotes a

brief description of these highly correlated features.

We then applied the ExtraTreesClassi�er from Scikit-

learn to the dataset to reveal the features with the

highest importance; the top four features were: thalach,

ca, thal, and oldpeak. This analysis involved

constructing an ensemble of DTs, each trained on

random subsets of the data and features. By examining

the variability in the trees' predictions, the algorithm

determined the relevance of each feature in

contributing to the classi�cation task [34]. The resulting

feature importance values provide insights into the

crucial factors in�uencing the prediction of CVD risk.

The results can be seen in Fig 3.
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Attribute Type Description

Chest Pain (cp) Discrete

Chest Pain type:

a. Typical Angina 

b. Atypical Angina

c. Non-anginal Pain 

d. Asymptomatic

thalach Continuous Maximum Heart Rate Achieved

slope Discrete

slope: the slope of the peak exercise ST segment:

a. upsloping

b. �at

c. downsloping

exang Discrete

exercise induced angina:

1 = yes 

0 = no

ca Discrete number of major vessels (0-3) colored by �ourosopy

thal Discrete

thal:

3 = normal

6 = �xed defect

7 = reversable defect

oldpeak Continuous ST depression induced by exercise relative to rest

Table 3. Highly Correlated Features

After this, split the data into a training set and testing

set. We experimented with various ratios of the train-

test split, and it was observed that 80% of the training

set and 20% of the testing set of total data was the most

ef�cient as it depicted low bias and low variance for ML

algorithms we implemented [35].

We also performed ten-fold Cross Validation (CV) over

the training data. Default hyperparameter (DHP) and

Hyperparameter Optimization (HPO) were carried out

so that more enhanced results can be achieved in terms

of the performance metrics. Hence, quantitative, and

qualitative analyses are presented so that the most

ef�cient model can be proposed �nally. The overall

work�ow diagram is depicted in Fig 1.
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Fig 3. Feature Importance

3.3. Machine Learning

In this section, we explain the ML algorithms we used

in this study. The algorithms we used include Adaboost

(AdB) [36][37], Decision Trees (DT), K-Nearest Neighbors

(KNN), Logistic Regression (LR), Random Forests (RF),

Support Vector Machines (SVM), and XGBoost (XGB).

3.3.1. Adaptive Boosting (AdB; Adaboost)

AdB is an ensemble learning method that creates a

strong classi�er from several weak classi�ers. It is a

boosting algorithm that uses an iterative approach to

learn from the mistakes of weak classi�ers and turn

them into strong ones. During the training phase, the

distribution weight of the sample is increased as the

error rate increases, and oppositely the new distribution

weight is reduced as the error rate decreases. Then

samples are continually trained with the unknown

distribution weights. The aim is to have strong

feedback by reducing the next machine's error and

reaching better accuracy rates in the end. AdB is best

used to boost the performance of decision trees on

binary classi�cation problems. AdB was originally

called AdaBoost.M1 by the authors, Freund and

Schapire [37].

3.3.2. Decision Trees (DT)

DT is a powerful tool for both classi�cation and

regression tasks. It is a non-parametric supervised

learning algorithm that can be used for solving

regression and classi�cation problems, unlike other

supervised learning algorithms. DTs are highly

interpretable and provide a foundation for more

complex algorithms, e.g., Random Forest (RF). DTs

classify the examples by recursively splitting the

training data into subsets based on the values of the

attributes until a stopping criterion is met. DTs are able

to generate understandable rules, perform classi�cation

without requiring much computation, and are able to

handle both continuous and categorical data [38].

3.3.3. K-Nearest Neighbors (KNN)

The KNN algorithm is a simple, non-parametric,

supervised learning classi�er used for classi�cation

and regression problems. KNN is a lazy learning

algorithm that uses the entire dataset in its training

phase and stores all available cases and classi�es new

cases based on a similarity measure (e.g., distance

functions). Whenever a prediction is required for an

unseen data instance, it searches through the entire

training dataset for k-most similar instances and the

data with the most similar instance is �nally returned
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as the prediction. KNN is mainly used in statistical

estimation and pattern recognition [39].

3.3.4. Logistic Regression (LR)

LR is a statistical method used for binary classi�cation

problems, where the outcome of a dependent variable is

predicted based on previous observations. It is a simple

and ef�cient method for binary and linear classi�cation

problems, used to calculate the probability of a binary

event occurring, and to deal with issues of

classi�cation [40].

3.3.5. Random Forests (RF)

RF is an ensemble learning method for classi�cation,

regression, and other tasks that operates by

constructing a multitude of DTs at training time. RF is a

collection of DTs that work together to improve the

accuracy and stability of the model. For classi�cation

tasks, the output of the RF is the class selected by most

trees, while for regression tasks, the mean or average

prediction of the individual trees is the output. RF

corrects for DTs' tendency to over�t to their training

set, reducing variance at the expense of a small increase

in bias and some loss of interpretability [41].

3.3.6. Support Vector Machines (SVM)

SVM is a supervised ML algorithm used for both

classi�cation and regression problems. The objective of

the SVM algorithm is to �nd a hyperplane in an N-

dimensional space that distinctly classi�es the data

points. SVM kernel is a function that takes low-

dimensional input space and transforms it into higher-

dimensional space, making it useful in non-linear

separation problems. SVM chooses the extreme

points/vectors that help in creating the hyperplane,

which are called support vectors. SVM is one of the

most popular supervised learning algorithms used for

classi�cation and regression problems [42].

3.3.7. XGBoost (XGB)

XGB, short for eXtreme Gradient Boosting, is an

optimized distributed gradient boosting library

designed for ef�cient and scalable training of ML

models. It is an ensemble learning method that

combines the predictions of multiple weak models to

produce a stronger prediction. The algorithm

implements gradient boosting, a powerful ensemble

learning technique, to build DT models. XGB is highly

customizable and allows for �ne-tuning of various

model parameters to performance optimization [43].

We used the training set to train these models one-by-

one, while the test set served as an independent dataset

to evaluate their performance and assess their

generalization ability. Each algorithm underwent a

training process where it learned from the training data

by identifying patterns and relationships between the

input features and the target variable, which was the

presence or absence of CVD in this case.

3.4. Performance Metrics

After training of the ML models, we evaluated their

performance using standard evaluation metrics to

assess their predictive capabilities, including Accuracy,

Precision, Recall/Sensitivity, F1 score, and the Area

Under the Receiver Operating Characteristic curve

(AUC-ROC). These metrics are explained below:

TP = True Positives; the measure of positive predictions

made by the ML model which are correct.

TN = True Negatives; the measure of negative

predictions made by the ML model which are correct.

FP = False Positives; the measure of positive predictions

made by the ML model which are incorrect.

FN = False Negatives; the measure of negative

predictions made by the ML model which are incorrect.

Accuracy: Accuracy measures the proportion of

correctly predicted instances to the total number of

input samples [44]. Mathematically,

Precision: Precision measures the ratio of TP

predictions to the total predicted positives

measures [44]. Mathematically,

Recall/Sensitivity: Recall, also known as Sensitivity

or the True Positive Rate, is a measure of a model's

ability to correctly identify all relevant instances [44].

Mathematically,

Both Recall and Precision are measures of a model's

performance in a binary classi�cation problem, and

they are based on relevance. Recall is used to minimize

FNs and is important in domains such as medical,

where missing a positive case has a much bigger cost

than predicting FNs.

Accuracy  =  
T P + T N

T P + T N + FP + FN

P recision =
T P

T P + FP

Recall =
T P

T P + FN
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F1 Score: F1 score is an evaluation metric that

combines Precision and Recall scores of a model to

assess its predictive skill. It is calculated as the

harmonic mean of Precision and Recall scores,

providing a balance between the two metrics. F1

score is used to evaluate the performance of a model

in binary and multi-class classi�cation problems

and is designed to work well on imbalanced data.

Mathematically,

AUC-ROC: The AUC-ROC score measures the Area

under the Receiver Operating Characteristic Curve. It

ranges from 0 to 1, with higher values indicating

better model performance. The AUC is an effective

and combined measure of Sensitivity and Speci�city

that describes the inherent validity of diagnostic

tests, especially in medical diagnostic test

evaluation. The higher the ROC, the better the model

is at distinguishing between patients with the

disease and no disease [45]. The ROC curve provides a

graphical representation of a classi�er's

performance, and the AUC provides an aggregate

measure of performance across all possible

classi�cation thresholds (See Fig 4). The AUC is an

overall summary of diagnostic accuracy, and it

equals 0.5 when the ROC curve corresponds to

random chance and 1.0 for perfect accuracy [46].

F1 Score =
2 ∗ P recision ∗ Recall

P recision + Recall
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Fig 4. Receiver Operating Characteristic Curve

By calculating these evaluation metrics for each model,

we gained insights into their strengths and weaknesses

in predicting CVD risk. This information allowed us to

compare the performance of different models and

identify the best models.

3.5. Hyperparameter Optimization

To optimize the performance of the ML models, we

employed a Hyperparameter Tuning process.

Hyperparameters are adjustable parameters that

determine the behavior and performance of the models.

Grid Search Cross Validation (GSCV) and Randomized

Search Cross Validation (RSCV) techniques were utilized

to explore different combinations of hyperparameters

and identify the optimal con�guration that maximizes

the model's performance.

3.5.1. Grid Search Cross Validation (GSCV)

GSCV de�nes a grid of possible hyperparameter values

and systematically searching through all combinations

to �nd the best set of hyperparameters. GSCV

exhaustively evaluates the models' performance for

each combination using Cross Validation (CV), which

helps in assessing the generalization capability of the

models. The best set of hyperparameters is chosen

based on the highest CV Accuracy score, the optimal

value for the hyperparameters, and the best model that

has the best hyperparameter [47].

3.5.2. Randomized Search Cross Validation

(RSCV)

RSCV involves de�ning a range of possible

hyperparameter values and randomly sampling

combinations to �nd the best set of hyperparameters.

RSCV evaluates the models' performance for a random

subset of hyperparameters using CV, which helps in

assessing the generalization capability of the models.

We can control the number of iterations in RSCV to

balance the trade-off between computation time and

search space exploration [48].

RSCV is more ef�cient than GSCV, especially when the

search space is large. However, it may not guarantee

�nding the optimal set of hyperparameters, but it can

discover new combinations that GSCV may miss [49].

By applying these techniques, we �ne-tuned the

hyperparameters of the models and optimized their

performance.
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4. Results

In this section, we present the results of the various ML

algorithms we evaluated in our study. The evaluation

was performed on an Apple MacBook Pro with an M2

Pro chip, which features a 10-core CPU, 16-core GPU, 16-

core Neural Engine, and 16GB uni�ed memory. Table 4

and Fig 5 summarizes the best results obtained for each

algorithm, including Accuracy, Precision, Recall, F1

Score, and AUC-ROC. Additionally, we provide the

results from the Grid Search Cross Validation (GSCV)

and Random Search Cross Validation (RSCV) techniques

in Tables 5 and 6, respectively.

The AdB and RF models achieved an Accuracy of 0.8689,

Precision of 0.8766, Recall of 0.8689, F1 Score of 0.869,

and an AUC-ROC of 0.8734. This indicates that the AdB

and RF models performed well in accurately predicting

CVD and had a high discrimination ability.

The DT model exhibited lower performance compared

to other models, with an Accuracy of 0.6885, Precision

of 0.7047, Recall of 0.6885, F1 Score of 0.6874, and an

AUC-ROC of 0.6959. The lower scores suggest that the

DT model had limitations in accurately predicting CVD

risk and had a lower discriminatory power.

The KNN model achieved an Accuracy of 0.7869,

Precision of 0.7914, Recall of 0.7869, F1 Score of 0.7872,

and an AUC-ROC of 0.7895. These results indicate

moderate performance.
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Model Accuracy Precision Recall F1 Score AUC-ROC

AdB 0.8689 0.8766 0.8689 0.869 0.8734

DT 0.6885 0.7047 0.6885 0.6874 0.6959

KNN 0.7869 0.7914 0.7869 0.7872 0.7895

LR 0.8525 0.864 0.8525 0.8525 0.8582

RF 0.8689 0.8766 0.8689 0.869 0.8734

SVM 0.8525 0.864 0.8525 0.8525 0.8582

XGB 0.8525 0.8532 0.8525 0.8526 0.8528

Table 4. Best Performance Metrics of Different ML Algorithms
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Fig 5. Best Performance Metrics of Different ML Algorithms

The LR, SVM, and XGB models demonstrated similar

performance with Accuracy ranging from 0.8525 to

0.8689 and Precision, Recall, F1 Score, and AUC-ROC

values around these accuracy levels. These models

achieved good predictive accuracy and discrimination

ability, making them reliable choices for predicting

CVD.

Overall, the results suggest that the AdB, LR, RF, SVM,

and XGB models performed well, with high Accuracy,

Precision, Recall, F1 Score, and AUC-ROC values. The

DTs and KNNs models showed comparatively lower

performance in our study.

5. Discussion

In this study, we evaluated the performance of various

ML algorithms for CVD risk prediction. Our results

showed that the AdB, RF, LR, SVM, and XGB models

achieved higher Accuracy, Precision, Recall, F1 Score,

and AUC-ROC compared to the DT and KNN models.

The AdB and RF models demonstrated the best

performance, with an AUC-ROC of 0.8734. These models

exhibited high predictive accuracy and discrimination

ability, indicating their potential to be used for the

prediction of 10-year risk CVD.

On the other hand, the DT model exhibited lower

performance compared to the other models, with an

AUC-ROC of 0.6959. The lower scores suggest

limitations in the DT model's ability to accurately

predict CVD risk and its lower discriminatory power.

Comparing our results to traditional CVD risk

prediction models, such as the FRS, RRS, AHA/ACC

Pooled Cohort Equations, ASSIGN Score, and QRISK, our

ML-based models showed competitive or superior

performance. The AUC-ROC values achieved by our top-

performing models ranged from 0.7895 to 0.8734, while

traditional models typically exhibited AUC-ROC values

ranging from 0.6 to 0.85. Fig 6 illustrates the

comparison of AUC-ROC values between ML models

and the average value of traditional models.
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Fig 6. AUC-ROC Values of Different ML Algorithms Compared to The Average AUC-ROC Value

of Traditional Models*

Our �ndings support previous studies highlighting the

limitations of traditional models for CVD risk

prediction. ML-based predictive models offer an

alternative approach by leveraging a wide range of data,

handling missing data effectively, and identifying novel

predictors. By incorporating a more comprehensive set

of risk factors, ML models can enhance the accuracy

and personalization of CVD risk prediction.

However, it is important to acknowledge the limitations

of our study. Firstly, the performance of the ML models

was evaluated using a speci�c dataset, and the

generalizability of the results to other populations or

settings should be further investigated. Additionally,

the selection of ML algorithms and hyperparameter

tuning may in�uence the results, and alternative

algorithms or parameter settings could yield different

outcomes.

ML models heavily rely on the quality and

representativeness of the training data. Biases, errors,

or missing information in the data can potentially

impact the accuracy and generalizability of the models.

Therefore, ensuring high-quality, diverse, and well-

curated datasets is crucial to maximize the potential of

ML models in CVD risk prediction.

While our study has provided valuable insights into the

application of ML for CVD risk prediction, there are

several avenues for future research and improvement.

First, expanding the training dataset by incorporating a

larger and more diverse population would enhance the

generalizability of the models. Additionally, integrating

additional data sources such as genetic information,

environmental factors, and lifestyle behaviors could

further improve the accuracy and precision of the

predictions.

Another potential area for future research is the

development of ensemble models that combine the

strengths of multiple ML algorithms. Ensemble

methods, such as stacking or boosting, have the

potential to leverage the individual strengths of

different algorithms and improve overall performance.
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Model Accuracy Precision Recall F1 Score AUC-ROC

AdB 0.8689 0.8711 0.8689 0.8691 0.8707

DT 0.6885 0.7047 0.6885 0.6874 0.6959

KNN 0.7705 0.7729 0.7705 0.7709 0.7716

LR 0.8525 0.8640 0.8525 0.8525 0.8582

RF 0.8689 0.8766 0.8689 0.8690 0.8734

SVM 0.8361 0.8436 0.8361 0.8362 0.8404

XGB 0.7705 0.7848 0.7705 0.7701 0.7771

Table 5. Performance Metrics of Different ML Algorithms Using Grid Search Cross Validation (GSCV)

Moreover, exploring explainability techniques to better

understand the underlying factors contributing to the

predictions of ML models can provide valuable insights

for clinical decision-making.

qeios.com doi.org/10.32388/1SVUCI 17

https://www.qeios.com/
https://doi.org/10.32388/1SVUCI


Model Accuracy Precision Recall F1 Score AUC-ROC

AdB 0.8689 0.8766 0.8689 0.8690 0.8734

DT 0.6885 0.7136 0.6885 0.6855 0.6986

KNN 0.7869 0.7914 0.7869 0.7872 0.7895

LR 0.8525 0.8640 0.8525 0.8525 0.8582

RF 0.8689 0.8766 0.8689 0.8690 0.8734

SVM 0.8525 0.8640 0.8525 0.8525 0.8582

XGB 0.8525 0.8532 0.8525 0.8526 0.8528

Table 6. Performance Metrics of Different ML Algorithms Using Random Search Cross Validation (RSCV)

Furthermore, conducting prospective studies to validate

the performance of the ML models in real-world clinical

settings would be crucial. This would involve

implementing the models in clinical practice and

assessing their impact on patient outcomes, such as

reducing CVD burden and improving risk management

strategies.

These advancements have the potential to revolutionize

CVD risk assessment, enable personalized preventive

strategies, and ultimately contribute to reducing the

burden of CVD.

6. Conclusions

Our study provides compelling evidence that ML

models surpass traditional models in CVD risk

prediction, as indicated by higher AUC-ROC values. The

superior performance of ML models highlights their

potential to revolutionize CVD risk assessment and

management.

However, the interpretability of ML models can be

challenging. While these models can effectively identify

patterns and relationships in complex data,

understanding the underlying mechanisms and factors

in�uencing the predictions may not be straightforward.

Transparency and interpretability of ML algorithms

should be prioritized to build trust and facilitate the

adoption of these models in clinical practice.

Despite these limitations, ML models hold immense

potential in replacing traditional models for CVD risk

prediction. By incorporating a wide range of risk

factors, including both conventional and novel

predictors, ML models offer a more comprehensive and

personalized assessment of an individual's CVD risk.

This approach enables clinicians to tailor preventive

interventions and treatment strategies according to

each patient's speci�c risk pro�le, ultimately improving

patient outcomes.

Furthermore, ML models, having the ability to

continuously learn and adapt as new data becomes

available, ensure that risk prediction models stay up to

date with evolving knowledge and can better capture

the changing landscape of CVD risk factors and trends.

By harnessing the power of ML in CVD risk prediction,

we have the potential to reduce the burden of CVD on

individuals, healthcare systems, and the society. Early

identi�cation of individuals at high risk of developing

CVD allows for timely interventions and lifestyle

modi�cations, leading to prevention, better

management, and improved overall health outcomes.
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Code

The code used in this study to evaluate the ML models

can be found at: https://github.com/simrandahia/CVD-

RISK-PREDICTION.git
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