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Abstract

Background: Cancer cells have exquisite metabolic activity in the glycolysis pathway compared to normal cells, which

has been shown to provide them with sufficient fuel and molecular building blocks to maintain their proliferation.

Inhibition of glycolytic pathways could therefore be an approach to target cancer. In this study, we sought to find the

general categories of cancer cell responses to antiglycolytic agents, which could help predict cancer cell responses to

drugs.

Methods: Gene expression profiles from 199 experiments were downloaded from the GEO database and transformed

into gene fold-changes. The most important genes were selected using the ATC top-value method and the samples

were partitioned using "Spherical k-means" clustering, both methods being deemed superior by the authors of the cola

package. The one-sample chi-square test was used to investigate the predominance of samples in the clusters,

followed by the Clopper-Pearson exact test to estimate this proportion of predominance. Signature genes were

identified using the F-test for differential analysis; these were grouped using k-means clustering, and each group was

functionally enriched with Gene Ontology and Reactome terms to extract biological significance.

Results: Three responses were found. The first showed negative regulation of the mitotic cell cycle and associated

intracellular activities and their regulation, as well as negative regulation of the cellular response to stress and DNA

damage and antigen processing and presentation via MHC class I. The second response showed positive regulation

and the third showed no effect on the above processes. In addition, the tissue samples were not distributed in a way

that favored certain classes, an observation that demonstrates that the classification is sensitive to treatment.

Conclusions: We believe that cancer cells function through "molecular states" that are detectable by artificial

intelligence and could potentially replace conventional cancer classifications. By studying the response of the cancer

state to a given treatment, we can extrapolate this response to all cell lines that are already in that molecular category.

Background
In the 1920s, Otto Warburg and his colleagues observed that tumors took up prodigious amounts of glucose compared to

what was observed in the surrounding tissues. Upon investigation, glucose fermentation was detected in these cells,

which produced lactate even in the presence of oxygen, hence the inspiration for the term "aerobic glycolysis" [1][2]. The
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paradoxical abundance of this form of glycolysis in cancer cells is called the "Warburg effect". Knowing that the catabolism

of glucose to lactate has an extremely low energy yield, a high rate of glucose consumption is thus required to meet the

energetic and anabolic demands of cancer cells [3]. In fact, glycolysis provides numerous metabolic intermediates that can

be used for de novo synthesis of nucleotides, amino acids, lipids, and NADPH that are essential for promoting rapid cell

proliferation. Cancer cells thus have a different metabolism than regular cells, allowing them to maintain a high rate of

proliferation and resist apoptosis signals [4].

This said, inhibition of glycolytic pathways could represent a selective approach in cancer research to develop targeted

anticancer agents. Chen [5] and Abdel-Wahab [6] and colleagues reviewed the different modalities that exist to forestall

glucose utilization by cancer cells. Over the years, many inhibitory drugs have been discovered and tested on cancer

cells, followed by gene expression evaluation to find better drugs with a lethal metabolic impact on cancer cells. Several of

these glycolytic inhibitors are currently in preclinical and clinical studies that are showing promising results [5][7][8].

In this article, we will be classifying the response of various cancer cells to glycolysis inhibitory drugs in an effort to find a

hidden pattern that can summarize the behavior of cancer cells when exposed to anti-glycolytic agents. Myriads of papers

have been published describing the discovered biological functions and morbid consequences of these agents on multiple

cancers but none, to our knowledge, have sought to find a common denominator linking the treatments’ outcomes. This

type of classification should help predict the response of malignant cells based on basic cancer characteristics such as

tissue of origin or antiglycolytic agent used.

 

Methods

Data processing

Gene expression profiles were downloaded from the GEO database. The terms entered in the search engine were

“Cancer” followed by the name of the agent, or any of the alternative names for the same agent. All the dataset accession

numbers and their respective drugs and cell lines can be found in the additional files. The filters used with every search

were “Homo sapiens” for organisms, “Expression profiling by array” for the study type, and “Series” under entry type. The

inclusion criteria we based our judgment on for choosing the datasets were:

1. Expression data should only be from single-channel microarray chips. Agilent, Affymetrix, and Illumina are the only

accepted manufacturers

2. Cells should be treated in an artificial in vitro milieu (no mice xenografts etc.)

3. Cells should not have been transfected or mutated to affect the targeted pathway or been made resistant to treatment

(only wild cell types under the influence of chemicals)

4. Cells should not have undergone secondary treatments (other than the vehicle and the drug of interest) before RNA

extraction

5. Coding RNA, particularly cytoplasmic or total extractions, are preferred

6. The glucose deprivation medium should contain less than 1g/L, i.e., 5.6 mM, of glucose

7. Cells should be quintessentially cancerous, not benign, with no other superimposed disease

8. The data series should contain both controls and treatments.

The raw files downloaded were either in CEL or TXT format. Few TXT files contained processed data, and these were
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simply used as-is. For the Illumina Beadchips, R’s limma [9][10] package was used and the function neqc() was employed

to perform background correction followed by quantile normalization. It should be noted that negative control probes were

not always available, therefore the detection p-values of each probe were exploited instead. For probe annotation, the

annotate package was chosen [11], with illuminaHumanv3.db as the annotation data [12], and “gene symbol” as the

annotation. For Affymetrix chips, limma, affy [13], and oligo [14] were used to process the CEL files. The rma() function

normalized the microarray signals and the annotation data packages were adapted to the version of Affymetrix chips

available [15][16][17][18][19][20][21][22]. The Agilent chips were read using likewise the limma package, annotated according to

the chip versions [23][24][25], background-corrected following the normal-exponential method, and quantile normalized.

After reading and normalizing the signals, the controls and their respective treatments were exported into excel files. This

resulted in a total of 798 microarrays (517 treated assays and 281 controls) comprising 73 cell lines from 17 different

tissues treated with 26 different anti-glycolytic agents. An additional 1014 microarrays were also downloaded pertaining to

only one study (666 treated assays and 348 controls), which included 59 cell lines from 11 tissues treated with either

sorafenib or rapamycin at different drug doses and exposure durations. The log base 2 foldchange (FC) was then

calculated for each treated chip, and all the FCs were lastly fitted into two matrices: the first consisted of 199 foldchange

retrievals, the second 666. The matrices thus contain expression data in form of FC.

 

Consensus Clustering

Consensus clustering was performed using the cola package (version 1.8.1). This data classification technic was,

foremost, done on the 199 experiments found on the GEO, for the sake of finding a common denominator response to all

glucose-challenged cells. Data augmentation was performed on the top 6 treatments, each having at least 5% sample

prevalence among the experiments at hand, which increased the number of samples to 50 per treatment.Augmentation

was achieved by applying the semiArtifical package using unsupervised tree set data generation [26]. It confers

statistical validation on the repartition of the experiments into their corresponding classes. Lastly, a thirdclustering was

performed on specific treatments, namely rapamycin and sorafenib from the 1014-sample accession, to study the effect of

sample classification when controlling for the treatment used. Before performing the consensus partitioning, an important

step was to clean up the input matrix. cola provides the adjust_matrix() function that proceeds as follows:

Rows with >25% of treatments having missing values are removed 

1. A function is used to impute missing data, using nearest neighbor averaging

2. In every row in the matrix, values larger than the 95th percentile or less than the 5th percentile are replaced by

corresponding percentiles

3. Rows with zero variance are removed

4. Rows with variance less than the 5th percentile of all row variances are removed.

After cleaning, Gaussian normalization was performed on each sample to make the sample ranges comparable; this

scaling method was used as it demonstrated better results compared to other scaling methods. For clustering, the top n

features were first selected by the ATC top-value method (or "Ability To Correlate to other rows"), which was introduced

and recommended by cola’s authors. Then, the matrix was scaled by the selected rows and randomly sampled; these

samples were partitioned by the "Spherical k-means" clustering method, a variant of the standard k-means clustering,
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which was shown to be superior to other clustering methods by the authors. Finally, the sampling and partitioning process

was repeated 50 times to obtain a list of partitions.

The best-fitting number "k" of subgroups was evaluated using the average silhouette score, ambiguous clustering

proportion (PAC) score, concordance, and Jaccard index. The PAC score measures the proportion of the ambiguous

subgrouping; 1-PAC thus represents the unambiguous, which will be used hereafter. Concordance is defined as the

proportion of concordant pairs of samples divided by the total number of possible evaluation pairs; it is a metric to

evaluate the predictions made by the clustering algorithm. The silhouette score measures how similar an object is to its

class compared to other classes. The Jaccard index is the ratio of the number of sample pairs that are both in the same

subgroup in the partitions at k “and” k – 1 and the number of sample pairs that are both in the same subgroup in the

partitions at k “or” k – 1. That said, the best number of subgroups is determined based on the majority vote among the

highest 1-PAC score, highest mean silhouette, and highest concordance and a PCA plot (Principal Component Analysis

plot) showing nonoverlapping and well-delimited groups.

 

Statistical Inferences

Since the data are categorical, the goodness-of-fit test (i.e., one-sample chi-square test) was used to investigate the null

hypothesis of whether the sample frequencies are equally distributed among the partitioned clusters. If not uniformly

distributed, we will proceed with calculating the Clopper-Pearson exact test to estimate the population proportions in each

cluster. The latter test was used as an alternative to the Wald test knowing that it performs better when it comes to

calculating confidence intervals.

 

Functional Analysis

The “signature genes” were then identified using the F-test for differential analysis. Signatures are simply those rows that

show statistically significant specificity in one or more subgroups. These were further grouped by patterns among

subgroups using k-means clustering and the appropriate number of signature groups was automatically selected.

Functional enrichment was applied to each group of signatures separately. Gene ontology (GO) and Reactome

enrichment analysis were performed by applying the R packages ClusterProfiler [27] and ReactomePA [28], with cola’s

function functional_enrichment(). GO terms were then clustered and visualized as heatmaps by the R package

simplifyEnrichment [29].

 

Results
Two matrices were constructed, the first containing 199 experiments and the second 666. The rows amount to 33622,

representing the studied genes as expression foldchanges. The adjust_matrix() function of the cola package was used to

clean the matrices. In the following, the ratio of "samples subjected to a treatment in a certain class" to the "total number

of samples for that treatment in all classes" will be used instead of the proportion of samples for 

that treatment to the total samples in the corresponding class. The same applies to the evaluation of tissue frequencies.
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Figure 1. eCDF curve and PCA plot of the consensus clustering.  (a) eCDF curve of the consensus matrix from partition by ATC:skmeans, a

good k can be selected by aiming at the flatness of the eCDF curve. (b) PCA on 16127 rows with the highest ATC scores, 188 out of 195 confident

samples were kept in their classes (silhouette > 0.8)

In the main matrix of 199 columns, 4 treatments were removed because more than 80% of their values were missing,

resulting in 195 samples and 16127 significant genes filtered for analysis. Consensus partitioning recommended grouping

the samples from the treatments into 5 classes, and alternatively into 2 or 3. Table 1 shows the 1-PAC, mean silhouette,

concordance, and Jaccard evaluation indices for all classes of number "k", with a maximum k of 6. Due to the substantial

overlap between the different class elements visualized on the PCA graph for k equal to 5 classes, and having realized

that the evaluation indices for 2 and 3 classes are almost identical, the choice of 3 classes was preferred. The cumulative

distribution function (CDF) curves for a maximum k of 6 and the PCA plot for k equal to 3 are shown in Figure 1A and

Figure 1B. Only treatments with silhouette scores ≥0.8 were retained in their corresponding classes, resulting in a new

total average silhouette score of 0.98, and a new total of 188 significant treated samples.

Table 1. Clustering evaluation indices for a maximum k of 6

Class k 1-PAC
Mean
Silhouette

Concordance Jaccard

2 2 1.00 0.97 0.99 0.51

3 3 0.99 0.96 0.98 0.60

4 4 0.85 0.90 0.94 0.70

5 5 0.91 0.88 0.95 0.72

6 6 0.82 0.72 0.86 0.92

 

Samples were not uniformly distributed (p = 0.007), with class 1 having the highest number of treated cells (77), followed

by class 2 (68) and class 3 (43). Samples treated with genistein, metformin, glucose deprivation (GS), phenformin,

BEZ235 and selumetinib accounted for the majority of the GEO samples (65.43%), each with a minimum ratio of >5%.

Because the latter drugs have a sufficient number of samples, they are used to analyze the division of treatments into
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classes and will then be augmented to 50 samples each. The one-sample chi-square test was also applied to the 6

toptreatments and showed that metformin, phenformin, and selumetinib were distributed in far from unequal proportions in

the three classes, with no specific distribution pattern for their treated tissues. For the rest, the distribution was not

uniform: all 13 BEZ235 samples and 86.67% (CI: 59.54-98.34% and p <0.01) of the GS samples were in class 1, 80% (CI:

64.35-90.95% and p <0.001) of the genistein-treated cells were present in class 2, and all drug combinations (2DG or GS

combined with phenformin, metformin, or buformin) were in class 3. The p-values for genistein, GS, and BEZ235 thus

prove that they have a prevalence of response in a single class, with ratios significantly >0.5. These results are further

illustrated in Table 2.

Table 2. The proportion of the most relevant treatments in each cluster to their total  

  Class 1  Class 2  Class 3   

Treatment n % p  % p  % p �2 p  

Genistein 40 12.50% <0.001  80.00% <0.001  7.50% <0.001 <0.001  

Metformin 30 20.00% <0.005  30.00% 0.043  50.00% 1 0.123  

GS 15 86.67% <0.01  - -  13.33% <0.01 <0.005  

Phenformin 14 21.43% 0.057  35.71% 0.424  42.86% 0.791 0.607  

BEZ235 13 100.00% <0.001  - -  - - <0.001  

Selumetinib 11 45.45% 1  45.45% 1  9.09% 0.01 0.234  

Note. p=tests for the null hypothesis, under which we assume that the random variable follows a binomial distribution with size n and probability of success
π. �2 p= p-value for the �2 one-sample test.
 

 

With respect to cell types, all breast, liver, uterus, bone, and colon tissues had a sample prevalence greater than 5%. The

one-sample chi-square test resulted in a p-value >0.05 for colon and liver, <0.05 for bone, and <0.005 for breast and

uterus which reflects significant ratio differences between classes. This came alongside an ambivalent prevalence

regarding classes 1 and 2 (CI: 17.86-44.61% and 39.32-68.19%) for housing the majority of treated breast samples,

classes 2 and 3 (CI: 45.72-88.11% and 8.66-49.1%) for uterus, and classes 1 and 3 (CI: 30.76-78.47% and 17.3-64.25%)

for bone samples, none of which has a confidence interval excluding 0.5 and all of which instead have overlapping

confidence intervals (Table 3). This demonstrates that no tissue has a predominance of samples in a certain class, unlike

the treated samples.

Table 3. The proportion of the most relevant tissues in each cluster to their total   

  Class 1  Class 2  Class 3    

Tissue n % p  % p  % p �2 p   

Breast 50 30.00% 0.007  54.00% 0.672  16.00% <0.001 0.004   

Liver 29 24.14% 0.008  44.83% 0.711  31.03% 0.061 0.381   

Uterus 20 5.00% <0.001  70.00% 0.115  25.00% 0.041 0.001   

Bone 18 55.56% 0.815  5.56% <0.001  38.89% 0.481 0.030   

Colon 17 47.06% 1.000  35.29% 0.332  17.65% 0.013 0.327   

Note. p=tests for the null hypothesis, under which we assume that the random variable follows a binomial distribution with size n and probability of
success π. �2 p= p-value for the �2 one-sample test.
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Figure 2. Heatmap of the signature genes and their regulation in each class. 2372 signature genes (14.7% of total genes) chosen for an FDR <

1e-06. These characterize the 3 classes, the first class being downregulated for the first group of signature genes and upregulated for the second

group, class 2 has the opposite pattern, and class 3 has no significant regulation for both groups.
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Figure 3. Heatmap of the similarities of significant GO terms from the 195-sample gene list . These resulted from the enrichment (using FDR <

0.01) of the genes in either group. The green-red columns show for which group (1 or 2) the respective GO terms are significant. The word cloud

annotation visualizes and highlights the biological functions in each GO group. GO enrichment analysis was performed by a hypergeometric test.

Signature genes were identified using an FDR threshold of <10-6. K-means clustering on the genes yielded two signature

groups, with the first group being more biologically significant than the second. The "signature heat map" showing the

classification of the samples and that of the genes is shown in Figure 2. Functional analysis of the first group using Gene

Ontology (GO) terms for biological properties resulted in 28 term clusters (Figure 3), with a Benjamini-Hochberg adjusted

p-value <0.001. The most relevant ones describe mitotic cell cycle process and regulation; DNA/nucleotide metabolic

process; DNA replication and repair; chromosome organization and nuclear division; nucleocytoplasmic RNA transport;

cellular response to stress and DNA damage; and antigen processing and exogenous peptide antigen presentation via

MHC class I. After clustering of Reactome terms, the pathways involved were related to the cell cycle, mitotic G1 phase

and G1/S transition, G2/M transition, DNA damage response and p53-dependent G1 checkpoint, and SUMOylation of

RNA binding proteins. These functions and pathways are shown to be downregulated in class 1, upregulated in class 2,

and rather unaffected in class 3 (Figure 2). The full results can be found in the additional files.

Consensus partitioning of the augmented samples of the top 6 treatments resulted in two classes, and Pearson's chi-

square test was used to compare the two groups of the augmented samples to the three groups obtained from the

partitioning of 195 samples. Although the frequency counts of the augmented samples showed no statistical consistency

with the distribution of the original samples, it should be noted that the resulting first class was closest to class 2 of the

195-sample clustering (having the highest p-value), and vice versa for the second class. Class 3 was statistically unstable

in finding the class that best included it. As an illustration, BEZ235 and GS were seen exclusively in the second class

(closest to class 1), most genistein-treated samples were in the first class (closest to class 2), and the same was true for

phenformin and selumetinib, while metformin was ambivalent to both classes. It is also worth noting that the regulations

are also consistent with those described above; namely the downregulation of mitotic cell cycle processes and chromatin
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assembly in the second class, and upregulation in the first. The analysis can be reviewed in the additional files.

Figure 4. Heatmaps of the top signature genes for sorafenib and rapamycin samples.  (a) Sorafenib’s heatmap shows ATC:skmeans clustering

into 4 classes and (b) 3 classes for rapamycin. Both drugs had 2 distinct signature groups characterizing the classes’ biological properties.

Figure 5. Heatmap of the similarities of significant GO terms (FDR < 0.01) from sorafenib’s gene list.  These originated from the sorafenib

gene list using ATC:skmeans clustering method.
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Figure 6. Heatmap of the similarities of significant GO terms (FDR < 0.01) from rapamycin’s gene list.  These originated from the rapamycin

gene list using ATC:skmeans clustering method.

Additional consensus clustering was performed on 341 sorafenib-treated and 325 rapamycin-treated samples (from the

accession of 1014 samples), each treatment having mainly 3 available doses given for 3 exposure times. Consensus

partitioning of sorafenib samples resulted in 4 classes (1-PAC=0.977, silhouette= 0.946, concordance=0.977), and 3

rapamycin classes (1-PAC=1, silhouette= 0.982, concordance=0.992) (Figure 4). This classification controls for the drug

used, leaving room for tissue-, dose-, and duration-based classification and interpretation. The classes obtained for

sorafenib simply shared the samples almost uniformly between them, with no preference for any tissue (except breast,

lung, and skin, which were more common in classes 1 and 2), treatment duration, and dose; therefore, no hidden trends

or categorization of these parameters could be inferred. As with rapamycin, tissues were almost evenly distributed among

the three classes (except blood, which was more prevalent in class 1), but sensitivity to dose and duration was salient,

i.e., class 1 included reactions lasting only 2 hours, 24 hours in class 2 and 6 hours in class 3. The signature genes for

sorafenib and rapamycin were classified into two groups both of which showed significant biological properties for

sorafenib (summarized in Figure 5), but the second group has no significant biological translation for rapamycin (Figure 6).

The cluster-specific biological regulations of the functional groups are illustrated in Figures 4A and 4B for sorafeniband

rapamycin, respectively. A full discussion of the results can be found in the additional files.

It was deemed unnecessary to combine the 666 experiments with the 195 and perform a clustering analysis because of

the potential bias that could result from adding 300 samples treated with only 2 agents, to 195 samples treated with a total

of 26 agents. In addition, partitioning that maintains constant the tissue variable and allows for a treatment-based study

was also deemed impossible because of the limited number of samples per tissue.

 

Discussion
Consensus clustering was performed on 199 samples comprising 26 different treatment approaches, with each treatment
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having different doses and time of drug exposure. This range of treatments means that the sole purpose of clustering is to

find a typical biological regulatory pattern at each resulting cluster. The clustering resulted in 3 meaningful response

classes. The first class, class 1, contains the substantial majority of BEZ235 and GS samples and shows down-regulation

of the mitotic cell cycle, its regulation and all associated intracellular activities, as well as down-regulation of the cellular

response to stress and DNA damage and of antigen processing and presentation via MHC class I. Class 2 contains

almost all genistein samples and shows negative regulation of all the above biological processes. Finally, all drug

combinations, i.e., 2DG or GS combined with phenformin, metformin, or buformin, fell into class 3, which includes cells

that were not affected by the antiglycolytic agents. Augmentation of the data and then reclassification resulted in a

distribution of samples very similar to the main classification. Metformin, phenformin, and selumetinib were not unevenly

distributed among the three classes, thus showing no special pattern for their dispersion.

Furthermore, the tissue samples were not distributed in a way that favored certain response classes, an observation that

demonstrates that classification is treatment sensitive. This tissue independence was confirmed after classifying 341

sorafenib and 325 rapamycin samples: controlling for treatment resulted in a distribution of tissues that was not

disproportionate between classes, thus no tissue-type predominance in any class. Interestingly, the dose and duration of

treatment had an impact on the cancer response. All of the studies we reviewed for data interrogation, which examined

the response of specific cell lines to a single dose and duration of exposure of an antiglycolytic drug, demonstrated similar

biological functions to ours (GEO accession numbers of studies that demonstrated class 1 deregulation: GSE31058,

GSE97346, GSE59882, GSE79316, GSE73923, GSE59228, GSE36847, GSE25412, GSE114060, GSE96794,

GSE79246, GSE9008, GSE62663, GSE116387, GSE137553, GSE112079; and class 2 upregulation: GSE59704,

GSE5200, GSE85257, GSE112079. More information on the 69 studies is available in the additional files).

The goal of our study was to find categories of the response of treated tissues or to the drugs used, which could allow us

to predict the response of a cell line to any drug, or the response to a drug independently of the cell line, simply by

associating that drug or cell with its response category. In other words, we wanted to know if specific tissues respond

biologically in the same way to any antiglycolytic drug. This could be of interest in predicting the response of cancer cells

that have not been previously treated with an antiglycolytic agent, based on our knowledge of the biological response of

the tissue from which those cells originate. If this latter hypothesis proves to be unfounded, then it would be interesting to

know whether each agent has a specific response independent of the tissue treated, which would allow us to predict the

response of any cell just by knowing the type of agent administered. That said, we can state from what we have found that

antiglycolytic agents appear to have universal biological responses, making it possible to predict the effect of a drug

independently of the tissues tested given the statistically significant predominance of drugs in single classes.

Furthermore, it is not possible to predict the behavior of a tissue independently of the drug, as it has been shown that

tissues can have multiple responses under the influence of a single drug.

The reasons for this difference in drug/tissue distribution are not simple. It is partly due to the diversity of the experiments,

which included 79 cell lines, each with nuanced metabolisms, treated with 26 reagents at different doses and exposure

times. The mechanism of action of the drugs and the targeted pathways should explain much of this. Simply put, each cell

expresses the same biological pathways but at completely different levels of activity, due to endogenous factors, such as

developmental and differentiation programs and epigenetic states of the cells of origin, in conjunction with exogenous
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factors, such as mutagenic exposures, pathogens, and inflammation. The knowledge that each antiglycolytic agent acts on

pathways that are ubiquitous in all living human cells, regardless of lineage, should go a long way toward explaining why

the classification applies to drugs and not to tissues, and why responses differ greatly between drug classes.

It is reasonable to mention at this point that further in silico studies are needed to validate our observations. Asking for

more in vivo studies in order to have a larger population (more than 199) of experiments for classification and more

statistically significant results is theoretically advantageous, but practically useless knowing that we are asking for time-

consuming combinations of experiments (combining between thousands of cell types and infinite doses and exposure

times of antiglycolytic agents) that take us away from the purpose of this study and what it should verily evaluate and

explain. That said, we believe that cancer remains an ambiguous cellular mechanism and that there must be a hidden

pattern that links human cancers together, enabling the positioning of cancer cells on a categorizable continuum. A

limitation of this study is that we assumed a categorization of cancer by tissue type and expected that there would be

tissues with nearly unique and mutually exclusive molecular reactions that should quintessentially respond to anti-

glycolytic agents. This response-quintessence of tissues has been disproven in this study. That notwithstanding, the

classification of cancer cells based on data on chromosome morphology, DNA epigenetics and somatic variants, mRNA,

miRNA, and protein expression levels should be an alternative approach to the study of cancer drug responsiveness. The

latter attempts the individualization of the fundamental "molecular activity states" at the origin of malignancy, whichshould

uncover hidden biological patterns, not perceptible to the human brain, requiring artificial intelligence and network

analyses to detect them. It will also result in classes that can be used as "study units" that should complement the

traditional anatomical cancer classification system, or even replace it entirely.

Hoadly et al. had this same idea in 2014, hypothesizing that molecular signatures could provide a different taxonomy from

the current classification of pathology based on organ and tissue histology [30]. After analyzing 3,527 tumors from 12

different cancer types (dubbed "Pan-Cancer-12") in 2014, they recently presented a new integrative "PanCancer Atlas"

analysis including all TCGA tumors, or approximately 33 tumor types (i.e., ~10,000 samples) [31]. They first iteratively

clustered (either by hierarchical clustering or unsupervised consensus clustering) chromosome arm-level aneuploidy, DNA

methylation data, mRNA and miRNA expression profiles, and protein expression data. They then performed an integrative

clustering of all these types of data and were able to identify 28 distinct molecular subtypes, the closest to the idea of

"molecular activity states" to date.

 

Conclusion
Many studies have tested the effects of a single antiglycolytic drug on specific cell lines, but no study to date has sought to

find a commonality among all cancer cell responses to antiglycolytic agents used on cancer cells. In this study, we sought

to find categories of cancer cell responses to a large variety of antiglycolytic agents. This classification should give a

general idea of what to expect from any drug targeting glycolysis and may help predict the effect of drugs on cancer cells.

We found that there are 3 possible types of responses for all cancer cells treated with any antiglycolytic agent. This

classification seemingly depended on the treatments used but not the type of tissue treated. A better classification

approach to study the response of various cancers is to first classify all known cancers, which will help to disentangle the

different "molecular activity states" of cancers. These response categories can then help predict the molecular state
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response of cancer to a given treatment, and thus extrapolate that response to all cell lines that are already in that

molecular category.
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