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Equation
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The Sharma–Tasso–Olver (STO) equation is an integrable nonlinear partial differential equation that

arises in various physical contexts, including �uid dynamics, plasma physics, and nonlinear optics. In

this work, a complete analytical treatment of the travelling wave solutions of the STO equation is

provided. The analysis reveals a family of exact solutions broader than those found in the literature.
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1. Introduction

The Sharma–Tasso–Olver (STO) equation is a nonlinear partial differential equation (PDE) used in

mathematical physics and engineering. It is typically written in the form:

where   represents the wave pro�le depending on the spatial coordinate   and temporal coordinate 

, while   is a non-zero real parameter.

This equation has attracted considerable attention due to its mathematical richness and physical

relevance. Its double-dispersive nature makes it signi�cant for studying complex nonlinear wave

phenomena and soliton interactions in diverse physical systems, including �uid dynamics, plasma

physics, optical �bers, and ocean wave dynamics[1][2]. On the other hand, the STO equation belongs to the

Burgers hierarchy of equations and possesses integrability properties, including in�nitely many

symmetries and the existence of Lax pairs and Bäcklund transformations[3].
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Moreover, several generalizations of the STO equation have been proposed, including the conformable

fractional version[4], the external force version[5], and the generalized version with variable

coef�cients[6].

A standard technique for �nding exact solutions to PDEs like the STO equation is the travelling wave

reduction. This involves the search of solutions that maintain their shape while propagating at a constant

velocity. The reduction is given by the ansatz 

where  . The parameter    is the wave number and    represents the wave speed. We will

restrict ourselves to the case where   and   are both positive, for simplicity of the exposition.

Applying this transformation to equation (1) we obtain the third-order ordinary differential equation

(ODE): 

This ODE can be integrated once with respect to  , giving rise to the second-order ODE 

where   is an arbitrary constant.

A critical examination of the existing literature reveals a pattern: the vast majority of studies

investigating travelling wave solutions of the STO equation proceed by setting particular values for the

integration constant  , and frequently assuming implicitly  . This simpli�cation is common across

numerous papers, where different analytical techniques are applied to solve the STO equation, including

the  -expansion method[7], sub-equation methods[2], tanh-coth methods[8], extended hyperbolic

function method[9], and various other approaches[1][10][11][12]. The prevalence of this assumption appears

to be driven primarily by mathematical convenience, as many standard solution techniques are explicitly

designed for, or signi�cantly simpli�ed by, homogeneous equations.

However, from both mathematical and physical perspectives, there is no inherent reason why the

integration constant   must vanish. The general form of the ODE with   represents a broader class

of solutions. The systematic neglect of this non-zero constant case constitutes a signi�cant gap in the

understanding of the full solution space of the STO equation.
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In this paper, we present a comprehensive analysis of the travelling wave solutions of the STO equation

with explicit consideration of the non-zero integration constant case, which signi�cantly extends the

insight into the dynamics of the system. Our investigation employs basic techniques of mathematical

analysis, but represents, to the best of our knowledge, the �rst complete study of the STO travelling wave

ODE.

2. Travelling wave solutions of the STO equation

In order to classify the travelling wave solutions of the STO equation (1), we apply to the second-order

ODE (2) the transformation 

with   a smooth function to be determined. We obtain the following third-order ODE: 

The characteristic polynomial of this homogeneous linear equation with constant coef�cients is 

The nature of the roots of this depressed cubic depends on the sign of the discriminant, which is given

by 

Taking into account that  , the sign of   is determined solely by the parameters   and  :

Case 1: . This case occurs when    and  . The characteristic polynomial has three

distinct real roots, given by the expression 

for  .

This way, the general solution to equation (4) is given by 

where  ,  , and   are arbitrary constants. The corresponding solution to equation (2) is given by 

y = k ,
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Assuming, without loss of generality, that  , we can rename  , and then

the general solution to the STO equation (1) is given by 

where   and   are the parameters.

In Figure 1, we can �nd a graphic representation of solution (10) for particular values of the parameters.

Figure 1. Graphic representation of solution (10) for 

.

Case 2: . This happens when   and  ; or when   and   takes any value. In this

case, the characteristic polynomial has one real root and a pair of complex conjugate roots. The real root

is given by the expression

On the other hand, the complex conjugate roots are given by  , where 

y(ξ) = k .
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Observe that  , so the general solution to equation (4) can be written as 

where  ,  , and   are arbitrary constants. The corresponding solution to equation (2) is then 

By assuming  , we can de�ne  , in such a way that we obtain the three-

parameter family of solutions to the STO equation (1): 

where  ,   and   are arbitrary constants. This solution is visualized in Figure 2 for particular values of

the parameters.
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Figure 2. Graphic representation of solution (15) for 

.

For  , and assuming  , we can de�ne  , and we have the corresponding two-

parameter family of solutions to the STO equation (1) given by 

This solution is visualized in Figure 3 for particular values of the parameters.

C = 10, = 1, = 2, α = 1, ω = 1, k = 1C1 C2

= 0A3 ≠ 0A2 = /C1 A1 A2

u(x, t) = k .
(a + b) cos(b(kx − ωt)) + (a − b ) sin(b(kx − ωt))C1 C1

cos(b(kx − ωt)) + sin(b(kx − ωt))C1

(16)
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Figure 3. Graphic representation of solution (16) for 

.

Finally, if  , we can de�ne  , and we have the one-parameter family of solutions to

the STO equation (1) given by 

with   a parameter implicit in   and  .

Case 3: . This case occurs when   and we �x the value of the parameter   to 

The cubic (5) has a double root and a simple root. A straightforward factorization shows that the simple

root is 

and the double root is 

C = 10, = 1, α = 1, ω = 1, k = 1C1

= = 0A3 A2 =C1 A1

u(x, t) = ka − kb tan(b(kx − ωt)), (17)
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Therefore, the general solution to equation (4) is given by 

where  ,  , and   are arbitrary constants. The associated solution to equation (2) is given by 

Assuming  , we can rename  , and we obtain the two-parameter family

of travelling wave solutions to the STO equation (1) 

with parameters given by  . A graphic representation of this solution is shown in Figure 4 for

particular values of the parameters.

Figure 4. Graphic representation of solution (20) for 

.
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For  , and assuming  , we can rename  , and we obtain the one-parameter family

of travelling wave solutions to the STO equation (1) given by: 

with   a parameter.

3. The particular case 

In[10], N. A. Kudryashov considers equation (2) for the case   (equation (3.13) of[10]), and provides the

general solution in equation (3.17) of[10]. Translated into our notation, this family is expressed as 

The condition   is implicitly assumed in[10], and since 

equation (22) corresponds to Case 1 in our classi�cation: three disinct real roots. According to equation

(7), the roots are given by 

One can verify that substituting the roots (23) into equation (10) yields the same expression as equation

(22). Therefore, all the travelling wave solutions of the STO equation obtained from the assumption 

 are included in our classi�cation.

4. Conclusions

In this paper, we have presented a full classi�cation of the travelling wave solutions of the STO equation,

explicitly considering the general case with a non-zero integration constant   in equation (2). To the best

of our knowledge, this work represents the �rst complete study of the STO travelling wave ODE.

The classi�cation is based on the analysis of the characteristic polynomial (equation (5)) of the

transformed ODE (equation (4)), and in particular, on the discriminant  :
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When  , the characteristic polynomial has three distinct real roots, leading to solutions

expressed as combinations of exponential terms (equation (10)).

When  , there is one real root and a pair of complex conjugate roots, resulting in solutions

involving combinations of trigonometric and exponential terms (equations (15), (16), and (17)).

When  , the cubic has a double root and a simple root, yielding solutions that combine

exponential and polynomial terms (equations (20) and (21)).

These results signi�cantly extend the existing literature by introducing a broader family of exact

solutions and providing a more complete view of the solution space of the STO equation. This could have

implications for the study of complex nonlinear wave phenomena in various physical systems where the

STO equation is applied, such as �uid dynamics, plasma physics, and optical �bers.
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