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Construction of neural network architectures suitable for learning from both continuous and discrete

tabular data is a challenging research endeavor. Contemporary high-dimensional tabular data sets are

often characterized by a relatively small instance count, requiring data-ef�cient learning. We propose

HorNets (Horn Networks), a neural network architecture with state-of-the-art performance on

synthetic and real-life data sets from scarce-data tabular domains. HorNets are based on a clipped

polynomial-like activation function, extended by a custom discrete-continuous routing mechanism

that decides which part of the neural network to optimize based on the input’s cardinality. By

explicitly modeling parts of the feature combination space or combining whole space in a linear

attention-like manner, HorNets dynamically decide which mode of operation is the most suitable for a

given piece of data with no explicit supervision. This architecture is one of the few approaches that

reliably retrieves logical clauses (including noisy XNOR) and achieves state-of-the-art classi�cation

performance on 14 real-life biomedical high-dimensional data sets. HorNets are made freely available

under a permissive license alongside a synthetic generator of categorical benchmarks.
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1. Introduction

In recent years, neural network models have shown great promise when modeling complex real-life data

sets such as images, texts, and networks[1]. Data sets are most frequently represented in the form of

propositional tables. Bader et al.[2] discussed the link between propositional logic and feedforward neural
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networks. They have successfully demonstrated that non-conventional activations taking values on the

interval    need to be adopted to model simple propositional expressions. They also discuss how

such expressions can be composed into search trees and binary decision diagrams. Similar ideas were

explored by Al Iqbal[3], where decision trees were co-trained with neural networks to extract simple rules.

The more recent work of Labaf et al.[4]  also explored how background knowledge can be incorporated

into the learning of logical expressions by approximating the decision process of neural networks with

knowledge-aware logical rule learners.

In parallel, this work is also inspired to a large extent by the recent progress in neuro-symbolic machine

learning. For example, the works of Amizadeh et al.[5]  explored the link between logical induction,

coupled to low-level (neural) pattern recognition. Similarly, works like DeepProbLog[6]  explore the

language design required to bridge the two learning paradigms (i.e. extension of Prolog with a neural

predicate).

Such insights are key motivators of this study, as we show that neural networks can be used to produce,

and operate directly with interpretable logical expressions. The main contributions of this paper are the

following:

The rest of this paper is structured as follows. We begin by discussing the related work in Section  2,

followed by the proposed methodology and its theoretical implications in Section  3. In Section  4, we

present the considered experimental setting (on synthetic data in Section 4.1 and on real data in Section

4.2) , followed by the results in Section  5. Finally, in Section 6, we discuss the achievements and

drawbacks of this work and present future research directions.

[−1, 1]
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2. Related work

This section overviews some of the related work that impacted the development of HorNets. We begin by

discussing binarized neural networks, followed by the body of literature focusing on neuro-symbolic

learning.

Exploration of how rule lists can be transformed into networks capable of classi�cation was performed

by[7]. Their networks could account for AND, OR and NOT connectives, offering expressions in full

propositional logic. The sub�eld of studying neural networks that also resonates with the proposed

approach concerns binary neural networks. For example, the work of Rastegari et al.[8] demonstrates that

a neural network capable of approximating the XNOR truth table offers suf�cient performance on

ImageNet, indicating high expressiveness of such networks – by being able to model XNOR, this was one

of the �rst approaches that demonstrated capability to model general logical statements. Similar results

were achieved on CIFAR-10 and MNIST data sets[9]. Binary neural networks were also shown as a

promising variant of models that can be computed on specialized hardware such as FPGAs[10][11].

Alternatively to considering neural networks that directly approximate logical expressions, such

expressions can be generated before being fed into a neural network. This second branch of methods that

inspired this work revolves around the notion of neuro-symbolic learning. This paradigm explores how

neural network-based low-level recognition (e.g., vision) can be coupled with the notion of reasoning.

Such ideas culminated into the concept known as deep relational machines[12][13], offering a state-of-the-

art performance for e.g., molecule classi�cation tasks. DeepProbLog[14] combined the idea of probabilistic

logic and deep learning, enabling probabilistic inference over deep latent structures, thus providing a tool

for tasks such as distant supervision tasks. DeepProbLog[14]  integrates probabilistic logic with deep

learning, enabling inference over deep latent structures. This framework is ideal for tasks that require

background knowledge for validation and utilize deep learning for representation learning in distant

supervision scenarios. Contrary to the work of[2], where programs were extracted from feedforward

neural networks, an inductive logic program was �rst used to construct features, which were used to

train a deep neural network model. More recently, the link between deep learning and

propositionalization was explored by[15], resulting in two fundamentally different ways to learn latent

representations from a propositionalized relational database.[16] [16]  recently a deeper overview on

inductive logic programming and its connections to neuro-symbolic methods.
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The recent work on closing the loop between recognition and reasoning[17] introduced a grammar model

as a symbolic prior to bridge neural perception and symbolic reasoning alongside a top-down, human-

like induction procedure. This work demonstrated that such a combined approach signi�cantly

outperforms the conventional reinforcement learning-based baselines. The Microsoft research division

recently explored the interplay between visual recognition and reasoning[5]. They introduced a

framework to isolate and evaluate the reasoning aspect of visual question answering separately from its

perception, followed by a calibration procedure that explores the relation between reasoning and

perception. Further, a neuro-symbolic approach to logical deduction was proposed as Neural Logic

Machines[18]. This architecture was shown to have inductive logic learning capabilities, which were

demonstrated on simple tasks such as sorting. Incorporating semantics-aware logical reasoning to

understand better network substructure (communities) was recently explored[19].

Using neural networks as a tool for learning rules has recently gained importance.[20]  explored the

application of neural networks to learn rule sets for binary classi�cation using the network structure.

[21]  proposed DR-Net – a two-layer neural network architecture for learning logical rule sets. The �rst

layer maps directly interpretable if-then rules, while the output layer forms a disjunction of these rules.

Regularisation based on sparsity is used to derive simpler but representative logical rules. On the other

hand,[22] proposed explainable neural rule learning in a differentiable way. The main idea of the approach

is the initial construction of atomic propositions (learned as separate operators via semi-supervised

learning) and their subsequent evolution to a binary tree topology to express multiple rules via a neural

architecture search. Finally, an ensemble of such trees is created and later used for classi�cation by

voting. Similar to the work of[20], it is limited to binary classi�cation only.[23] recently proposed RuleNet

– an approach that builds on the work of DR-Net, with the additional constraint that the rules must be

ordered. In rigorous evaluation, they showcase the network’s strong performance on synthetic and real-

life classi�cation tasks. However, one signi�cant drawback of the proposed method is the expectation

that the input is binary, which is unrealistic for most real-world applications.

Further, a link between combinatorial optimization solvers and deep learning was proposed[24], offering

novel insights into solving hard, e.g., graph-based combinatorial problems. In recent works concerning

program synthesis, the auto-encoding logical programs[25] as well as the DreamCoder approach[26] both

demonstrated that symbolic representations can be learned (albeit differently), applicable to solving e.g.,
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physics-related equation discovery (DreamCoder) and learning compact relational representations of a

given relational structure (auto-encoding logical programs).

Finally, the proposed work bases some of the ideas from the recent advancements in understanding of

black-box models. Many deep neural network models are inherently black-box, offering little to no

insight into the most representative patterns being learned. As such, the recent trend of model

explainability in terms of post-hoc approximations of model decisions is actively studied. Widely used

tools for such approximations are e.g., LIME[27]  and SHAP[28]. However, both methods are prone to

adversarial attacks, making their ubiquitous use questionable[29]. Alternatively to post-hoc explanation of

predictions, recent attempts such as TabNet[30]  and propositional Self Attention Networks (SANs)

[31]  indicate that highly relevant features can be extracted via the attention and similar mechanisms

directly.[32]  proposed KAN, a network built on the concept that weights should be placed on the edges,

with node activations represented as interactions between functions of the edges, inspired by the

Kolmogorov-Arnold representation theorem. This approach provides for interpretable networks,

although it could be more scalable.

3. HorNets Architecture Overview

We begin the section with an overview of the HorNets architecture, followed by a theoretical analysis of

its expressiveness and computational complexity.

3.1. General overview and intuition

We begin by discussing a high-level overview of the HorNets architecture, followed by a more detailed

inspection in the following sections. The architecture consists of three main components: the routing

operator, categorical, and continuous blocks. A schematic overview is shown in Figure 1.
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Figure 1. Overview of HorNets architecture. The CatRouter (Category Router) component decides whether to

treat input as discrete or continuous. If discrete, CatInt layer is invoked, conducting factorization-based

estimation of a subspace of interactions. If LinAtt is invoked, an ef�cient, element-wise POLYCLIP-based

operation is considered. Both routes end up with a linear layer.

Inputs are batches of tabular data. For each batch, the number of unique values is computed and used to

decide which of the subsequent layers to activate. This routing logic is inspired by recent work in the

mixture-of-experts-based large language model architectures[33]. In this work, all experiments consider

categorical layers only if cardinality is lower than 3 (binary matrices). If cardinality exceeds this bound,

the continuous part of the architecture takes over. This design choice stems from empirical observation

that even if the categorical part of the architecture is substantially scaled, it converges much slower
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compared to the continuous one – one of the key purposes of this work is to demonstrate that HorNets is

capable of handling (automatically) both scenarios in its current form.

3.2. Modeling logical operators via activations

We �rst discuss one of the main contributions of this paper, POLYCLIP activation, its formulation and

connections to zero-order (propositional) logic. Conventionally used activations surveyed in[34], such as

ReLU and Sigmoid, offer truncation of weight values to positive real values and were shown to offer state-

of-the-art performance on many tasks. On the other hand, activations such as ELU and LReLU offer the

inclusion of negative weights; however, they are not symmetric and thus offer little insight into the effect

of positive and negative weights. Activations such as tanH indeed offer symmetry around zero, and

incorporate negative values, however, their in�nite bounds hinder interpretability/capability to truncate

them to logical clauses directly.

In this work, we introduce the POLYCLIP family of activation functions. For a given parameter  ,

the corresponding POLYCLIP activation function1 is de�ned as follows:

Note that for the rest of this paper, if   is a real-valued matrix, we denote with   the matrix

in which the POLYCLIP function is applied to each element. Apart from being ef�cient in computing,

POLYCLIP activation offers a probabilistic means of expressing statements in formal logic, which we will

discuss next.

The activation projects a weight’s value into one of the three main regions, each of which can be

associated with the direct interpretation of the POLYCLIP’s effect on the input’s value. The three regions

of relevance to this work are summarized in Figure  2. Given an activated weight’s value, it can be

interpreted as (partial) negation (leftmost, negative part of the possible values) and conjunction

(rightmost, positive part of the values). Further, values close to 0 imply that a given feature is potentially

irrelevant and can be neglected. Multiplication with zero-activated weights in subsequent layers is

k ∈ N0

A (A)polyClipk
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expected to impact the overall architecture’s output less. To maintain the domain and with it the

(implicitly) discrete operation on a given input, the main difference between POLYCLIP and the

previously mentioned activation functions is the order in which it is applied to a given weight and

multiplied with a given input2.

Figure 2. Overview of the POLYCLIP activation and its implications/interpretation when fully

discretized (-1, 0, 1) range is considered. The curves were obtained by varying the 

 parameter.

We next discuss the theoretical insights, related both to the computational complexity of the main steps

in HorNets, as well as its expressiveness and relation to formal logic. We �rst discuss the behavior of

POLYCLIP-activated weights with respect to different types of inputs. Let    represent the output of

multiplying an activated and discretized weight with a given input; thus,    – we assume

discretization by rounding. POLYCLIP-activated weights can express negation and conjunction (NOT and

AND), and thus model these two types of logical gates. As an example consider a matrix  , where each

entry is a discretized weight from the initial weight matrix, de�ned as  . We consider a

single hidden-layer neural network-based architecture �rst. Here, the layer performs an inner product of

a column of weights and a row of feature values, i.e. for the  -th input vector  , the output is calculated

k

o

o ∈ {−1, 0, 1}

D

= round( )Dij wij

k rk
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as  . In this example, the output will be large (and thus considered during the prediction

phase) only if all the summands contribute large values, i.e. if the conjunction of the truth values, to

which the individual values   are mapped, is true, thus showing that POLYCLIP-activated weights

can model conjunctions. Note that the absence (no contribution) of a given feature can also be expressed

(iff ). To show that POLYCLIP-activated weights also express negation, we need to consider the

case when  . In this case, the contributing summand will be large if and only if the  -th feature

value is negative, i.e. if its ’negation’ is true. Note that the mentioned relations of activations’ values and

their impact on output hold true for a single-layer architecture, and can be true (yet it is not guaranteed)

for a multi-layer architecture – interchanging signs can have unpredictable effects in this case. Further,

the direct modeling of gates holds true if no other activations are considered simultaneously. Next, by

being able to consider both AND and NOT connectives, we can see that POLYCLIP-activated and

discretized weights can model XNOR gate. Let    and  , i.e. each input

contributes either positive or negative partial weight value. Next, we establish a mapping where 1

represents True and -1 False. By considering the outputs ( ) when considering cartesian product of the

two input spaces ( ), the following results of the multiplication are possible. The 

 if both inputs are 1 or -1. If one of the inputs is -1 and the other is 1 (or vice versa),   (without

considering the absence of features)

The demonstrated capability illustrates that by considering symmetric positive-negative activation

values, clipped to the same range as the input space (-1 and 1 in this case), multiplications between

particular values manifest in known gate de�nitions. Having shown that logical operations can be

modeled via discretized activation regime, we can extend the claim to the following. POLYCLIP-activated

weights can express statements in propositional logic.

3.3. HorNets Architecture formulation

We continue the discussion with a more detailed formulation of HorNets architecture. Let 

 represent an input batch of data (  being batch size and   the dimension). Let   represent the

⋅∑j rkj Dji

⋅rkj Dji

= 0Dij

= −1Dij j

∈ {−1, 1}rkj ∈ {−1, 1}Dji

o

{−1, 1} × {−1, 1}

o = 1 o = −1

X ∈ R
bxd b d X
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set of values in this batch. The routing layer, named catRouter, denotes a category routing function that

distinguishes between two categories: discrete (linAtt – Linear Attention) and continuous (catInt –

Categorical Interactions). The catRouter mechanism can be in its general form written as

The    is thus an ef�cient operation with negligible practical cost3. The subsequent

possible operations,    and    are discussed next. The    is de�ned as

(recursive formulation aligned with code)

This part of the architecture consists of three main steps; normalization   norm (  is a small constant),

activation and elementwise product ( ), followed by a linear layer.

The second part of the architecture    can be formulated as follows. Let 

 represent the interaction factorization matrix, where   represents the order of interaction and 

  the space of input combinations to be considered. This matrix serves as the basis for representing

different feature interactions separately, enabling �ne-grained control at interaction level. The forward pass

for this part of the architecture, however, is computationally substantially more expensive and can be

formulated as

CATROUTER(X, y) = {
LINATT(X, y); |X| > 2;

CATINT(X, y); else.

CATROUTER(X)

LINATT(x) CATINT(x) LINATT(x)

x0

x1

x2

=
x

max(∥x , ε)∥p
= POLYCLIP( ) ⊗ xx0

= ⋅ w + b.x1

p ε

⊗

catRouter(X)

M ∈ R
o×|C| o

C

F

x0

x1

x2

= COMBACTOP(M, x, CombIndices)
= DROPOUT(F)

= SOFTMAX( )x0

= ⋅ w + b.x1
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The main motivation for explicit factorization of interactions in this component is based on the

observation that this type of intermediary factorization substantially simpli�es accurate modeling when

binary discrete spaces are considered as input. Consider a learning problem of the form

Here   features are used to learn the association between the two spaces. Let us assume target space is

de�ned as  , i.e. an XOR between the �rst two features. By considering all interactions of order

two, i.e.,  , one of the interactions will also require explicit factorization of representations for 

 and  . Assuming a neural network is capable of modeling XOR, by being explicitly forced to consider

this interaction, it is highly probable it will identify the two features as key to modeling the relation –

linking output to any other feature pair would imply the network learned a wrong interaction that does

not generalize. In the context of HorNets, because the considered categorical input space is binary4,

interaction factorization will take place as opposed to a linear counterpart that is more suitable for

continuous inputs. In this work, we considered cross-entropy loss for end-to-end optimization of the

architecture. The loss is de�ned as (for a pair of inputs   and  ).

Here,   is the set of all classes. Mean aggregation is considered (per batch).

3.4. Pseudovariables and the curse of higher order interactions

While developing the architecture, we observed that unless speci�c interactions were retrieved,

performance on simple tasks such as modeling of logic gates could have been more consistent. By

considering higher-order interactions way beyond what is normally considered in matrix factorization

(e.g., order 16 and more)5, we can force HorNets to sample from larger feature subspaces. However, if e.g., a

subspace of 16 interactions contains the two features that govern the output signal, yet the remaining 14

represent pure noise, optimization (backpropagation) was observed to have issues with convergence. To

remedy this shortcoming, we introduced the notion of pseudovariables – arti�cially added features that,

in the context of HorNets, serve as mask variables. These variables are initialized as constant space of

ones, and don’t change the results of intermediary computation. Each HorNets evaluation automatically

introduced   pseudovariables, where   is the order of interactions being modeled. The rationale for this

design choice is that by being able to mask most of a higher-order interaction, lower-order interactions

{0, 1 → {0, 1 ; b > 2.}a×b }a

b

XOR( , )b1 b2

Comb(b, 2)

b1 b2

x y

ℓ(x,y) = − log ⋅ ⊮ { ≠ ignore_index}.wyn

exp( )xn,yn

exp( )∑C
c=1 xn,c

yn

C

k k
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can be reliably retrieved, while at the same time, fewer samples of the feature space are required, thus

reducing overall computational complexity – this observation is also one of the reasons HorNets are

approachable on commodity hardware in its current form6. An interesting side-effect of pseudovariables

is increased interpretability. As the categorical part of the architecture performs softmax per-interaction,

highest-scored interactions can be directly inspected, and serve as possible candidates for underlying

rules.

A note on computational complexity. Having discussed the architecture, it is worth noting that the two

main components between which the router layer decides are subject to notably different computational

complexity. In particular the LINATT(x, y) operation is linear with regards to the number of input

dimensions, while CATINT(x, y) can be subject to a combinatorial explosion (many features, higher-order

interactions), and is thus exponential in the limit7. In practice, however, we observed that a relatively small

number of combinations of higher order is suf�cient for modeling categorical data well. Many reasons for

this are based on empirical evaluation pseudovariables. Further, we implemented a Monte Carlo-based

sampling of interactions within the network to mitigate for the explosion, effectively changing which

interactions are considered per epoch. Hence, suf�ciently long training cycles in the limit sample all

possible combinations, even though in practice HorNets converge faster. The architecture was built to be

practical – all experiments discussed in the following sections can be replicated on a moderate off-the-

shelf laptop with no GPU.

4. Evaluation

In this section, we set up the evaluation scenario. We focus on assessing the predictive power of our

method – �rst on synthetic data, where we want to analyze the logic modeling capabilities and second on

real-life downstream classi�cation tasks.

4.1. Empirical evaluation on synthetic data

The �rst round of experiments revolves around benchmarking of HorNets’ logic modeling capabilities.

To systematically evaluate this trait, we designed a synthetic data generator that enables the construction
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of arbitrary-dimensional binary training datasets, where target space is de�ned as a logical combination

of a given feature subspace. We considered the main logic operators, namely AND, OR, NOT, XOR and

XNOR. We refer to these gates as OP. The dimension parameter    parametrizes the generator, and the

instance count parameter  . It �rst generates a binary matrix  , where 

. Note that OP are binary operators – they comprise second-order

interactions. For each operator, generator computes the target vector   as  .

The remainder of the   remains random (noise). The higher the  , the harder it is estimated that a given

classi�er can retrieve the explicitly encoded interaction (two features). Note that XNOR and XOR are of

particular interest because both inputs must be considered simultaneously (non-myopic model). We

generated 30 data sets for each gate and    of interest. Further,    was set to 128 in all synthetic

experiments. To evaluate the relative performance of our method, we compare it with Logistic

Regression (LR), Random Forest (RF) [35], TabNet [30] and an MLP classi�er. We consider two variants of

our method: one with the ReLU activation function and another with the proposed POLYCLIP variant.

4.2. Empirical evaluation on real-life data

We proceed by an overview of the HorNets performance on real-life biomedical data. The motivation for

this is twofold: First, biomedical data features an abundant number of variables but a scarce number of

examples, which leads to problematic behavior when MLPs are applied directly. Second, neural network-

based approaches such as TabNET and MLPs are hardly interpretable, posing challenges for the real-life

application of machine learning models in medicine. The data sets  [36]  considered represent different

classi�cation problems that aim to associate gene expression signals with the target output (e.g. tumor

presence). A summary of data sets is shown in Table 1.

d

c B ∈ {0, 1}c×d

∀k ∈ B|k ∼ BERNOULLI(0.5)

t ∈ {0, 1}c = OP( , )ti ki,j0 ki,j1

B d

d c
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Dataset Instances Features Classes C1 C2 C-remainder

Multi-B[37] 32 5565 4 34.38 28.12 37.50

Breast-B[37] 49 1213 4 38.78 24.49 36.73

DLBCL-C[37] 58 3795 4 29.31 27.59 43.10

Breast-A[37] 98 1213 3 52.04 36.73 11.22

Prostate-GE[38] 102 5966 2 50.98 49.02 -

Multi-A[37] 103 5565 4 27.18 25.24 47.58

CLL[39] 111 11340 3 45.95 44.14 9.91

DLBCL-D[37] 129 3795 4 37.98 28.68 33.33

DLBCL-A[37] 141 661 3 35.46 34.75 29.79

TOX[40] 171 5748 4 26.32 26.32 47.36

DLBCL-B[37] 180 661 3 48.33 28.33 23.33

SMK[41] 187 19993 2 51.87 48.13 -

Lung[42] 203 3312 5 68.47 10.34 21.18

TCGA[43] 801 20531 5 37.45 18.23 44.32

Table 1. Dataset summary. For each dataset, we report the number of instances, features, classes, and class

distribution (Class 1, Class 2, and combined distribution of remaining classes).

Motivated by the work of[44], we aim to compare our method against various classi�ers, including linear,

ensemble, neural networks, and AutoML classi�ers. Speci�cally, we have selected the following

classi�ers:

Linear: Decision Tree (DT), Logistic Regression (Lasso (L1) and Ridge (L2)), and Support Vector

Machine (SVM)[45];

Ensemble: Random Forest (RF)[46] and XGBoost (XGB)[47];
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Neural: Multi-Layer Perceptron (MLP), TabNET[30], and LassoNet[48];

AutoML: TPOT[35] – an Automated Machine Learning tool that optimizes machine learning pipelines

using genetic programming.

All models, except the MLP model, were utilized from their of�cial libraries (scikit-learn for linear and

ensemble classi�ers, PyTorch-TabNet for TabNET, and TPOT for TPOT). The MLP classi�er was

implemented using the PyTorch suite, consisting of an input layer followed by a dense layer of 32

neurons, preceding the �nal classi�cation layer, optimized with the Adam optimizer for up to 100 epochs

with early stopping after 10 epochs. We use the macro F1-score to compare classi�ers, conducting 5-fold

strati�ed cross-validation across �ve different seeds, predicting 25 times for a given dataset to assess the

variability of results. We search through the following hyperparameters, reporting the best-performing

per dataset: Activation: ReLU and our proposed PolyClip; Order: 4, 8, 16, 32, 64, 128, 512, 1024, 2048,

4096; Number of Rules: 4, 8, 16, 32, 64, 128, 512, 1024, 2048, 4096; Learning Rate: 0.001, 0.01, 0.1; Batch

Size: �xed at 15.

5. Results

This section presents the experimental results of the synthetic and the real biomedical experiments,

followed by the analysis of the execution time and impact of hyperparameters on the method.

5.1. Synthetic results

Table 2 presents the performance of our method on synthetic logic modeling datasets. Using the

POLYCLIP variant, our method achieves a perfect score, demonstrating its ability to model arbitrary Horn

clauses. Strong competitors such as Logistic Regression, Random Forest, and MLP could model logical

operations like AND, NOT, OR, and XNOR when the number of variables was less than 8. All models, with

the exclusion of the Random Forest, failed to model the XOR operator. Interestingly, the attention-based

TabNET method failed to successfully model any interactions regardless of the number of variables

across all problems. High-dimensional settings posed challenges for most methods, except for the

proposed HorNet. These results highlight the ability of HorNets with the POLYCLIP variant to model

arbitrary logical clauses effectively.
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Problem TabNet              Random Forest MLP                  Logistic Regression
HorNets-

ReLU                  

HorNets-

POLYCLIP

and(dim=3) 0.296  0.06 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

and(dim=4) 0.204  0.136 1.0  0.0 0.905  0.134 1.0  0.0 1.0  0.0 1.0  0.0

and(dim=16) 0.512  0.137 0.981  0.06 0.973  0.063 0.981  0.06 0.935  0.178 1.0  0.0

and(dim=32) 0.331  0.147 0.901  0.122 0.899  0.131 0.912  0.107 0.821  0.21 1.0  0.0

and(dim=8) 0.465  0.089 0.978  0.069 0.981  0.06 1.0  0.0 0.941  0.187 1.0  0.0

and(dim=64) 0.584  0.151 0.783  0.205 0.779  0.21 0.805  0.191 0.95  0.083 1.0  0.0

and(dim=128) 0.463  0.085 0.484  0.093 0.655  0.178 0.627  0.185 0.811  0.209 1.0  0.0

not(dim=3) 0.446  0.023 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=4) 0.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=8) 0.629  0.256 0.948  0.164 0.948  0.164 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=16) 0.418  0.036 1.0  0.0 0.896  0.219 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=32) 0.146  0.094 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=64) 0.435  0.041 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

not(dim=128) 0.521  0.169 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

or(dim=3) 0.255  0.135 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

or(dim=4) 0.574  0.211 1.0  0.0 0.961  0.125 1.0  0.0 1.0  0.0 1.0  0.0

or(dim=8) 0.265  0.116 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

or(dim=16) 0.399  0.101 0.988  0.039 0.99  0.031 0.988  0.039 1.0  0.0 1.0  0.0

or(dim=32) 0.48  0.175 0.91  0.123 0.87  0.168 0.92  0.078 1.0  0.0 1.0  0.0

or(dim=64) 0.34  0.081 0.741  0.201 0.73  0.197 0.748  0.215 1.0  0.0 1.0  0.0

or(dim=128) 0.285  0.073 0.558  0.244 0.764  0.199 0.699  0.227 1.0  0.0 1.0  0.0

xnor(dim=3) 0.547  0.24 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

xnor(dim=4) 0.093  0.067 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

xnor(dim=8) 0.729  0.286 1.0  0.0 0.948  0.164 1.0  0.0 1.0  0.0 1.0  0.0
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Problem TabNet              Random Forest MLP                  Logistic Regression
HorNets-

ReLU                  

HorNets-

POLYCLIP

xnor(dim=16) 0.4  0.047 1.0  0.0 0.948  0.164 1.0  0.0 1.0  0.0 1.0  0.0

xnor(dim=32) 0.19  0.086 1.0  0.0 0.948  0.164 1.0  0.0 1.0  0.0 1.0  0.0

xnor(dim=64) 0.543  0.244 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

xnor(dim=128) 0.623  0.261 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0 1.0  0.0

xor(dim=3) 0.483  0.126 1.0  0.0 0.688  0.141 0.535  0.211 1.0  0.0 1.0  0.0

xor(dim=4) 0.511  0.18 1.0  0.0 0.747  0.15 0.497  0.189 1.0  0.0 1.0  0.0

xor(dim=8) 0.326  0.12 0.975  0.041 0.992  0.025 0.459  0.106 0.984  0.033 1.0  0.0

xor(dim=16) 0.42  0.104 0.842  0.099 0.913  0.077 0.465  0.169 0.975  0.081 1.0  0.0

xor(dim=32) 0.436  0.125 0.678  0.158 0.647  0.237 0.554  0.188 0.911  0.172 1.0  0.0

xor(dim=64) 0.471  0.09 0.451  0.081 0.522  0.162 0.476  0.146 0.908  0.184 1.0  0.0

xor(dim=128) 0.45  0.097 0.473  0.146 0.505  0.143 0.584  0.107 0.966  0.082 1.0  0.0

Table 2. Overview of F1 performance of different algorithms on a collection of synthetic data sets (30

repetitions, mean and deviation reported).

5.2. Real data sets

We show the results on the real biomedical experiments runs in Figure 3.
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Figure 3. Overview of algorithm performance (14 data sets). It can be observed that HorNets consistently rank

among the top three performers, indicating the capability of this algorithm to operate on different problems

consistently. Its main competitor in terms of tabular neural network learning, TabNet, failed to achieve high

performance – it is hypothesized this is due to high dimensionality/multiple classes of data considered.

We notice that both variants of the HorNet – the one based on the POLYCLIP activation and the one based

on the ReLU activation surpass the performance on 5 out of 14 datasets, surpassing the performance of

the state-of-the art models like the TPOT and the L1 and L2 models.

We further investigate the statistical difference between these models by conducting Friedman-Nemenyi

test[49] in Figure 4. The results show that both variants perform similarly, outperforming the remaining

models and performing within critical distance to the best-ranked ones – L1, L2, TPOT and MLP models.

Figure 4. Friedman-Nemenyi test demonstrating the competitive performance of our method’s F1-macro

metric.

The Bayesian Hierarchy test[50] between our model and the TPOT model shown in Figure 5 also shows

that the model is signi�cantly better with a probability of 65%, while the TPOT model is better with a

probability of 35% (within a region-of-practical-equivalence of 0.01).
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Figure 5. Bayesian hierarchical t-test assessing differences between the HorNets-

POLYCLIP variant and the TPOT AutoML model. The test indicates insigni�cant

differences between HorNets-POLYCLIP and the state-of-the-art AutoML approach. The

proposed approach is even marginally better.

5.3. Execution time

Next, we analyze the execution time of the methods shown in Figure 6. Our results show that both the

POLYCLIP and ReLU variants exhibit indistinguishable performance. The proposed method signi�cantly

outperforms advanced neural baselines such as LassoNet and TPOT (which exhaustively search for

solutions). It also outperforms ensemble methods such as RandomFrost and XGBoost. Furthermore, we

�nd that the execution time of all methods increases with the size of the dataset, both in terms of the

number of features and the number of samples.
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Figure 6. Execution time comparison of our method against the baselines.

In Figure 7 we analyze the effects of the learning rates and the different number of parameters on the

execution time. The empirical results con�rm the theoretical bounds on the execution time, with the

order parameter increasing exponentially and the number of rules increasing linearly.

Figure 7. Effect of different hyper-parameters on execution time (seconds) of our method.

5.4. Impact of different hyperparameters

Next, we analyze the impact of different hyperparameters. Recall, we use the following grid to search and

evaluate for hyperparameters Activation: ReLU and our proposed POLYCLIP; Order: 4, 8, 16, 32, 64, 128,

512, 1024, 2048, 4096; Number of Rules: 4, 8, 16, 32, 64, 128, 512, 1024, 2048, 4096; Learning Rate:

0.001, 0.01, 0.1; Batch Size: �xed at 15. For each tuple of parameters, we train on all datasets in the

described 5 run 5-fold cross-validation setting. Figure 8 shows the optimization landscape across
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different hyperparameter settings, showing the interaction of different activation functions, the learning

rates with the order and number of rules. The results show that no clear best setting can be found and

that a theoretical parameter sweep is required when trying to optimize for the best results. Note that,

however, the difference between the best-performing (88.60%) and worst-performing parameter setting

(86.10%) on average is 1.98 percentage points, which we hypothesize.

Figure 8. Interaction of different order and number of rules at different learning rates. Results indicate

learning rate is the key parameter that has to be tuned – if an appropriate value is selected, relatively low

order/rule count are suf�cient for good performance.

However, we �nd that there is no signi�cant variance in the results between the different datasets. In

Table 3 we present the top-5 performing parameter settings. The results indicate a negligible difference

in performance across these top-5 con�gurations, despite variations in the combination of order and

rules. As expected, a smaller learning rate consistently yielded the highest F1-scores. Table 4 showcases

that a similar pattern is observed in the analysis of the top-5 worst-performing parameter settings. Here

too, the differences between these combinations are minimal. Notably, the higher learning rates were

associated with poorer results, reinforcing the notion that a lower learning rate is preferable for achieving
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better performance. Notably, the variability within datasets is consistently about 12.5 percentage points

regardless of the parameter, pointing at the stability of the method.

Activation Learning Rate Order Rules F1-score

POLYCLIP 0.001 512 4096 88.65 ± 12.40

POLYCLIP 0.001 4096 1024 88.63 ± 12.31

POLYCLIP 0.001 1024 4096 88.61 ± 12.36

POLYCLIP 0.001 4 512 88.61 ± 12.40

ReLU 0.001 2048 128 88.58 ± 12.44

Table 3. Top 5 Best-Performing Parameters.

Activation Learning Rate Order Rules F1-score

POLYCLIP 0.10 1024 4 86.90 ± 12.72

ReLU 0.10 1024 512 86.70 ± 13.07

POLYCLIP 0.10 1024 512 86.70 ± 13.07

POLYCLIP 0.10 512 1024 86.66 ± 13.19

ReLU 0.10 512 1024 86.66 ± 13.19

Table 4. Bottom 5 Worst-Performing Parameters.

Finally, we present the sensitivity analysis, aggregated by the effects of “Order” and “Rules” across

different datasets, as shown in Figure 9. Despite signi�cant differences in the scales of “Order” and

“Rules” (ranging from 4 to 4096), the variations in performance are minor. This suggests that the method

exhibits a high degree of stability within the datasets.
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Figure 9. Interaction of different order and number of rules at different learning rates.

6. Discussion and conclusions

In this section, we discuss the potential impact of the proposed HorNets based on their performance in

synthetic and real-world problems. First, we review the results of the synthetic datasets. This evaluation

aimed to empirically test the functional completeness of the proposed HorNets POLYCLIP capability. The

results in Table 2 show that the network can learn any interaction between any number of variables for

four neural logic operators: AND, NOT, OR, XNOR, and XOR. In contrast, the newer variants of neural

networks – TabNET and MLP - as well as the naive rule learning approaches – the decision trees and

random forests - were unable to learn. Since we can learn these combinations of features, we believe that

the routing functionality means that we can learn arbitrary combinations of features that interact with

each other. This, in turn, shows the potential for using the HorNets applications in many neurosymbolic

systems that Garcez et al.[51]  see as the next generation of AI. On the other hand,[52]  emphasizes the

problem of linking neurosymbolic learners and considers the production of rules about false relations as

linking inferences. We show that the HorNets achieve maximum log-likelihood on both training and test

data and thus successfully reconstruct the concept of ground truth – in the case of logical operations.

Using the results on the real biomedical datasets, we establish the effectiveness of the learned rules for

subsequent application to real classi�cation problems. The statistical tests con�rm that the method can

keep up with the strong AutoML baseline (TPOT), while generating interpretable rules that experts can

use as a basis for further analyses. This experiment shows that our model can a) train neural networks on
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small, large tabular datasets,[44]  and b) achieve interpretable results, something that related work

highlights as necessary[53][54][55]  Furthermore, we show that the proposed HorNets are both data- and

resource-intensive, making them ideal for applications related to computing on the edge. We presented a

novel approach for learning rules using neural networks. Our method learns from both continuous and

discrete signals, as evidenced by rigorous evaluations on both synthetic and real biomedical datasets. The

architecture excels at obtaining arbitrary Horn clauses by combining a custom polynomial-like activation

function with an attention mechanism that allows it to model complex interactions. This method

outperforms advanced AutoML-based learners and is well suited for numerical and categorical data with

large table density, while requiring signi�cantly less computational resources than comparable

architectures. Our results show that deep neural networks augmented with attention mechanisms and

user-de�ned activation functions are very effective in learning rules. We plan to improve our framework

with uncertainty-based principles to enable the extraction of probabilistic rules. We also plan to extend

our approach to explore spaces with mixed inputs. To further improve the interpretability of the

extracted rules, we will perform in-depth analyses with domain experts.

Appendix: Proof of the Exponentiality of the exact CatInt

interactions Using Stirling’s Approximation

Stirling’s approximation states that for large  :

Given the complexity expression for the combinatorial part of the CatRouter  , let us

consider the combination   which represents the binomial coef�cient:

Using Sterling’s approximation for factorials, we have:

n
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Substituting these into the binomial coef�cient formula, we get:

We can simplify the �rst term as follows:

Next, the exponential term simpli�es as follows:

Upon canceling the exponential terms  , the expression reduces to:

The simpli�ed combined expression is:

Since we are concerned with the asymptotic behavior, we can safely ignore the �rst term and focus on the

latter, thereby demonstrating that the number of combinations in the CatInt grows exponentially.
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Footnotes

1 PolyClip – an acronym for clipped polynomials.

2 Note that there exists a scenario where -1, 1 and 0 are outputs of polyClip, enabling direct logical

interpretation. In practice, such behavior can be forced with rounding/discretization.

3 Computing cardinality of the types of real-life data sets considered is space-wise negligible – should

exact cardinality computation become a memory bottleneck, probabilistic counting can be employed.

4 Note that one-hot encoding can be used to obtain a binary space from arbitrary categorical inputs.

5 For high-dimensional real-life data sets, even third-order interactions can be problematic.

6 Note that sampling higher order interactions exhaustively is computationally intractable, even for

moderately sized data sets (e.g., hundred features).

7 , this can be shown via Sterling’s approximation – the proof can be found in the

Appendix.

References

�. ^Dong S, Wang P, Abbas K (2021). "A survey on deep learning and its applications". Computer Science Revie

w. 40: 100379.

�. a, bBader S, Hf6lldobler S, Mayer-Eichberger V (2007). "Extracting propositional rules from feed-forward ne

ural networks: a new decompositional approach". In: Proceedings of the 3rd International Conference on Ne

O(Comb(|I|, order))

qeios.com doi.org/10.32388/22I1PO 27

https://github.com/bkolosk1/hornets
https://www.qeios.com/
https://doi.org/10.32388/22I1PO


ural-Symbolic Learning and Reasoning - Volume 230. NeSy'07, Aachen, DEU: CEUR-WS.org, pp. 4–9.

�. ^Al Iqbal R. "Eclectic extraction of propositional rules from neural networks". In: 14th International Confere

nce on Computer and Information Technology (ICCIT 2011), IEEE, 2011, pp. 234–239.

�. ^Labaf M, Hitzler P, Evans AB (2017). "Propositional rule extraction from neural networks under backgroun

d knowledge." In: NeSy.

�. a, bAmizadeh S, Palangi H, Polozov A, Huang Y, Koishida K (2020). "Neuro-symbolic visual reasoning: Disen

tangling 'visual' from 'reasoning'." In: Proceedings of the 37th International Conference on Machine Learni

ng, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learning Research, 119: 279–290.

�. ^Manhaeve R, Dumancic S, Kimmig A, Demeester T, Raedt LD. "DeepProbLog: Neural Probabilistic Logic Pr

ogramming". In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advan

ces in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Syst

ems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018. p. 3753-3763. Available from: https://d

blp.org/rec/conf/nips/ManhaeveDKDR18.bib.

�. ^Towell GG, Shavlik JW (1994). "Knowledge-based arti�cial neural networks". Arti�cial intelligence. 70 (1-

2): 119–165.

�. ^Rastegari M, Ordonez V, Redmon J, Farhadi A (2016). "Xnor-net: Imagenet classi�cation using binary conv

olutional neural networks". In: European Conference on Computer Vision, pp. 525–542. Springer.

�. ^Courbariaux M, Bengio Y, David J (2015). "BinaryConnect: Training Deep Neural Networks with binary we

ights during propagations". In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, editors. Advances in

Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2

015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 3123–3131.

��. ^Moss DJ, Nurvitadhi E, Sim J, Mishra A, Marr D, Subhaschandra S, Leong PH. "High performance binary ne

ural networks on the Xeon+ FPGA� platform". In: 2017 27th International Conference on Field Programma

ble Logic and Applications (FPL). IEEE; 2017. p. 1-4.

��. ^Sun X, Yin S, Peng X, Liu R, Seo J-s, Yu S (2018). "XNOR-RRAM: A scalable and parallel resistive synaptic arc

hitecture for binary neural networks". In: 2018 Design, Automation & Test in Europe Conference & Exhibitio

n (DATE), pp. 1423–1428. IEEE.

��. ^Lodhi H. Deep relational machines. In: International Conference on Neural Information Processing. Spring

er; 2013. p. 212–219.

��. ^Dash T, Srinivasan A, Vig L, Orhobor OI, King RD. "Large-scale assessment of deep relational machines". In:

International Conference on Inductive Logic Programming. Springer; 2018. p. 22–37.

qeios.com doi.org/10.32388/22I1PO 28

https://dblp.org/rec/conf/nips/ManhaeveDKDR18.bib
https://dblp.org/rec/conf/nips/ManhaeveDKDR18.bib
https://www.qeios.com/
https://doi.org/10.32388/22I1PO


��. a, bManhaeve R, Dumancic S, Kimmig A, Demeester T, De Raedt L. "DeepProbLog: Neural Probabilistic Logi

c Programming". In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Adv

ances in Neural Information Processing Systems. 2018; 31. Available from: https://proceedings.neurips.cc/pa

per_�les/paper/2018/�le/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

��. ^Lavra\u010d N, \u0160krlj B, Robnik-\u0160ikonja M (2020). "Propositionalization and embeddings: two

sides of the same coin". Machine Learning. 109 (7): 1465–1507. doi:10.1007/s10994-020-05890-8.

��. a, bCropper A, Dumančić S (2022). "Inductive logic programming at 30: a new introduction". Journal of Artif

icial Intelligence Research. 74: 765–850.

��. ^Li Q, Huang S, Hong Y, Chen Y, Wu YN, Zhu S (2020). "Closed loop neural-symbolic learning via integrating

neural perception, grammar parsing, and symbolic reasoning". In: Proceedings of the 37th International Co

nference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Proceedings of Machine Learnin

g Research. 119: 5884–5894. Available from: https://dblp.org/rec/conf/icml/LiHHCWZ20.bib.

��. ^Dong H, Mao J, Lin T, Wang C, Li L, Zhou D (2019). "Neural logic machines". In: 7th International Conferenc

e on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Available from: https://dbl

p.org/rec/conf/iclr/DongMLWLZ19.bib.

��. ^Škrlj B, Kralj J, Lavrač N (2020). "Embedding-based Silhouette community detection". Machine Learning. 1

09(11): 2161–2193. doi:10.1007/s10994-020-05882-8.

��. a, bBeck F, Ffcrnkranz J (2021). "An empirical investigation into deep and shallow rule learning". Frontiers in

Arti�cial Intelligence. 4: 689398.

��. ^Qiao L, Wang W, Lin B (2021). "Learning accurate and interpretable decision rule sets from neural network

s". In: Thirty-Fifth AAAI Conference on Arti�cial Intelligence, AAAI 2021, Thirty-Third Conference on Innov

ative Applications of Arti�cial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances i

n Arti�cial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 4303–4311. Available from: https://

dblp.org/rec/conf/aaai/QiaoWL21.bib.

��. ^Shi S, Xie Y, Wang Z, Ding B, Li Y, Zhang M (2022). "Explainable neural rule learning". In: Proceedings of th

e ACM Web Conference 2022. WWW '22, pp. 3031–3041. Association for Computing Machinery, New York, N

Y, USA. doi:10.1145/3485447.3512023.

��. ^Dierckx L, Veroneze R, Nijssen S (2023). "RL-Net: Interpretable Rule Learning with Neural Networks". In: A

dvances in Knowledge Discovery and Data Mining: 27th Paci�c-Asia Conference on Knowledge Discovery a

nd Data Mining, PAKDD 2023, Osaka, Japan, May 25–28, 2023, Proceedings, Part I. Berlin, Heidelberg: Sprin

ger. pp. 95–107. doi:10.1007/978-3-031-33374-3_8.

qeios.com doi.org/10.32388/22I1PO 29

https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://doi.org/10.1007/s10994-020-05890-8
https://dblp.org/rec/conf/icml/LiHHCWZ20.bib
https://dblp.org/rec/conf/iclr/DongMLWLZ19.bib
https://dblp.org/rec/conf/iclr/DongMLWLZ19.bib
https://doi.org/10.1007/s10994-020-05882-8
https://dblp.org/rec/conf/aaai/QiaoWL21.bib
https://dblp.org/rec/conf/aaai/QiaoWL21.bib
https://doi.org/10.1145/3485447.3512023
https://doi.org/10.1007/978-3-031-33374-3_8
https://www.qeios.com/
https://doi.org/10.32388/22I1PO


��. ^Pogancic MV, Paulus A, Musil V, Martius G, Rolinek M (2020). "Differentiation of blackbox combinatorial s

olvers". In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, A

pril 26-30, 2020. Available from: https://dblp.org/rec/conf/iclr/PogancicPMMR20.bib.

��. ^Dumancic S, Guns T, Meert W, Blockeel H (2019). "Learning relational representations with auto-encoding

logic programs". In: Kraus S, editor. Proceedings of the Twenty-Eighth International Joint Conference on Art

i�cial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 6081–6087. doi:10.24963/ijcai.2019/842.

��. ^Ellis K, Wong C, Nye M, Sablé-Meyer M, Morales L, Hewitt L, Cary L, Solar-Lezama A, Tenenbaum JB (202

1). "Dreamcoder: bootstrapping inductive program synthesis with wake-sleep library learning". In: Proceedi

ngs of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implemen

tation. PLDI 2021, pp. 835–850. Association for Computing Machinery, New York, NY, USA. doi:10.1145/34534

83.3454080.

��. ^Ribeiro MT, Singh S, Guestrin C (2016). "Why should I trust you?": Explaining the predictions of any classi�

er. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D, Rastogi R, editors. Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,

August 13-17, 2016, pp. 1135–1144. doi:10.1145/2939672.2939778.

��. ^Lundberg SM, Lee S. A uni�ed approach to interpreting model predictions. In: Guyon I, Luxburg U, Bengio

S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R, editors. Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long

Beach, CA, USA. 2017. p. 4765–4774.

��. ^Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H (2020). "Fooling LIME and SHAP: Adversarial attacks on pos

t hoc explanation methods". In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 180

–186.

��. a, b, cArik SÖ, P�ster T (2021). "TabNet: Attentive Interpretable Tabular Learning". In: Thirty-Fifth AAAI Con

ference on Arti�cial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Arti�ci

al Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Arti�cial Intelligence, EAA

I 2021, Virtual Event, February 2-9, 2021, pp. 6679–6687. https://dblp.org/rec/conf/aaai/ArikP21.bib.

��. ^Škrlj B, Džeroski S, Lavrač N, Petkovič M (2020). "Feature importance estimation with self-attention netwo

rks". In: Proceedings of the European Conference on Arti�cial Intelligence, pp. 1491–1498.

��. ^Liu Z, Wang Y, Vaidya S, Ruehle F, Halverson J, Soljačić M, Hou TY, Tegmark M (2024). "Kan: Kolmogorov-a

rnold networks". ArXiv preprint. abs/2404.19756. Available from: https://arxiv.org/abs/2404.19756.

qeios.com doi.org/10.32388/22I1PO 30

https://dblp.org/rec/conf/iclr/PogancicPMMR20.bib
https://doi.org/10.24963/ijcai.2019/842
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/2939672.2939778
https://dblp.org/rec/conf/aaai/ArikP21.bib
https://arxiv.org/abs/2404.19756
https://www.qeios.com/
https://doi.org/10.32388/22I1PO


��. ^Cai W, Jiang J, Wang F, Tang J, Kim S, Huang J (2024). "A survey on mixture of experts". arXiv preprint arXiv:

2407.06204. Available from: https://arxiv.org/abs/2407.06204.

��. ^Salakhutdinov R. Deep learning. In: Macskassy SA, Perlich C, Leskovec J, Wang W, Ghani R, editors. The 20t

h ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, New York, N

Y, USA - August 24 - 27, 2014. 2014. p. 1973. doi:10.1145/2623330.2630809.

��. a, bLe TT, Fu W, Moore JH (2020). "Scaling tree-based automated machine learning to biomedical big data

with a feature set selector". Bioinformatics. 36 (1): 250–256.

��. ^Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2018). "Feature selection: A data perspective".

ACM Computing Surveys (CSUR). 50 (6): 94.

��. a, b, c, d, e, f, g, hHoshida Y, Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: Identifying comm

on subtypes in independent disease data sets. PLOS ONE. 2007;2(11):1-8. doi:10.1371/journal.pone.0001195.

��. ^Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, et

al. Gene expression correlates of clinical prostate cancer behavior. Cancer cell. 2002; 1(2): 203–209.

��. ^Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N, Stratowa C, Abseher R (2004). "Micr

oarray gene expression pro�ling of B-cell chronic lymphocytic leukemia subgroups de�ned by genomic abe

rrations and VH mutation status". Journal of Clinical Oncology. 22 (19): 3937–3949.

��. ^Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et a

l. Classi�cation of human lung carcinomas by mRNA expression pro�ling reveals distinct adenocarcinoma

subclasses. Proceedings of the National Academy of Sciences. 98(24):13790–13795 (2001).

��. ^Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, Gilman S, Dumas Y-M, Calner P, Sebastiani P, et al.

Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nature

Medicine. 13(3):361–366 (2007).

��. ^Bajwa G, DeBerardinis RJ, Shao B, Hall B, Farrar JD, Gill MA (2016). "Cutting edge: critical role of glycolysis i

n human plasmacytoid dendritic cell antiviral responses". The Journal of Immunology. 196 (5): 2004–2009.

��. ^Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart J

M, Network CGAR, et al. The cancer genome atlas pan-cancer analysis project. Nature genetics. 45(10):1113

(2013).

��. a, bGrinsztajn L, Oyallon E, Varoquaux G (2022). "Why do tree-based models still outperform deep learning

on typical tabular data?" Advances in neural information processing systems. 35: 507–520.

��. ^Cortes C, Vapnik V (1995). "Support-vector networks". Machine Learning. 20 (3): 273–297.

��. ^Breiman L. Classi�cation and regression trees. Wadsworth International Group. 2017.

qeios.com doi.org/10.32388/22I1PO 31

https://arxiv.org/abs/2407.06204
https://doi.org/10.1145/2623330.2630809
https://doi.org/10.1371/journal.pone.0001195
https://www.qeios.com/
https://doi.org/10.32388/22I1PO


��. ^Chen T, Guestrin C (2016). "Xgboost: A scalable tree boosting system". In: Krishnapuram B, Shah M, Smola

AJ, Aggarwal CC, Shen D, Rastogi R, editors. Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785–794. doi:10.11

45/2939672.2939785.

��. ^Lemhadri I, Ruan F, Abraham L, Tibshirani R (2021). "Lassonet: A neural network with feature sparsity". J.

Mach. Learn. Res.. 22: 127:1–127:29.

��. ^Demšar J (2006). "Statistical comparisons of classi�ers over multiple data sets". Journal of Machine learni

ng research. 7 (Jan): 1–30.

��. ^Benavoli A, Corani G, Dem�sar J, Zaffalon M (2017). "Time for a change: a tutorial for comparing multiple

classi�ers through bayesian analysis". Journal of Machine Learning Research. 18 (77): 1–36.

��. ^Garcez Ad, Lamb LC (2023). "Neurosymbolic AI: The 3rd wave". Arti�cial Intelligence Review. 56 (11): 12387

–12406.

��. ^Marconato E, Teso S, Vergari A, Passerini A. Not all neuro-symbolic concepts are created equal: Analysis a

nd mitigation of reasoning shortcuts. In: Oh A, Naumann T, Globerson A, Saenko K, Hardt M, Levine S, edito

rs. Advances in Neural Information Processing Systems. 2023;36.

��. ^Malik A, Patel P, Ehsan L, Guleria S, Hartka T, Adewole S, Syed S (2021). "Ten simple rules for engaging wit

h arti�cial intelligence in biomedicine". PLoS Computational Biology. 17 (2): e1008531. Public Library of Scie

nce San Francisco, CA USA.

��. ^Wong F, Collins JJ (2023). "‘Explainable’ AI identi�es a new class of antibiotics". Nature. 6887: 8.

��. ^Wong F, Zheng EJ, Valeri JA, Donghia NM, Anahtar MN, Omori S, Li A, Cubillos-Ruiz A, Krishnan A, Jin W, et

al. (2024). "Discovery of a structural class of antibiotics with explainable deep learning". Nature. 626 (799

7): 177–185.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/22I1PO 32

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://www.qeios.com/
https://doi.org/10.32388/22I1PO

