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The innate immune cells play an important role in handling early infections, and can eliminate them

completely up to a certain threshold. Beyond that threshold they take up their role in “The

Resolution of In�ammation”. The recognition of the SARS-CoV-2 antigen triggers an eicosanoid

storm and initiates a robust in�ammatory response. This establishes a positive feedback loop which

develops into a sustained cytokine storm which interferes with the activation of adaptive immune

cells. The mechanism of this interaction, and hence the pathogenesis of the virus with the immune

system, is yet to be determined. In silico studies predict a direct SARS-CoV-2 spike glycoprotein

interaction with nicotinic acetylcholine receptors, which could impair macrophage function and

initiate the cascade of events described above. We here, add to the hypothesis that immune

dysregulation can be caused by the interaction of the SARS-CoV-2 spike glycoprotein via a cryptic

epitope with the α7-nAChR in Type-1 macrophages, discuss its implications for the treatment of

COVID-19 patients, and present better prospects for the design and dissemination of more e�ective

vaccines and their importance.

Introduction

The high expression levels of the angiotensin converting enzyme 2 (ACE2) receptor on lung epithelial

cells  [1][2]  explains why the lung is severely a�ected by COVID-19, but the infection of resident

alveolar macrophages seems counterintuitive, as their expression of the ACE2 receptor is fairly

limited [3][4]. Macrophages are an attractive target due to their ability to cause type 1 interferon (IFN)

disruption via the activation of various types of pattern recognition receptors (PRRs) they express [5].
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In theory, the phagocytosis of infected cells by resident macrophages exposes them to the virus [5][6].

The activation of PRRs in macrophages and other innate cells triggers the release of CD14+ monocytes

from the bone marrow into the bloodstream via CCL-2 signaling. They are then induced as resident

macrophages at the infection site [5][7]. Monocytes, on the other hand, express the ACE2 receptor and

are highly susceptible to SARS-CoV-2 [8][9]. They play a fundamental role in generating an adaptive

immune response, as tissue-resident macrophages are poor antigen presenting cells (APCs) and fail to

migrate to regional lymph nodes [10].

The local concentration of proin�ammatory cytokines is proportional to the rate of signaling to the

bone marrow for the release of monocytes, which further contributes to the production of local

proin�ammatory cytokines, thereby establishing a positive feedback system. This is naturally

regulated by polarization of resident M1 macrophages to the M2 phenotype, which mediate the anti-

in�ammatory e�ects and initiate the recovery process  [11]. By keeping the macrophage population

balanced towards the M1 phenotype in the microenvironment, the virus ensures an increase in the

concentration of proin�ammatory cytokines while avoiding the hindrance caused by anti-

in�ammatory cytokines [12]. This initiates an eicosanoid storm and then a subsequent cytokine storm

with increased expression of tumor necrosis factor-α (TNF-α), as is seen in COVID-19 cases [13][14]. 

Upon the initiation of the adaptive immune response, neural pathways play a major role in

transmitting early signals to and fro, between the infection site and the central nervous system (CNS).

The in�ammatory re�ex is an example; it is responsible for priming the spleen for the adaptive

immune response [15][16]. At the end of the in�ammatory re�ex mechanism the indirect activation of

α7- nicotinic Acetylcholine receptor (α7-nAChR) via Acetylcholine produced by splenic T cells inhibits

splenic macrophages from expressing proin�ammatory cytokines. This is one of the functions

associated with M2 macrophages. Whether polarization is triggered by the activation of this receptor

or is only a small part of the grand polarization scheme awaits investigation, but it plays a role in the

dysfunction of innate immune cells[17].

α7-nAChR is the nicotinic type of cholinergic receptors that are activated by the action of

Acetylcholine, the neurotransmitter used by the Parasympathetic Nervous System (PSNS)[18]. The

direct interaction of the virus with macrophages hints at the involvement of α7-nAChR in the

pathogenesis of COVID-19, indicating a dysregulation of the polarization mechanism, which is an

explanation for the dysfunction observed in the innate immune response to this virus [19].
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The Misdirection

SARS-CoV-2 has one of the largest known viral genomes (approximately 2-3 times the average viral

length) and features exonuclease activity with proofreading capabilities via nsp14 (ExoN)  [20]. The

term “error catastrophe” has not been de�ned for this viral candidate. It is adapting well, and a good

example here would be the mutations seen in the S1 subunit of the spike protein enabling it to have

better binding a�nities for the ACE2 receptor as compared to the initial SARS-CoV-2 strains while

maintaining ~76% similarity with the S1 subunit of SARS-CoV  [21][22]. The S2 subunit is even more

highly conserved with one striking feature, the biosynthesis of a furin cleavage site that aids the

transmissibility of the virus. This is particularly intriguing because the cleavage of S1/S2 subunits is

not even necessary for its biosynthesis  [22]. So why did that happen? Why increase the chances for

cleavage of a site that is not necessary in the �rst place? This suggests that the S1 residue still has a

few tricks up its sleeve and these come into e�ect post binding with the transmembrane pentameric

glycoprotein receptor ACE2.

The epitope (aa 375-390) belongs to a domain of the S1 subunit and it is highly conserved among the

global mutations in this pandemic  [23][24]. In accordance with evolution, the cholinergic epitope is

highly conserved and therefore must have a function. Upon initial assessments, In silico models

predicted a direct interaction with innate immune cells expressing the ACE2 receptor and α7-nAChR,

based on which further In-vitro experiments are ongoing[25][26].

The SARS-CoV antibody, CR3022 that neutralized its cholinergic epitope also interacts with high

a�nity to SARS-CoV-2 and is accessible only in the open con�guration of the trimeric spike receptor

binding domain (RBD)  [24][27]. CR3022 in combination with CR3014, that neutralized the spike RBD,

was successful in completely neutralizing SARS-CoV but failed to do so in this case due to the

mutations observed between the S1 regions of SARS-CoV and SARS-CoV-2  [28]. This theory is

supported by the rare SARS-CoV-2 antibody COVA1–16  that is also encoded to this cholinergic

epitope [29]. 

The antibody conundrum

The viral load a COVID-19 host faces is comparable to that of a simultaneous attack by multiple viruses

due to the mutations observed in the spike protein. This is why one antibody may work against a few

strands but is ine�ective in neutralizing the others, thereby reducing the overall e�cacy of our

qeios.com doi.org/10.32388/26GTOD.3 3

https://www.qeios.com/
https://doi.org/10.32388/26GTOD.3


vaccines. There is no generic antibody capable of neutralizing all of the mutated spike proteins, yet the

only way to develop long-term protective immunity against this virus is with an antibody. The human

body is capable of generating a diverse antibody population required to handle immense viral loads,

provided that the immune system is intact. Kaneko et al. (2020) observed low but diverse antibody

production in COVID-19 cases [30]. This can be explained as with the onset of SARS-CoV-2 infection,

the immune system starts to dysregulate leading to B-cell lymphopenia. An increase in

proin�ammatory cytokines is accompanied by an increase in TNF-α, which inhibits the di�erentiation

of active CD4+ T cells into BCL6+ GC-TFH cells (that aid with B cell antibody production) subsequently

resulting in a loss of germinal centers. Naturally, the antibodies formed are insu�cient, leaving us

susceptible to reinfection, assuming that the patient has recovered from the �rst infection [30].

Implications for Clinical therapy

An antibody targeting an epitope that is conserved across all mutations worldwide that interacts with

immune cells has major bene�ts. Neutralizing this epitope would handicap the ability of the virus to

cause dysfunction, but this is only a part of the S1 residue. The main virion continues its infection

cycle.

In severe COVID-19 cases an additional stimulation of α7-nAChR would be essential to restore the

integrity of the immune system. A combination of α7-nAChR agonists along with the proposed

antibody will de�nitely help regulate the proin�ammatory cytokine concentrations, but whether that

alone would su�ce to restore the ability of the body to generate su�cient quantities of antibodies for

a long term immunity requires further evaluation [31][32][33].

Conclusion

COVID-19 shares its clinical features with autoimmune and in�ammatory diseases that have

imbalanced M1/M2 ratios, and cholinergic activation in those conditions has shown alleviating e�ects.

Due to these similarities, researchers have focused on deactivating certain pathways and cytokines,

but the results are inconclusive, mainly because they interfere with a recovery process that is essential

at some point during the infection cycle. Dysregulation of these pathways cause downstream e�ects

that eventually bene�t the virus or worsen the condition of the patient. Treatment should be designed

in such a way that it does not interfere with natural processes while still e�ectively terminating the

viral infection.
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The evolution of SARS-CoV-2 is mediated through variants. They adapt to evade the immune response

and this is seen as the varaints with mutations in the spike protein have better adhesion capabilities

and therefore higher transmission rates[34][35]. This had forced us to upgrade our vaccines from

antibody cocktails to mRNA and adenoviral vectors that encoded the most studied protein, i.e. spike.

The issue with mRNA and adenoviral vectored vaccines is that they all encode the spike protein, which

is the hidden mastermind behind a SARS-CoV-2 infection. It creates a distraction by continuously

evolving its RBD, while in essence, the disease is caused by disrupting the immune response via the

cholinergic epitope. Also, note that it is possible that the vaccines itself might facilitate recombinant

mutations. For example, if people in India are inoculated with vaccines that encode the spike of a

variant from outside India, say UK, the local strains are now exposed to strains from the UK. 

So in the long term perspective the e�ciencies of our current vaccines will keep degrading as the virus

mutates till we exhaust our capacity to practically produce the booster shots on a global scale[36].

Our e�orts to develop vaccines would be better suited if we redirect our attention to this epitope and

�gure out the exact function of its interaction with our body, more speci�cally how it a�ects the

macrophage polarization scheme.
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