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The evolution of agentic systems represents a signi�cant milestone in arti�cial intelligence and

modern software systems, driven by the demand for vertical intelligence tailored to diverse

industries. These systems enhance business outcomes through adaptability, learning, and

interaction with dynamic environments. At the forefront of this revolution are Large Language

Model (LLM) agents, which serve as the cognitive backbone of these intelligent systems.

In response to the need for consistency and scalability, this work attempts to de�ne a level of

standardization for Vertical AI agent design patterns by identifying core building blocks and

proposing a Cognitive Skills Module, which incorporates domain-speci�c, purpose-built inference

capabilities. Building on these foundational concepts, this paper o�ers a comprehensive

introduction to agentic systems, detailing their core components, operational patterns, and

implementation strategies. It further explores practical use cases and examples across various

industries, highlighting the transformative potential of LLM agents in driving industry-speci�c

applications.

Corresponding author: Fouad Bousetouane, bousetouane@uchicago.edu

1. Introduction

The rapid evolution of technology has transformed business operations, with SaaS

platforms[1] becoming essential for scalability and e�ciency across industries. However, as industries

face increasingly dynamic and complex environments, traditional SaaS solutions often fall short in

meeting domain-speci�c and evolving needs.
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To bridge this gap, agentic systems have emerged as a new generation of solutions. Powered by LLMs

and advanced AI capabilities, they deliver intelligent, context-driven, and domain-speci�c solutions,

addressing the limitations of both traditional SaaS platforms and context-aware systems.

1.1. The Shortcomings of Traditional SaaS Platforms

Traditional SaaS platforms serve as the backbone of business operations, o�ering reliable tools for

managing work�ows and maintaining operational consistency. Their architecture emphasizes

horizontal scalability and general applicability, enabling businesses to standardize processes and

optimize routine tasks across industries. This broad applicability makes SaaS ideal for managing

repetitive tasks and scaling operations across diverse sectors. However, this generalized design often

comes at the expense of domain-speci�c intelligence and �exibility, which are critical for addressing

the unique challenges of dynamic and complex environments.

These limitations are evident in various industries:

E-commerce: Platforms e�ciently handle online transactions, product catalog management, and

order tracking. Yet, they often require extensive customization to analyze customer purchasing

behaviors, predict seasonal demand trends, or dynamically adjust inventory levels based on real-

time sales data.

Multichannel Marketing: Tools streamline campaign management across various channels,

o�ering templates and automation for email, social media, and advertisements. However, their

reliance on prede�ned work�ows limits their ability to adapt quickly to shifting customer

preferences, emerging trends, or competitor strategies.

Inventory Management: Systems track stock levels and trigger reorders based on prede�ned

thresholds. Despite this, they typically lack the ability to anticipate supply chain disruptions,

respond to sudden demand spikes, or optimize procurement strategies using external market

insights.

These examples underscore the reliance of traditional SaaS platforms on rule-based automation and

structured data inputs. While e�ective for predictable and routine processes, they fall short in

addressing domain-speci�c tasks that require contextual intelligence and adaptability.
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1.2. The Transition to Context-Aware Systems

The limitations of traditional SaaS platforms have driven the adoption of context-aware systems,

which aim to address these gaps by integrating real-time data and adaptability into work�ows. By

dynamically adjusting to evolving scenarios, these systems enable businesses to operate more

e�ectively in increasingly complex environments. Context-aware systems are designed to:

Understand dynamic environments: Incorporate real-time data to adjust work�ows and outputs.

Bridge data to decisions: Translate raw data into actionable insights without extensive manual

intervention.

Adapt to evolving scenarios: Adjust to unforeseen conditions or emerging trends.

While these systems represent a signi�cant step forward, they still face challenges. For example:

Supply Chain Management: Traditional tools track inventory but fail to predict disruptions caused

by external factors such as weather events or geopolitical risks.

Healthcare: Scheduling systems can manage appointments but lack the capability to prioritize

critical patients based on real-time health data.

These examples highlight the limitations of context-aware systems in achieving comprehensive

decision-making. While they o�er adaptability, they are constrained by their dependence on

prede�ned rules and lack the ability to process unstructured data or make advanced contextual

decisions.

2. The Rise of Vertical AI Agent Solutions

As industries face increasingly complex and domain-speci�c challenges, the limitations of traditional

and context-aware systems have become evident. Vertical AI agents have emerged as a transformative

solution, embedding industry-speci�c expertise and �ne-tuned intelligence into adaptable, real-time

systems. By combining the �exibility of context-aware systems with domain knowledge, they

empower organizations to address unique challenges with precision and e�ciency.

These agents bridge the gap between general-purpose systems and the speci�c demands of modern

industries, enabling real-time adaptability and specialized problem-solving. This evolution marks a

pivotal shift in intelligent system design, allowing businesses to optimize work�ows, enhance
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decision-making, and tackle increasingly dynamic operational requirements with unprecedented

e�ectiveness.

2.1. Operational Advantages of Vertical AI Agents

2.1.1. Targeted Domain Expertise

Vertical AI agents are tailored for speci�c industries, utilizing domain-speci�c reasoning engines

(LLMs) �ne-tuned for specialized knowledge and work�ows to address complex challenges

e�ectively. This ensures they can:

Perform intricate tasks, such as legal contract analysis, medical imaging interpretation, or

�nancial risk assessment, with exceptional precision.

Generate insights and recommendations tailored to the unique demands of the domain, reducing

errors and manual e�ort.

Ensure operational accuracy and alignment with industry standards by incorporating domain-

speci�c protocols and guidelines directly into their decision-making processes, minimizing risks

and errors in critical tasks.

These specialized capabilities make vertical AI agents indispensable in �elds where accuracy,

reliability, and regulatory adherence are critical.

2.1.2. Dynamic Adaptability in Real-Time Operations

Unlike traditional systems, vertical AI agents excel in dynamic environments, continuously adapting

to changing conditions and operational demands. They achieve this through:

Real-Time Data Processing: Leveraging live inputs like inventory �uctuations, customer

preferences, or environmental factors to adjust strategies and outputs instantly.

Proactive Decision-Making: Anticipating disruptions and recon�guring work�ows, such as

rerouting supply chains during delays or reallocating resources in emergencies.

Scalable Responsiveness: Managing both minor adjustments and large-scale shifts with agility,

ensuring minimal downtime and maximum e�ciency.

This adaptability empowers organizations to respond e�ectively to evolving challenges, making

vertical AI agents central to resilient and responsive operations.
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2.1.3. End-to-End Work�ow Automation

By automating complex processes, vertical AI agents transform raw data into actionable outcomes,

streamlining work�ows traditionally reliant on human intervention. This results in:

Faster Turnaround Times: Analyzing, deciding, and executing tasks within seconds, signi�cantly

reducing delays in processes like customer onboarding or compliance reviews.

Cost Optimization: Automating repetitive tasks allows human resources to focus on strategic,

high-value activities, increasing productivity and reducing operational expenses.

Interoperability Across Systems: Seamlessly integrating with enterprise tools and bridging gaps

between structured (e.g., ERP systems) and unstructured (e.g., emails, documents) data

environments.

Vertical Ai agent solutions are rapidly gaining momentum, with major players such as Google, AWS,

OpenAI, and Microsoft spearheading e�orts to develop platforms that simplify and scale the creation

of vertical AI solutions. While these advancements signal a transformative shift, we are still in the

early stages of this journey, with operational patterns only beginning to take shape. These emerging

platforms aim to provide standardized frameworks for �ne-tuning, deployment, and integration,

enabling a more structured approach to building intelligent, adaptive agents. In Section 3, we explore

LLM agents, the bedrock of vertical AI agents, leveraging large language models for domain-speci�c

intelligence and adaptability. Section 4 introduces agentic systems, their categories, operational

patterns, and transformative industry applications.

3. What Are LLM Agents?

3.1. De�nition

LLM agents are autonomous, intelligent systems powered by Large Language Models (LLMs) that

integrate modular components—reasoning, memory, cognitive skills, and tools—to solve complex

tasks in dynamic and evolving environments. These agents are designed to operate independently,

adapt to changes, and execute sophisticated tasks by combining domain-speci�c expertise with

contextual understanding. Each module within the agent’s architecture serves a distinct purpose:

reasoning enables logical decision-making, memory supports retention and recall of critical

information, and tools facilitate interaction with external systems and environments. Figure 1
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illustrates the modular architecture and components of an LLM agent, highlighting its ability to

perform dynamic, real-time processes with adaptability, intelligence, and precision.

We introduce a new module to the core building blocks of the LLM agent—cognitive skills—which

�lls the gap between pre-trained or �ne-tuned LLM reasoning, external tools for interacting with the

environment, and new inference models. This module ensures that LLM agents are equipped with

purpose-built models tailored to speci�c tasks, enhancing their ability to operate e�ectively across

various domains and challenges.

3.2. LLM Agents vs. LLM Work�ows

It is important to distinguish LLM agents from LLM work�ows, as they di�er both conceptually and

operationally. LLM work�ows are prede�ned, static processes designed to perform speci�c, linear

tasks. They operate based on a structured pipeline where each step is explicitly de�ned and executed

in sequence, with little to no �exibility or adaptability.

For instance, as illustrated in Figure 2, a typical work�ow involves a chain of prompts using multiple

LLMs, combined with a Retrieval-Augmented Generation (RAG) pattern for accessing domain-

speci�c knowledge. In this setup, one LLM might process the query to determine intent or re�ne

context, while another LLM, equipped with retrieved knowledge, generates the �nal response. The

work�ow’s reliance on �xed steps ensures consistency but limits �exibility. For more details on RAG

implementation and advanced prompting guidelines, refer to [2] and [3].

LLM agents stand apart due to their ability to reason, adapt, and re�ne their actions in response to

changing environments and complex goals, making them well-suited for advanced, dynamic

applications. This distinction underscores the versatility and intelligence that de�ne LLM agents as

compared to traditional LLM work�ows.
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Figure 1. Architecture and Core Components of an LLM Agent

Figure 2. Example of LLM Work�ow: Chain Prompting with RAG for Knowledge Retrieval
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3.3. Core Modules of LLM Agents

3.3.1. Memory: The Core of Continuity and Context

The memory module underpins the agent’s ability to maintain context across interactions, ensuring

personalized and consistent responses. It stores historical interactions, user preferences, and

domain-speci�c knowledge, serving as the agent’s long-term storage system. By leveraging memory,

the agent achieves:

Contextual Awareness: Drawing on prior interactions to maintain continuity.

Personalization: Adapting responses based on user-speci�c information.

Domain Expertise: Utilizing stored knowledge to deliver precise and informed outputs.

This module ensures that the agent operates seamlessly, integrating past interactions with real-time

data to provide contextually appropriate results.

3.3.2. Reasoning Engine (LLM): The Brain of the Agent

The Reasoning Engine module, powered by the LLM, is the decision-making core of an LLM agent. It

orchestrates logical inference, planning, contextual understanding, and personalized interaction,

transforming raw data into actionable insights. By integrating inputs from Memory, Cognitive Skills,

and Tools, the Reasoning Engine ensures the agent operates e�ectively in dynamic and complex

environments. As illustrated in Figure 1, this module lies at the heart of agentic intelligence, driving

coherence and adaptability in every interaction.

Core Capabilities of the Reasoning Engine

1. Logical Inference and Problem-Solving: The Reasoning Engine evaluates inputs to derive

meaningful conclusions. By analyzing ambiguous or complex scenarios, it applies advanced

logical reasoning to ensure the agent’s responses are precise and data-driven.

2. Contextual Understanding and Response Generation: Leveraging historical data from Memory

and real-time inputs from Tools, the Reasoning Engine tailors outputs to the context, ensuring

coherent, adaptive, and aligned interactions. This contextual understanding enables the agent to

handle diverse and evolving scenarios with accuracy.
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3. Task Sequencing, Goal-Oriented Planning, and Chain of Thought Reasoning: The Reasoning

Engine strategically organizes and sequences tasks, ensuring goal-oriented behavior. A key

enhancement is its Chain of Thought Reasoning, which allows the agent to break down complex

queries into smaller, sequential steps. This process ensures clarity, logical �ow, and accurate

resolution, especially for multifaceted tasks.

4. Adaptive Personas for Tailored Interactions: The Reasoning Engine integrates personas to adapt

the agent’s tone, style, and reasoning approach based on its audience. Personas enhance user

trust and engagement by aligning interactions with expectations:

Empathetic Persona: Suitable for healthcare or customer support, o�ering compassionate and

understanding interactions.

Professional Persona: For business or legal applications, ensuring formal and precise

responses.

Casual Persona: For consumer-facing roles, promoting friendly and approachable

communication.

3.3.3. Cognitive Skills: Task-Speci�c Inferences

The Cognitive Skills module acts as a model hub, equipping the agent with purpose-built models

speci�cally designed to accomplish tasks that general-purpose LLMs, even when �ne-tuned LLMs,

struggle to perform e�ectively. Fine-tuned models often lack the precision and specialization required

for complex, domain-speci�c tasks. The Cognitive Skills module bridges this gap by delivering

domain-speci�c cognitive capabilities uniquely tailored for specialized applications, enhancing the

agent’s functionality and adaptability. By leveraging these specialized skills, the agent can tackle tasks

requiring high precision, domain expertise, or advanced processing capabilities.

Examples of Cognitive Skills in Action:

Risk Assessment Models: Built for screening and evaluating:

Intellectual property content for potential infringement or con�icts.

Personal information and privacy-sensitive data to ensure compliance with regulations such as

GDPR.

Risk-prone operations, such as credit underwriting in �nancial services.

Vulnerability Detection Models: Developed to protect against adversarial attacks and

vulnerabilities by:
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Identifying and mitigating risks like jailbreaking attempts, toxic content generation, or data

poisoning attacks.

Enhancing the agent’s resilience in adversarial environments, ensuring reliable performance.

Compliance Monitoring Models: Critical for ensuring adherence to:

Organizational policies by detecting outputs that deviate from ethical or operational guidelines.

Legal frameworks, such as validating contracts or outputs against industry-speci�c regulations.

Optical Character Recognition (OCR): Enables the agent to process and extract information from:

Scanned documents, invoices, or receipts.

Handwritten forms or images containing text.

Complex documents requiring structured data extraction.

Image Classi�cation and Object Detection: Provides visual processing capabilities, such as:

Identifying defective parts in manufacturing processes.

Classifying medical images for diagnostics (e.g., detecting tumors in X-rays).

Analyzing satellite imagery for environmental monitoring.

Audio and Speech Processing Models: Adds specialized capabilities to handle:

Transcription and sentiment analysis of call center recordings.

Real-time language translation in multilingual communication.

Responsible AI - Guardrail Classi�ers: Essential for ensuring ethical and safe agent operations,

including:

Toxicity Detection: Screening outputs for o�ensive or harmful language.

Bias Mitigation: Identifying and reducing biases in generated responses.

Ethical Review: Validating outputs for alignment with societal and organizational ethical

standards.

Misinformation Detection: Flagging and correcting potentially false or misleading information.

These cognitive skills enable the agent to function as a versatile, purpose-driven system that adapts

to its operational environment by leveraging specialized capabilities. By acting as a bridge between

the LLM’s general reasoning abilities and domain-speci�c inference tasks, this module ensures that

the agent is not only adaptable but also precise, reliable, and aligned with industry-speci�c needs.
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3.3.4. Tools: Bridging Knowledge and Interaction

The Tools module equips the agent with a range of tools that enhance its ability to be contextually and

environmentally aware. These tools enable the agent to access, retrieve, and process information from

various sources, ensuring its actions are informed, adaptive, and aligned with operational goals.

Examples of tools the agent can leverage include:

Knowledge Retrieval Systems: Retrieval-Augmented Generation (RAG) systems to access

structured (e.g., databases) and unstructured (e.g., document repositories) knowledge, enabling

the agent to incorporate relevant domain-speci�c information into its operations.

Dynamic API Integration: Tools that allow the agent to interact with live data streams, proprietary

platforms, and external systems, facilitating real-time decision-making and adaptive responses.

Legacy System Interfaces: Tools for bridging traditional structured data systems, such as

relational databases, to incorporate historical data and insights into the agent’s current tasks.

Contextual Awareness Tools: Systems that provide the agent with situational and environmental

context, enabling it to tailor its actions and outputs based on speci�c operational scenarios.

4. Agentic Systems: De�nition, Categories, and Applications

4.1. De�nition of Agentic Systems

Agentic systems are advanced frameworks that integrate one or more LLM agents to automate

complex tasks and streamline processes across various domains. These systems are designed to

function autonomously, enabling agents to collaborate through direct communication or an

orchestration module that coordinates their interactions. By leveraging modular designs, agentic

systems provide �exibility, adaptability, and scalability to address dynamic and evolving operational

needs.

4.2. Architectural Flexibility and Design Patterns

At the time of writing this article, there are no universally accepted design patterns for agentic

systems. Their architectures and implementations vary signi�cantly, often being tailored to speci�c

domains and use cases. This �exibility allows organizations to design agentic systems that best align
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with their unique requirements, though it also presents challenges in establishing standardization

and interoperability.

Despite the absence of standardized design patterns, substantial progress has been made by

technology leaders, LLM solution providers, and academic researchers in advancing agentic

frameworks. These e�orts focus on developing generic frameworks while also building multi-agent

systems tailored to domain-speci�c applications.

4.2.1. Industry E�orts in Agentic Frameworks

Microsoft: Introduced frameworks like AutoGen, which supports multi-agent systems for task

automation and collaboration, and Semantic Kernel, which integrates AI into enterprise work�ows

with a focus on security and scalability[4].

OpenAI: Introduced the Assistants API, enabling the development of AI agents with advanced

capabilities such as tool utilization, memory-based persistent conversations, and knowledge

retrieval for handling complex tasks and dynamic interactions[5].

Google: Developed Vertex AI Agent Builder, which integrates Vertex AI Search for grounded

responses and Vertex AI Conversation for natural dialogue, streamlining the development of agents

for tasks like customer support and data analysis[6].

Amazon Web Services (AWS): Provides a robust suite of tools tailored for deploying agentic

systems across industries, allowing developers to address speci�c use cases[7].

Anthropic: Focuses on creating diverse agentic system patterns leveraging its core LLM, Claude, for

various applications[8].

LangChain: Supports implementing agents for dynamic, multi-step tasks but faces challenges with

speed limitations when managing complex interactions between multiple agents and tools[9].

4.2.2. Academic Research E�orts

Magentic-One: Proposes a generalist multi-agent system architecture for solving complex

problems, aiming for adaptability across domains[10].

KG4Diagnosis: Develops a hierarchical multi-agent framework enhanced with knowledge graphs

to improve accuracy in medical diagnoses, particularly in healthcare[11].
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MedAide: Explores creating a collaborative medical assistant system using specialized LLMs to

provide comprehensive patient support services[12].

Together, these industry innovations and academic advancements are driving the rapid evolution of

agentic systems, paving the way for more versatile and impactful AI solutions.

4.3. Categories of Agentic Systems

Agentic systems can be categorized into three primary types based on their structure, scope, and

interaction dynamics:

1. Task-Speci�c Agents

2. Multi-Agent Systems

3. Human-Augmented Agents

Each category re�ects a unique approach to designing intelligent systems, tailored to address

di�erent operational needs and complexities.

4.3.1. Task-Speci�c Agent

De�nition: A Task-Speci�c Agent is an autonomous system designed to handle a speci�c function or

solve a narrowly de�ned problem within a particular domain. These agents act as specialized modules

that contribute to larger systems by e�ciently managing discrete tasks.

There are various patterns to implement Task-Speci�c Agents based on application needs. For

example:

ReAct Agent: Combines reasoning and action to handle interactive work�ows and decision-making

tasks[13].

Router Agent: Maps queries or tasks to the appropriate sub-agents or data sources, often used in

multi-domain retrieval systems like Retrieval-Augmented Generation (RAG) [14].

In the next section, we will explore the architectural principles and use cases of the RAG Agent Router,

a common implementation of the Router Agent pattern.

RAG Agent Router: is a Task-Speci�c Agent designed to dynamically orchestrate knowledge retrieval

in Retrieval-Augmented Generation systems. Its primary function is to analyze user queries and map
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them to the appropriate domain-speci�c knowledge sources, tools, or APIs, ensuring e�cient and

contextually accurate responses.

Figure 3 illustrates the architecture of the RAG Agent Router. When a user submits a query, it is

processed by the LLM Agent (Router), which determines the appropriate route based on the query’s

intent. The router maps the query to one of two distinct vector databases, each representing a speci�c

knowledge domain (e.g., legal knowledge or �nancial data). These vector databases are powered by

domain-speci�c encoders, �ne-tuned to understand the semantics and key aspects of their respective

domains. The relevant contextual information retrieved is combined with a prompt template and sent

to the LLM, which generates a summarized and contextually accurate response. The response is then

delivered back to the user, ensuring relevance and precision tailored to the query.

Figure 3. Architecture of the RAG Agent Router with Domain-Speci�c Vector Databases

This pattern is particularly valuable in scenarios such as:
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Domain-Speci�c Knowledge Sources: Where multiple vector databases are tailored to speci�c

domains (e.g., legal, �nancial) and rely on �ne-tuned encoders to understand the semantics and

nuances of their respective �elds.

Separation of Indexes: When combining knowledge sources into a single index is impractical due

to constraints like scalability, performance optimization, or security requirements.

Dynamic Query Handling: When user queries vary in intent and context, requiring the router to

apply specialized retrieval strategies to deliver accurate, domain-speci�c information.

Leveraging Di�erent Tools or APIs: When queries necessitate the use of speci�c external tools

(e.g., calculators, data analysis APIs, or CRM integrations) to supplement retrieval with actionable

insights or automated work�ows.

Practical Use Cases of the Router Agent

1. Customer Support Systems

Scenario: A customer submits multiple queries spanning di�erent domains, such as tracking

shipments, processing returns, and requesting refunds.

Solution: The Router Agent parses the intent of each query, maps them to the respective

domain-speci�c knowledge or APIs (e.g., tracking database, returns system, payments

database, customer relationship management (CRM) tools, inventory management systems,

or live chat platforms), retrieves the necessary data, and aggregates the information into a

cohesive response for the customer.

2. Enterprise Knowledge Management

Scenario: Employees need access to documents stored across multiple departmental

databases, such as HR policies, legal precedents, and �nancial reports.

Solution: The Router Agent identi�es the domain of the employee’s query and routes it to the

appropriate database. It retrieves the relevant document or data and presents it e�ciently,

ensuring fast and accurate access to information.

3. Healthcare Decision Support

Scenario: A physician queries multiple systems to access patient history, lab results, and

clinical guidelines for a speci�c medical condition.

Solution: The Router Agent processes the query and maps it to the respective systems (e.g.,

electronic health records, diagnostic databases, and treatment guidelines). It retrieves the
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relevant information and integrates it into a single, comprehensive report for the physician.

4. RAG Agent Router in Multi-Domain Retrieval

Scenario: A system with separate vector databases for legal, �nancial, and technical

knowledge needs to process a user query such as: ”Summarize recent IP law precedents in

technology.”

Solution:

a. The Router Agent identi�es the domain as ”legal.”

b. It maps the query to the ”Legal Precedents Database.”

c. It retrieves summaries of relevant cases and passes them to the LLM, which generates a

concise and domain-accurate response tailored to the query.

4.3.2. Multi-Agent Systems

De�nition: A Multi-Agent System is a collection of autonomous agents designed to collaborate and

solve interconnected problems or achieve shared goals. These systems act as distributed modules that

work together by communicating and coordinating tasks, o�ering scalability and adaptability in

complex work�ows. Depending on the application, agents within the system may share a common

memory or operate with separate, isolated memories to optimize task execution.

There are various patterns to implement Multi-Agent Systems based on application needs. For

example:

Orchestrated Multi-Agent System: Involves a lead agent that delegates subtasks to specialized

agents and integrates their outputs, commonly used in dynamic, multi-step work�ows.

RAG Orchestrated Multi-Agent System: Extends the orchestrated system by incorporating agents

specialized in retrieval tasks, with each agent accessing a speci�c knowledge domain or tool. The

lead agent dynamically routes queries to the relevant agents and integrates the retrieved

information to ensure accurate and context-aware responses.

Collaborative Problem Solvers: Agents communicate directly with one another to achieve shared

objectives without central control. This pattern is suitable for decentralized or distributed tasks

where agents share information to collectively solve problems.

In the next section, we will explore the architectural principles and use cases of the RAG Orchestrated

Multi-Agent System, a common implementation of this pattern.
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RAG Orchestrated Multi-Agent System: is an advanced implementation of a Multi-Agent System

where a lead agent coordinates the activities of multiple specialized agents, each focused on retrieval

tasks from speci�c knowledge domains or tools. The lead agent acts as the central orchestrator,

dynamically routing queries to the relevant retrieval agents, collecting their outputs, and integrating

the information into a uni�ed, context-aware response. This design ensures e�cient handling of

complex queries that require information from diverse, domain-speci�c sources.

Figure 4 illustrates an example of a responsible RAG Orchestrated Multi-Agent System. When a user

submits a query, it is �rst received by the LLM Agent (Orchestrator), which parses the query and

determines how to decompose it into subtasks based on the query’s intent. Each subtask is

dynamically assigned to one of the specialized LLM Agents, which are responsible for interacting with

distinct tools or cognitive skills.

This example highlights a speci�c architecture pattern for such a system, but additional agents can be

integrated based on the application’s requirements, providing �exibility for domain-speci�c or task-

speci�c enhancements.

The specialized LLM Agents are connected to tools and cognitive skills, categorized as follows:

Tools:

Domain-Speci�c Sources:

LLM Agent 1: Connected to Vector Search Engines, which access speci�c vector databases

(e.g., DB1, DB2, DB3). These databases represent unique knowledge domains, such as legal,

�nancial, or technical data.

LLM Agent 2: Connected to Knowledge Graphs, which provide structured and interconnected

data for handling complex, interlinked queries.

Broad Contextual Sources:

LLM Agent 3: Connected to Search APIs, leveraging external search engines or APIs to

retrieve supplementary information and broader contextual data.

Cognitive Skills:

LLM Agent 4: Utilizes Guardrail Classi�ers to assess the risk levels of decisions made by the

Orchestrator and other agents. These classi�ers are pre-built to identify vulnerabilities, ethical

concerns, and potential risks, ensuring that all outputs adhere to safety and responsibility

guidelines.
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Each LLM Agent retrieves the necessary information from its assigned tool or skill, ensuring relevance

and domain accuracy. The Orchestrator integrates the outputs from all agents, incorporating the risk

assessment and validation performed by LLM Agent 4. The compiled context, along with the

Orchestrator’s �nal decision, is then sent to the LLM, which processes this input to generate the �nal

response. This response is delivered back to the user, ensuring it is cohesive, contextually accurate,

and ethically sound.

Figure 4. Architecture of the RAG Orchestrated Multi-Agent System for Multi-Domain Knowledge

Retrieval

This pattern is particularly valuable in scenarios such as:

Cross-Domain Information Retrieval: When a query requires inputs from multiple specialized

domains, such as combining legal precedents with �nancial data.

Dynamic Work�ows: Where queries need to be decomposed into subtasks that require di�erent

agents to retrieve or process information.

Scalable Knowledge Systems: In systems with distributed or isolated knowledge bases, enabling

retrieval without merging data into a single index.
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Time-Sensitive Decision Support: For example, providing executives with real-time insights by

aggregating data from performance metrics, market analysis, and risk assessments.

Practical Use Cases of the RAG Orchestrated Multi-Agent System

1. Enterprise Reporting

Scenario: A business executive requests insights on �nancial performance, customer

feedback, and market trends.

Solution:

1. The Orchestrator Agent splits the query into subtasks: �nancial analysis, customer

sentiment, and market research.

2. Each subtask is routed to specialized agents querying �nancial databases, sentiment

analysis tools, and market research APIs.

3. The outputs are integrated into a comprehensive report for the executive.

2. Healthcare Assistance

Scenario: A physician queries diagnostic criteria, patient history, and treatment options for a

medical condition.

Solution:

1. The Orchestrator Agent breaks the query into subtasks: diagnostics, patient history, and

treatment plans.

2. Specialized agents access diagnostic databases, EHRs, and clinical guidelines.

3. Results are compiled into a single, detailed treatment recommendation.

3. Legal Case Analysis

Scenario: A lawyer requests recent legal precedents, statutory laws, and �nancial implications

of a patent dispute.

Solution:

1. The Orchestrator identi�es subtasks: legal precedents, statutory research, and �nancial

impact analysis.

2. Agents query legal databases, legislative knowledge graphs, and �nancial systems.

3. The results are synthesized into a comprehensive case summary.

4. Financial Portfolio Management
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Scenario: An investor asks for portfolio performance, market risks, and investment

opportunities.

Solution:

1. The Orchestrator splits the query into subtasks: performance metrics, risk analysis, and

opportunities.

2. Agents access portfolio databases, risk assessment tools, and market APIs.

3. Results are combined into a personalized investment report.

5. Supply Chain Insights

Scenario: A logistics manager requests information on inventory levels, supplier

performance, and shipment tracking.

Solution:

1. The Orchestrator breaks the query into subtasks: inventory management, supplier

analytics, and shipment tracking.

2. Agents query inventory systems, supplier performance databases, and logistics APIs.

3. Outputs are integrated into a detailed supply chain overview.

4.3.3. Human-Augmented Agent

A Human-Augmented Agent is an intelligent system designed to collaborate with humans by

automating complex tasks while incorporating human oversight, feedback, or decision-making.

These agents function as adaptive modules in larger systems, augmenting human capabilities by

providing insights, generating recommendations, and performing tasks autonomously within

prede�ned boundaries.

There are various patterns to implement Human-Augmented Agents based on application needs. For

example:

Human-in-the-Loop (HITL) Agent: Integrates human feedback on decision status and

environmental context to validate, re�ne, or override outputs generated by the agent.

Collaborative Agent: Operates interactively with humans in real time, providing iterative

suggestions or assisting in task execution.

Supervisory Agent: Monitors processes, �ags anomalies, and recommends corrective actions for

human validation and intervention.
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Figure 5. Human-in-the-Loop (HITL) Agent Pattern for Collaborative Decision-Making

Figure 5 illustrates the architecture of a Human-in-the-Loop (HITL) Agent Pattern, where the agent

operates autonomously to process queries while integrating human expertise for validation and

re�nement.

Key Components of the HITL Agent Work�ow Pattern

1. Query Input: A user submits a query that is routed to the HITL Agent for processing.

2. Domain Knowledge Retrieval: The HITL Agent uses a Vector Search mechanism to retrieve

relevant information from a Vector Database, which contains domain-speci�c knowledge.

3. Response Generation: Based on the retrieved information, the HITL Agent generates a

preliminary response or decision.

4. Human Feedback: The Human Expert reviews the agent’s output, providing feedback on the

decision status (e.g., approve, reject, modify) and o�ering additional contextual inputs if needed.

5. Feedback Loop: The feedback from the human expert is integrated into the HITL Agent’s

reasoning process, allowing the agent to re�ne its understanding and improve future outputs.

6. Final Response: Once validated or re�ned, the �nal response is delivered to the user.
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This pattern ensures that the agent operates autonomously within its domain but relies on human

expertise to address high-stakes or context-sensitive decisions, enhancing reliability and

adaptability. The feedback loop also enables the HITL Agent to learn and evolve based on human

interactions, ensuring continuous improvement over time.

Practical Use Cases of Human-Augmented Agents

1. Healthcare Diagnostics and Treatment Planning

Scenario: A physician uses an AI system to assist in diagnosing rare diseases and formulating

treatment plans.

Solution:

1. The Human-Augmented Agent analyzes patient history, lab results, and clinical

guidelines.

2. It suggests potential diagnoses and treatment options, highlighting supporting evidence.

3. The physician validates or re�nes the recommendations, ensuring the diagnosis aligns

with patient-speci�c factors.

2. Fraud Detection in Financial Systems

Scenario: A �nancial institution uses an AI system to monitor transactions for potential fraud

or money laundering.

Solution:

1. The agent �ags suspicious activities based on prede�ned patterns and anomalies.

2. A compliance o�cer reviews the �agged cases and validates whether they represent

genuine threats.

3. Feedback on false positives or new fraud techniques is shared with the agent to improve

detection accuracy.

3. Legal Document Review and Compliance

Scenario: A corporate legal team uses an AI system to ensure regulatory compliance in

contracts and agreements.

Solution:

1. The agent scans contracts to identify missing clauses, inconsistencies, or non-

compliance risks.
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2. Lawyers validate and re�ne the �agged areas, tailoring them to speci�c regulatory

requirements.

3. The system learns from human feedback to improve future document reviews, ensuring

faster and more accurate compliance checks.

4. Real-Time Cybersecurity Monitoring

Scenario: Organizations use AI agents to monitor networks for cyberattacks or vulnerabilities.

Solution:

1. The agent detects potential breaches or unusual activities (e.g., unauthorized access,

malware).

2. Security experts analyze �agged incidents to con�rm the validity of the threat and

determine mitigation actions.

3. Feedback from resolved incidents helps the agent re�ne its threat detection and response

capabilities over time.

5. Conclusion and Future Directions

5.1. Conclusion

In this article, we explored the transformative power of agentic systems and their potential to address

the dynamic and complex needs of modern industries. Beginning with the limitations of traditional

SaaS platforms and the transition to context-aware systems, we established the foundational need for

intelligent, adaptive solutions capable of operating in evolving environments. Vertical AI agents

emerged as a critical innovation, o�ering operational advantages such as targeted domain expertise,

real-time adaptability, and end-to-end work�ow automation.

We examined the architecture and design of LLM agents, highlighting their core modules—Memory,

Reasoning Engine, Cognitive Skills, and Tools, which equip them to process complex tasks in a

scalable and domain-speci�c manner. The cognitive skills module was introduced as a key feature,

enabling purpose-built models such as compliance monitors, responsible AI classi�ers, and domain-

specialized inference tools, ensuring agents operate responsibly and e�ciently.

Expanding the scope to multi-agent and human-augmented systems, we showcased how these

advanced frameworks integrate vertical intelligence to rede�ne software optimization, design, and

automation. With their architectural �exibility and diverse applications, agentic systems have
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demonstrated their ability to revolutionize industries, driving operational e�ciency and intelligent

decision-making.

The transformative power of agentic systems and vertical intelligence signi�es a paradigm shift in

how businesses approach software and automation. By embedding contextual awareness and

adaptability into intelligent agents, these systems enable unprecedented scalability, responsiveness,

and ethical innovation. As industries continue to face complex challenges, agentic systems will play a

pivotal role in shaping the future of intelligent work�ows, o�ering groundbreaking opportunities for

innovation and growth.

5.2. Future Directions

Key future directions include:

Developing standardized frameworks to enhance interoperability and scalability.

Expanding domain-speci�c intelligence for broader adaptability.

Advancing human-agent collaboration to improve reliability and trust.

Addressing ethical and regulatory concerns to ensure responsible use.

Agentic systems hold immense potential to revolutionize industries and tackle complex societal

challenges. Addressing these priorities will unlock their full impact, driving innovation and delivering

meaningful bene�ts across domains.
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