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This manuscript presents a detailed mathematical analysis of survival

thresholds in branching Markov chains, with applications to the study of

species navigation. We examine conditions under which a species, modeled as

a branching Markov chain, can survive when constrained to returning to its

birthplace to give birth. The study demonstrates that survival is possible only

when the return probability of an individual to its birthplace exceeds 1/2. Our

model, extending recent work by Lebensztayn and Pereira, offers new insights

into the interplay between survival probability and navigation skills. These

findings provide a theoretical framework for understanding evolutionary

dynamics in species with varying degrees of navigation skills, explored

through mathematical modeling.
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1. The model

Let   be a countable set. For   and   in  , let   be the transition probability

from    to    for an irreducible discrete-time Markov chain X on  . Let    be a

fixed site in  . We define a branching Markov chain    as follows. At time  , 

 starts with a single individual at  . At every discrete time, if the individual is

at    it jumps to    with probability    (the transition probabilities of X).

Before each step, the individual has a probability    of dying, where    is a

fixed parameter in  . Whenever the individual returns to    it gives birth to

another individual which performs the same dynamics. All individuals behave

independently of each other. The process Y is said to survive if it has at least one

individual somewhere in   at all times. Let   be the probability that the Markov

chain X starting at    eventually returns to  . The next result shows that 

 determines whether Y may survive.

Theorem 1. If    the branching Markov chain Y dies out for all    in  . If 

 there exists   such that Y has a positive probability of surviving for 

 but dies out for  .

Our branching Markov chain Y is a generalization of a model recently introduced

by Lebensztayn and Pereira[1]. There,  ,    and 

  where    is a parameter in  . In this setting, the
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probability of return is known to be  , see, for instance, Grimmett

and Stirzaker[2]. Note that    if and only if  . By direct

computation, Lebensztayn and Pereira[1]  proved that survival is possible if and

only if    is in that range. This note was motivated by the desire to understand

their nice result.

As a consequence of our result, we see that if the Markov chain X is recurrent (i.e. 

), then survival is always possible for some  . On the other hand, if the

Markov chain is too transient (i.e.  ), then survival is possible for no  .

For instance, survival is possible for the simple symmetric random walk on 

  for    since this is a recurrent chain, but not possible for  .

McCrea and Whipple[3] estimated   to be about 0.34 in  .

2. Evolutionary paths

Going back to our biological application, we can think of    as the

probabilities that an individual uses to pick a direction and of   as a measure of

the leniency of the environment. Whether the species will survive depends on

how likely an individual is to find its birthplace in a perfectly lenient

environment (i.e.  ). This, in turn, depends on   and  .

This model suggests an evolutionary path for species with poor navigation skills

to evolve into species with great navigation skills. One can imagine an ancestral

species with a limited range    and a complete absence of direction  .

Expanding the range provides more food supply and gives a selective advantage.

However, expanding the range can only happen if navigation skills improve.

Hence, there is an interplay between expanding the range and improving

navigation skills. As the sense of direction gets more accurate, the range can

expand. The end result is great navigation skills and an infinite range. Our model

predicts that such an evolutionary path is possible provided all the intermediate

species have navigation skills that are suitable for their range.

3. Proof of Theorem 1

Following Lebensztayn and Pereira[1]  we define a Bienaymé-Galton-Watson

process (BGW in short) Z that keeps track of the genealogy of the process Y. Let 

 and let   be the number of returns of the initial individual to  . Since at

each return a new individual is born,    also counts the number of children of

the initial individual. We can think of   as the number of individuals in the first

generation. We define    as the number of children born from the first

generation (i.e., the grandchildren of the initial individual), and so on. Since all

the individuals are independent of each other and follow the same dynamics, 

  is indeed a BGW process. Moreover, the process   survives if and only if the

process Y survives. We will use that a BGW survives if and only if the mean

offspring of a given individual is strictly larger than 1, see for instance

Schinazi[4].

Note that the total offspring of one individual is the number of times this

individual returns to    without being killed. Hence, the mean offspring per

individual for the process Z is for  , 
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  where    denotes the probability that the Markov chain X starting at

time   at   returns to   at time  .

We will need the following well-known recurrence criterion, see for instance

Theorem 1.1 in Chapter 5 in Schinazi[4]. An irreducible Markov chain    is

recurrent if and only if 

for some state  . We also will need the following result for power series, see

Proposition A 1.9 in Port[5].

Lemma 2. Assume that    is a sequence of positive real numbers such that the

series   converges for all   in  . Then, 

where both sides of the equality may be infinite.

There are two cases to consider. Assume first that the Markov chain    is

recurrent (i.e.  ). Then, by Lemma 2 and (2), 

Since    is continuous on    and  , there exists    in 

 such that  . Since   is strictly increasing,   if and only if 

. Hence, the process    (and therefore  ) survives with positive

probability if and only if  . This proves Theorem 1 in the case  .

Consider now the case when the Markov chain    is transient. That is, the

probability    to return to    is strictly less than 1. By the Markov property, the

offspring distribution for the branching process Z is for  , 

for  . Observe that since    this is a proper probability

distribution (it is not when  ). Using this offspring distribution, we get that

the mean offspring   for   is, 

Note that   if and only if  . Moreover,   can also be expressed

using equation (1) for all   (including  ).

If   then  . By Lemma 2 the function   is continuous on  . It is

also strictly increasing. Hence, there exists    such that    and 

  if and only if  . That is, the process    survives with positive

probability if and only if 

On the other hand if   then  . Since   is an increasing function, 

 for all  . The process   survives for no value of  . This concludes

the proof of Theorem 1.
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