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Can a Rudderless Species Survive?

Rinaldo Schinazi1

1. Department of Mathematics, University of Colorado at Colorado Springs, United States

Some species of salmon and sea turtle are famously good at finding their birth place to reproduce after

having travelled vast expanses of ocean. In contrast, imagine now a species (maybe ancestral to the

salmon or turtle) which has to find its birth place to reproduce but has no navigation skills and relies

on chance alone. Would such an imaginary species survive? According to our (very simple) model it

would survive if and only if the probability that a given individual find its birth place is strictly larger

than 1/2. This model suggests an evolutionary path for a rudderless species to evolve into a species

with great navigation skills. In particular, it suggests an interplay between expanding the range of the

species and improving its navigation skills.
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1. The model

Let    be a countable set. For    and    in  , let    be the transition probability from    to    for an

irreducible discrete time Markov chain X on  . Let   be a fixed site in  . We define a branching Markov

chain    as follows. At time  ,    starts with a single individual at  . At every discrete time, if the

individual is at   it jumps to   with probability   (the transition probabilities of X). Before each step

the individual has a probability    of dying where    is a fixed parameter in  . Whenever the

individual returns to    it gives birth to another individual which performs the same dynamics. All

individuals behave independently of each other. The process Y is said to survive if it has at least one

individual somewhere in    at all times. Let    be the probability that the Markov chain X starting at 

 eventually returns to  . The next result shows that   determines whether Y may survive.

Theorem 1. If    the branching Markov chain Y dies out for all    in  . If    there exists 

 such that Y has a positive probability of surviving for   but dies out for  .
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Our branching Markov chain Y is a generalization of a model recently introduced by Lebensztayn and

Pereira (2023). There,  ,   and   where   is a parameter in  . In

this setting the probability of return is known to be  , see for instance Grimmett and

Stirzaker (2001). Note that   if and only if  . By direct computation Lebensztayn and

Pereira (2023) proved that survival is possible if and only if   is in that range. This note was motivated by

the desire to understand their nice result.

As a consequence of our result we see that if the Markov chain X is recurrent (i.e.  ) then survival is

always possible for some  . On the other hand if the Markov chain is too transient (i.e.  ) then

survival is possible for no  . For instance, survival is possible for the simple symmetric random walk on 

  for   since this is a recurrent chain but not possible for  , McCrea and Whipple (1940)

estimated   to be about 0.34 in  .

2. Evolutionary paths

Going back to our biological application we can think of   as the probabilities that an individual

uses to pick a direction and of   as a measure of the leniency of the environment. Whether the species

will survive depends on how likely an individual is to find its birth place in a perfectly lenient

environment (i.e.  ). This in turn depends on   and  .

This model suggests an evolutionary path for species with poor navigation skills to evolve into species

with great navigation skills. One can imagine an ancestral species with limited range   and a completely

absence of direction  . Expanding the range provides more food supply and gives a selective

advantage. However, expanding the range can only happen if navigation skills improve. Hence, there is an

interplay between expanding the range and improving navigation skills. As the sense of direction gets

more accurate the range can expand. The end result is great navigation skills and an infinite range. Our

model predicts that such an evolutionary path is possible provided all the intermediate species have

navigation skills that are suitable for their range.

3. Proof of Theorem 1

Following Lebensztayn and Pereira (2023) we define a Bienaymé-Galton-Watson process (BGW in short)

Z that keeps track of the genealogy of the process Y. Let   and let   be the number of returns of

the initial individual to  . Since at each return a new individual is born    also counts the number of

children of the initial individual. We can think of   as the number of individuals in the first generation.
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We define   as the number of children born from the first generation (i.e. the grandchildren of the initial

individual) and so on. Since all the individuals are independent of each other and follow the same

dynamics    is indeed a BGW process. Moreover, the process    survives if and only if the process Y

survives.

Note that the total offspring of one individual is the number of times this individual returns to   without

being killed. Hence, the mean offspring per individual for the process Z is for  , 

 where   denotes the probability that the Markov chain X starting at time   at   returns to   at

time  .

We will need the following well known recurrence criterion, see for instance Theorem 1.1 in Chapter 5 in

Schinazi (2010). An irreducible Markov chain   is recurrent if and only if 

for some state  . We also will need the following result for power series, see Proposition A 1.9 in Port

(1994).

Lemma 2. Assume that   is a sequence of positive real numbers such that the series   converges for

all   in  . Then, 

where both sides of the equality may be infinite.

There are two cases to consider. Assume first that the Markov chain   is recurrent (i.e.  ). Then, by

Lemma 2 and (2), 

Since   is continuous on   and  , there exists   in   such that  . Since 

 is strictly increasing,   if and only if  . Hence, the process   ( and therefore  ) survives

with positive probability if and only if  . This proves Theorem 1 in the case  .

Consider now the case when the Markov chain   is transient. That is, the probability   to return to   is

strictly less than 1. By the Markov property, the offspring distribution for the branching process Z is for 
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, 

for  . Observe that since    this is a proper probability distribution (it is not when 

). Using this offspring distribution we get that the mean offspring   for   is, 

Note that   if and only if  . Moreover,   can also be expressed using equation (1) for all 

 (including  ).

If   then  . By Lemma 2 the function   is continuous on  . It is also strictly increasing.

Hence, there exists   such that   and   if and only if  . That is, the process 

 survives with positive probability if and only if 

On the other hand if    then  . Since    is an increasing function,    for all  .

The process   survives for no value of  . This concludes the proof of Theorem 1.
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