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Metamaterials serve as versatile platforms for demonstrating condensed matter physics and non-
equilibrium phenomena, with electrical circuits emerging as a particularly compelling medium. This
review highlights recent advances in the experimental circuit realizations of topological, non-
Hermitian, non-linear, Floquet and other notable phenomena. Initially performed mostly with passive
electrical components, topolectrical circuits have evolved to incorporate active elements such as
operational amplifiers and analog multipliers that combine to form negative impedance converters,
complex phase elements, high-frequency temporal modulators and self-feedback mechanisms. This
review provides a summary of these contemporary studies and discusses the broader potential of

electrical circuits in physics.
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I. Introduction

The use of electrical circuit metamaterial arrays to simulate condensed matter phenomena has emerged

as a popular approach alongside other metamaterial approaches such as mechanical2/(3)4]

acousticalﬁl[ﬁﬂzmg, and photonicmg media. Numerous studies, some of which are reviewed in
this article, have demonstrated that a wide range of condensed matter phenomena can be experimentally
realized through the design of appropriate electrical circuits. The use of electrical circuit arrays to study

the resistance or conductance between the farthest points of a lattice continuum has a long history in

condensed matter circles'=/12=2/1221LILISILE ] and has been studied through various approaches such as
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lattice Green’s function202ll transfer matrix method22l recursion—transform approachZ2l and
method of images%. However, the formal connection between the Hamiltonian formalism and the
circuit Laplacian was established less than a decade ago. Early work on periodic circuit lattices primarily
addressed point-to-point resistance or impedance problems, lacking a comprehensive methodological

framework that connect with condensed matter models.

One of the first works that introduced a systematic approach to this was the paper by Lee et al. in 2018@,
which introduced a systematic approach that formalized the concept of Topolectrical (TE) circuits. It is
inspired by two earlier studies by Ningyuan et all28l and Albert et all2Zl that provided explicit
constructions of circuit lattices exhibiting topological properties[281291301311[32][331[341(35](36](37][38]

Following these foundational works, there has been a rapid proliferation of follow-up works, both

through circuit simulations321401411[421[431[44] 51§ experimental implementations21401[471[481491[501(51

[521(53] (many more to be reviewed later).

Early studies primarily focused on demonstrating topological phenomenamm@l@l@l,
including the realization of edgeﬁ—zl[(’—l]@, higher-order cornerl631[641[651[661167] - ¢yjrfacel68l and hinge
states@l, as well as semi-metalic phases of Weyl[ﬂ]lﬂMlml or Dirac semi—metalsm, in multi-
dimensional lattices or heterogeneous systems@”—(’l. Soon after, these efforts expanded to encompass
non-HermitianZZL78I[791(801 anq non-linear!811[821(83] systems, as well as simulators of non-Abelian
operators[8483] and quantum gates!88l87l and various other applications[8818A90IOLI92[93194) At this
stage, it is clear that implementing various physical phenomena in electrical circuits has become an

engineering task, provided the theoretical framework is validated through the theoretical circuit analysis

and circuit simulations.

As such, the focus has recently shifted to the direct device applications of physical models realized by
electrical circuits, moving beyond their role as proof-of-concept demonstrations, and the integration of
active analog signal processing devices. For the former focus, numerous studies have already proposed
sensing applications based on electrical circuits[22196197] Many of these circuit designs hold promise for
practical use, as they can be manufactured using integrated circuit (IC) technologies, enabling their
incorporation into everyday technological devices28199], For instance, a sensitive boundary-dependent
response can be achieved using simple RLC components, thanks to the non-local impedance response of
passive electrical circuit componentsm. The latter focus involves the manipulation of signals using

devices such as analog multipliers, operational amplifiers (op-amps), and transistors. While op-amps are
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commonly used to realize non-reciprocal couplings in impedance conversion conﬁgurations@l@l, their
potential extends far beyond these applications. Circuit configurations involving multiple op-amps and
analog multipliers enable to realize numerous phenomena such as Floquet engineering of lattice
models1OUN02] * time-varying couplingsl9l or tunable interaction strengthll04ll105] ope illustrative
example is the realization of complex coupling terms using analog multipliers, where four multipliers are

configured appropriately to achieve the desired effect[106]

Below, we highlight some of the draws of using TE circuits:

e Abundant resources: Since electrical circuits are ubiquitous and well-established, a wealth of
resources, ranging from educational to research materials, is readily available in the literature, along
with a variety of simulation tools, such as LTspicell9l pspicell98l Multisim29 or
Modelithics Libraryl9. The widespread availability of circuit components ensure that the necessary
elements are easily accessible. Moreover, these resources are cost-effective, making them suitable for
diverse implementations.

 Linearity and independence from physical embedding: Linear circuits can be analyzed using nodal
analysis, where each connection at a node represents an additional degree of freedom, analogous to
spatial dimensions in physical systems. The wave interactions in these circuits are governed by the
principle of linear superposition, allowing the simultaneous synthesis of multiple voltage or current
waveforms at a nodel2IM3] nlike most other metamaterial arrays where propagation direction
is constrained by physical geometry, circuits provide the flexibility to emulate systems with higher
dimensionalitiest41501 This capability enables the synthetic realization of effective dimensions that
transcend physical constraints, offering a unique advantage over many other platforms.

o Straightforward local adjustments and tunability: Localized modifications, such as defect
engineeringl3l are straightforward and adaptable. The interconnectness of electrical lattices ensures
accessibility to each node, enabling precise local tuning or perturbationloIM7IM8] Thig offers a
significant advantage over less modular setups, where specific localized perturbations are not always
possible due to fabrication limitations or intrinsic material properties.

+ High reliability and precision: Well-designed and maintained electrical circuits provide high
reliability, even in challenging environmental conditionsd2l. They are resilient and do not require
special operating environments, such as low temperatures or special electromagnetic shieldingm,

making them versatile for various applications1211[122]
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» Scalability and accessibility: Scalability is a major challenge in many metamaterial implementations.
Electrical circuits offer high scalability compared to other platforms, which often rely on specialized
materials or complex manufacturing techniques[1231124] making scaling up and system modifications
more challenging. Additionally, impurities in electrical circuits are typically localized, meaning they
do not lead to cumulative effects that cause significant overall systems.

» Ease of implementing non-Hermiticity: Electrical circuits are intrinsically suitable for the realization
of non-Hermitian models, which require non-reciprocal couplings or controlled loss123] and gainm.
Active components, such as op-amps, allow the direct implementation of highly linear non-reciprocal
non—Hermiticity[ﬂl, and loss is naturally present in resistive componentsm.

* Low loss and component uncertainties: That said, many circuit component manufacturers provide a
wide variety of high-quality components with minimal loss and deviations in component parameters.
Additionally, for implementations that demand exceptionally low loss and deviation, it is feasible to
preselect circuit elements to meet these stringent requirements due to their generally low cost.

« Direct observability and measurability: Impedance measurements allow key band structure features,
such as non-trivial topological zero modes, to be directly observed through straightforward
profiling2l. Such measurements can either measure the local transmissibility or the global, non site-

specific band structure properties28l

Besides these advantages, electrical circuits possess the following set of advantages that are collectively

elusive in other platforms:

» Ease of implementing synthetic dimensions: Independence from physical geometric embedding
allows the realization of lattice models in arbitrarily many synthetic dimensions, overcoming physical

and spatial limitations1221[1141(501[130]

* Broad frequency range compatibility: Electrical circuits can operate across a wide frequency
spectrum, from a few hertz to a few gigahertz[3113211133] ynlike photonic systems, which typically
require microwave frequencies or higher34l electrical circuits can function efficiently at much lower
AC frequencies (e.g., even a few hundred hertz), making them suitable for studying topological

oscillations at timescales amenable to direct human observation. Similarly, while acoustic systems
often face challenges in achieving realizations in the ultrasound range (above 20 kHz)[l integrated

circuits can even extend their operation into the terahertz (THz) regime@.
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* Real-time reconfigurability: The modular nature of circuit components, such as varactors and
digitally controlled amplifiers or analog multipliers, enables real-time localized adjustmentsm. This
capability is crucial for tasks requiring the dynamic modulation of specific couplings without needing
to reconstruct the setup, particularly the simulation of Floquet mediall021[1011[136][132][103]

« Convenience in combining linear and non-linear components: Electrical circuits provide a diverse
range of linear components (such as resistors, capacitors, and inductors) and non-linear components
(such as diodes, transistors, and non-linear amplifiers) that can be combined seamlessly. This
versatility enables the study and realization of both linear and non-linear phenomena within the
same platformm. In contrast, photonic and acoustical systems often require specialized materials

to achieve non-linearity, making such juxtapositions more challenging1381139]

Although some of these advantages may be even more prominent in certain platforms i.e. strong intrinsic
optical non-linearity in non-linear photonicsmmmw, electrical circuits remain a highly
suitable medium for realizing a broad range of phenomena, as outlined above. In general, their versatility
and practicality make them an excellent choice for many applications.

Many of the features listed above have already been effectively exploited in existing topolectrical circuits
experiments421146] Byjlding upon these advantages, it can be anticipated that the field is moving
towards real-world applications of the phenomena investigated. Early attempts, such as sensing device
implementations based on topological non-Hermitian phenomenal’?l hint at the potential for further
advancementsi481971 - Additionally, the use of analog multipliers to realize complex couplings or
temporal responsesfﬂl herald a new era when phenomena far beyond topology are realized with chip

technologies that are integrated into TE circuits[24911331150]

II. Theoretical framework for circuit analysis and impedance
properties

We present a concise review of the fundamentals of TE circuits, focusing on the Laplacian formalism and

their impedance characteristics.
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A. Laplacian formalism for circuits

In electric circuit settings, both the Laplacian and Hamiltonian are frequently used. While both are used
to describe aspects of the circuit dynamics, they are fundamentally different objects. The circuit
Laplacian captures the graph connectivity structure of the circuit by representing the the flow of current
in an electrical circuit through Kirchhoff’s law. By contrast, the Hamiltonian is formally defined as the
generator of time evolution, as in Schrodinger’s equation. Below, we examine how the Laplacian and
Hamiltonian are related, particularly in the context of topolectrical circuit arrays‘@]- where both acquires

a momentum-space band description.
For any electrical circuit, the steady-state circuit Laplacian is given by
I=JvV, 1)

where V represents the vector of node voltages and I denotes the input current vector. The components

of each vector are the voltages and current at each node. For instance, in a capacitive topological Su-
Schrieffer-Heeger (SSH) [21l circuit shown in Fig. 1a, the circuit Laplacian is expressed as

wIVn,B + w2Vn71,B = IBVn,Av
w1 Vpa +w2Voi1,4 = BV B,

(2)
where A and B are the sub-lattice nodes in a unit cell n, w;, ws represent the admittances of the circuit
node connections, and § = w; +wy +wy, with w, denoting the admittance of the grounding
components. For example, in the SSH circuit with inter-cell and intra-cell capacitances C; and Cs, and
grounding inductance L, the admittances are w; = iwCi, wy = iwC>, and wy = 1/(iwL), where
w = 2xf and f is the frequency of the driving signal. While these coupled equations also occur in the
commonly known SSH model Hamiltonian, capturing the hoppings between sub-lattice nodes A and

B within each unit cell n, we emphasize its distinction to the Hamiltonian describing electrical circuits,

as described below.
In general, the equation of motion in a circuit setting can be expressed as

I(t) = CV(t) + UV(t) + LV(t), (3)
where the dot and double dot denote the first and second derivatives with respect to time ¢, respectively.
The matrices L, U, and C encode the inductance, conductance, and capacitance from the circuit
components, respectively, and collectively define the grounded circuit Laplacian as J = U + iwC + %L.

At the resonant frequency, where nonzero voltage signals V can be sustained without input current, this

circuit Laplacian defines the Hamiltonian. With no external input current (I(¢) = 0), the circuit dynamics
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are determined by the homogeneous solutions to Eq. (3). To reduce this second-order equation to a first-
order system, we define independent variables t; () = V(¢) and 5 (t) = V(t) and construct the state

vector accordingly:

and rewrite Eq. (3) as

Oy (8) + Uy (t) + Ly (t) = 0. (5)

We can now describe the system with a first-order differential equation for (¢):

(2)- (5 <)

where I is the N x N identity matrix, where N denotes the circuit size. Hence the system dynamics have

been reformulated as —i % ¥(t) = H(t) where the Hamiltonian is just the block matrix
-1 -1
H-i(c voc L). (7)
—I 0

This H, which is a 2N x 2N block matrix, captures the dynamics of the circuit. The eigenvalues of
H correspond to the system’s resonant frequencies, while its eigenvectors describe the (equivalant)
spatial and temporal voltage distributions at resonance. H governs the temporal evolution of the circuit
represented by the Laplacian J. Thus, the steady-state behavior and the time-dependent dynamics of the

circuit can be analyzed using Eq. (1) and Eq. (7), respectively.
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B. Impedance in topolectrical circuit arrays
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Figure 1. Impedance resonances in topolectrical circuits. (@) The SSH topolectrical circuit consists of
capacitors of alternating sizes and on-site inductors, forming a one-dimensional chain with two sites per unit
cell23] (b) Dramatic impedance peaks of the SSH circuit in (a) are observed only in the topologically
nontrivial (¢ < 1) case, not the trivial (¢ > 1) casel23], (c) Edge-to-edge or corner-to-corner impedance across
abounded circuit array can be analytically determined using the method of images, which involves infinite
periodic tiling of the physical circuit (red shaded) and symmetrically placed current injection (cyan dots) and
extraction (orange dots) that makes the physical circuit boundaries equipotentialsi52124121] (d) The method
of images can be applied to more generic lattices and geometries too, such as the honeycomb lattice with
ribbon geometry@. (e) In heterogeneous circuits with more than one type of elements that give rise to
opposite phases i.e. capacitors and inductors, dramatic impedance peaks can occur at special system sizes
where one term in the denominator of Eq. (10) nearly vanishes[123l. (f) As revealed Ref. @, the origin of these
abrupt size-dependent resonances can be traced to the fractal-like patterns of the impedance density plot in
the parameter space of system size and and one of the circuit parameters, such as the AC frequency w.
Resonances arising from the topological zero modes can also appear, although they generally do not scale
with system size, as illustrated in the bottom diagram. (g)The experiment in Ref. (1531 demonstrates the
robustness of these size-dependent peaks against parasitic resistance in a two-dimensional LC circuit. (h)
The one-dimensional chiral symmetric Fibonacci topolectrical circuit, exhibiting a fractal energy spectrum

in the thermodynamic limit, is built and for demonstrating how the circuit Laplacian spectrum can be
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obtained directly from impedance measurementsi28l. (i) The peak frequencies (green dots) of the measured

impedance between a bulk node and an edge node (blue line) in Ref. (128] can be accurately identified by

applying noise filters, such as the Butterworth filter and the second derivative method. (j) As demonstrated in
Ref. @1, the circuit spectrum E can be directly recovered from a single frequency-resolved impedance
measurement through the use of signal processing techniques such as the matrix pencil method. The figures

@@,b), (c,d,ef), (g), and (h,i,j) above are adapted from Refs. [él, ‘[15—2]-, ‘[El, and 1128 respectively.

The impedance is a fundamental measurable quantity that relates the circuit’s response to a given

excitation. The two-point impedance@l@uﬁ1 between nodes ; and j is defined as

—, ®)

which can also be expressed in terms of the eigenvalues and eigenvectors of the Laplacian as22[17]108](156]

[157]
(ki — gl
zy= Y PN (9
kA0 k
where )i, and 1)y, are the k-th eigenvalue and eigenvector of the Laplacian, respectively, and |. .. | denotes

the biorthogonal norm. In the presence of a zero mode, which can exist due to symmetry or topological
protection, the impedance would peak. For instance, for the topolectrical circuit realization of the SSH
model!22) [Fig. 1a), the impedance between two edges exhibits a peak in the topological regime where
there exists a Ay =~ 0 [black in Fig. 1b], but no resonance peak is observed in the trivial phase [red in
Fig. 1b]. While the two-point impedance typically needs to be computed numerically through Egs. (8) and
(9), analytical results exists for special scenarios which can be handled through lattice Green’s

17](158]

functions! recursion-transform methods™? transfer matrix methods’®9 or, for sufficientl
) ) ) ) y

symmetric boundary terminations, the method of images[ls—z];

1. Method of images for bounded circuit arrays

A significant obstacle in obtaining impedance results analytically lies in the implementation of open
boundary conditions (OBCs), particularly for unit cells with multiple nodes. However, recent
developments have demonstrated that the method of images can successfully yield analytical
expressions for a wide range of OBC scenarios, for instance 2D SSH circuits with four nodes per unit cell.

The core idea involves tiling the space periodically with infinite copies of the actual lattice, such that the
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open boundary becomes an equipotential where no current flows through anyway. As illustrated in
Fig. 1c, symmetrically injecting current at the center nodes and extracting it from the intended
boundaries converts the edges of the pink region into impenetrable equipotentials, such that the OBC

problem can be treated as a infinite image current problem.

Care has to be taken to design a symmetric manner for current injection and extraction, such that
neighboring nodes along the intended boundaries have the same voltage potential. This prevents current
from leaking through the physical circuit’s boundaries. This method of images can be performed to
induce open boundaries in a variety of lattice geometries, such as the honeycomb lattice [Fig. 1d)12221 1n
the same work, a general analytical expression was derived for the corner-to-corner impedance of a D-
dimensional circuit with N” unit cells. For a single node per unit cell, the size N-dependent impedance

Z(N) is given by:

% (H?:l cos(ki/2)) X cos(Zi’;l k1/2)

2
Z(N) = — ) 10
( ) NP ; z,’il wi(l - COS(ki)) + wgnd/2 ( )

where w; is the admittance of the nearest-neighbor unit cell coupling along each direction, and

k=P ka;, with k; = ~= and n; € {1,2,...,2N}, where i = (1,2,..., D). Here the sum is taken
for n; up to 2N, not N, because of the doubling of the system to account for the image nodes. wgyq is the
admittance of the uniform grounding connection from each node, introduced such as to provide an offset

in the denominator. The asterisk sign (*) on the summation operator indicates that the impedance

computation must be performed for only odd values of n; + na+...+np.

Importantly, Z(N) can be extraordinarily large for certain special values of certain circuit sizes IV if there
are circuit coupling elements that introduces opposite phases i.e. capacitors and inductors [Fig. le]. This is
because having at least two different w; of opposite signs can allow the denominator to almost vanish at
appropriate values of N. Such dramatic system size dependence in the impedance is not seen in

homogeneous electrical media, where the dependence on NN is smooth (logarithmic or power-law) [7fe1]

162][163

Behind the seemingly erratic occurrence of impedance peaks in Fig. le is a sophisticated fractal-like
pattern of the resonance height in the parameter space of system size N and w, the dimensionless
(normalized) frequency characterized by the LC components [Fig. 1f]. While the detailed pattern depends
on the actual lattice model describing the circuit array, hierarchies of impedance peaks universally occur

in a qualitatively similar manner. The intricacy of this pattern arises from the commensurability
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properties of the denominator in Eq. (10), in which some values of N can cause it to be especially close to
vanishing [Fig. 1g]. Notably, there exists some branches that are particularly robust and hence
experimentally detectable!3l reminiscent of the more salient structures in the Hofstadter butterfly.

Additionally, resonances may also arise due to protected topological zero modes, as in a Chern lattice.

C. Extracting the Laplacian spectrum from impedance resonances

The Laplacian eigenspectrum can be obtained either by reconstructing the Laplacian matrix and then

diagonalizing it, or by directly measuring the impedance resonances.

1. Through circuit Laplacian reconstruction

In the former, one can perform N? impedance measurements by separately subjecting the circuit to
N different input current configurations and measuring the electrical potentials at all the NV nodes[164]

‘‘‘‘‘‘‘ . This yields N different current and voltage vectors, which can be written as
N x N matrices I, V. This allows the Laplacian J to be recovered via J = IV *; for simplicity, one can
just ground the circuit and choose to input the current at one node at a time, such that I is simply the

identity matrix.

This is demonstrated in Helbig et al.48], where the eigenvalue band structure of a 1D non-Hermitian SSH
circuit under both open and periodic boundary conditions (OBCs and PBCs) was measured. By varying
the injected signal frequency and measuring voltage responses, they extracted the system’s eigenvalue
spectrum as a function of the driving frequency. For PBCs, translational symmetry reduces the
independent degrees of freedom from N? to N, since it allows the spectrum to be computed in
momentum space by exciting the nodes and Fourier transforming the measured node voltages/12){168],
However, OBC circuits require real-space voltage measurements across the entire array, yielding for

instance additional spatially localized edge modes. Helbig et al.32 first presented this framework, with a

further implementation in a 2D topological Chern circuit by Hofmann et al.[40],

2. Through direct circuit resonance measurement

Constructing the circuit Laplacian in full requires N? impedance measurements in general, and that
presents practical limitations in larger circuits. Recently, Franca et al.l128] developed a method to extract
the Laplacian eigenenergies directly from impedance resonances using much fewer measurement

configurations. As deduced from Eq. (9), any vanishing eigenvalue corresponds to a large impedance
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resonance. By tuning the system across a range of AC frequencies, various resonances can observed, as
demonstrated with high accuracy in their Fibonacci circuit implementation [Fig. 1h]. This approach
bypasses the need for constructing the circuit Laplacian, reducing the measurement complexity from

N? measurements to a single impedance measurement at various (easily tunable) frequencies.

To elaborate, this approach involves examining the second derivative of the impedance profile with
respect to frequency, coupled with a fourth-order Butterworth filter to mitigate noise [Fig. 1i]. Advanced
data processing techniques, such as the matrix pencil method and utilizing the symmetric energy
profiles of chiral symmetric systems, further enhance the precision in determining admittance
eigenvalues. In a similar spirit as other studies that utilize machine learning to infer the spectrum from
limited measurements (to be discussed in subsequent sections e.g., Ref1169)) this method represents a
significant advance which allows for the the measurement of the Laplacian spectrum from a single

measurement [Fig. 1j].

I11. Circuit implementations of non-Hermitian phenomena

In the following, we highlight various works, mostly experimental, on demonstrating non-Hermitian

phenomena of contemporary interest. Emphasis is placed on recent developments in the last few years.
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A. Exceptional point physics

1. Exceptional points in parity-time symmetric setups
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Figure 2. Parity-time (PT) symmetric two-component systems and their circuit realizations. (a) An early
demonstration of a parity-time symmetric RLC circuit (al) exhibiting a complex branch point i.e. EP (@2) in
the frequency spectrum as the mutual coupling between two inductors is tuned?% (b) An integrated circuit
realization of a PT-symmetric two-component system that demonstrates sensitivity to coupling capacitance,
as seen in the 0.35 GHz band isolation corresponding to peak splitting in the frequency domain (b3, (o)
Implementation of such two-component systems as microsensors, with wireless systems locked to an
exceptional point (EP). The EP-locked setting (red in ¢3) shows superior sensitivity compared to the
conventional diabolic point response (DP limit shown in blue in c3)m. (d) Enhanced sensitivity at the EP
from introducing non-linearity. Such non-linear EPs (NEPs) (d2) enjoy greater noise resilience (d3 and d4) due
to the restoration of a complete eigenstate due to the non-linearityllZ2l. (¢) PT-symmetric systems can
enhance stability in the transient domain beyond their sensitive response. In the presence of transient PT

symmetry, unwanted oscillations (red in e3) can be eliminated in fast-switching devices. The vanishing peak
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around 36 MHz in e4 indicates the suppression of unwanted oscillationsZ4l, () Higher-order EPs underlie
braiding in the complex eigenvalue plane. The spectra of the two-node (f2) and three-node (f3) circuits

exhibit two-band and three-band twistings hosting three EPs!72], The figures in (a-f) are adopted from Refs.

L1701 (171] (172] [173] [174] [175] respectively.

Parity-time (PT) symmetry can protect the reality of eigenvalues even if the operator i.e. circuit Laplacian
or Hamiltonian is non-Hermitian[I761177I178I17911801[181] A typical PT-symmetric 2-level Hamiltonian is
represented as
Hﬁ_(w—l—i’y n. ), (11)
K w — vy
where £+ are the gain and loss terms, w is the natural frequency of both subsystems, and « is their
coupling strength. In linear electrical circuits, the most common operator of interest would be the circuit

Laplacian instead of the Hamiltonian.

The eigenvalues of Hpy are given by E = w =+ (/k? —+2. When & > v, the eigenvalues are real,
indicating the PT-symmetric phase. Conversely, when x < -, the eigenvalues become complex, signaling
a transition to the broken PT-symmetric phase. At the critical point ¥ = -, not only do the eigenvalues
coincide, but the eigenvectors also coalesce (become parallel to each other). Such non-Hermitian critical
points are known as exceptional points (EPs) [1821[1831[1841[185][186][187][188](180] whyjch are special because
the eigenspace is defective i.e. not full rank. Further, due to the square-root singularity of the eigenbands
at the EP, the spectrum becomes highly sensitive to perturbations, with a divergent gradient as the EP is
approached. This sensitivity increases for higher-order exceptional points, where n > 2 eigenvalues
coincide and result in a E'Y" singularity. That the system’s response to perturbations becomes
increasingly pronounced is particularly advantageous for sensing applications (18911901 The sensitivity
can be enhanced by incorporating multiple modes or alternative coupling mechanisms such as to enable
higher-order EPs [18811911192)[193)[194][195] Beyond isolated EPs, higher dimensional extensions such as
exceptional lines 1961 and exceptional rings 127! have also been observed, in analogy to nodal lines and

rings 198][199][200][201][202][203]

One of the earlier experimental realizations of a PT-symmetric circuit was performed by Schindler et
al. 791 where two LC oscillators—one with gain (achieved using an operational amplifier) and the other

with loss (introduced by a resistor)—were coupled [Fig. 2al]. These systems demonstrate the square-root
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branching behavior that leads to the bifurcation of both the real and imaginary parts of the

eigenfrequency at the EPs [Fig. 2a2].

Integrated circuit implementations of PT-symmetric systems are particularly technologically promising,
as they operate at high microwave frequencies and offer scalability. For instance, Cao et al. a7 designed a
fully integrated PT-symmetric two-component system [Fig. 2bl] where the oscillatory mode exhibits
wide-band microwave generation with significantly reduced noise aided by the PT-symmetric phase
transition [Fig. 2b2]. The splitting of resonance peaks in different phases achieved a 0.35 GHz band
isolation [Fig. 2b3], showcasing the exceptional sensitivity and practical utility of integrated circuit-based

PT-symmetric systems.

Wireless electronic sensors204] primarily utilize the resonant behavior of LC circuits [Fig. 2c1], and

enhancing their sensitivity can lead to promising applications such as wireless power transferl2031. Also,
implanted LC wireless circuits can monitor biological functions in living organisms [Fig. 2c2]. By
leveraging on the highly sensitive readout of their microsensor implanted in vivo, Dong et al.
072) gyccessfully measured physiological functions such as breathing rate, demonstrating superior
sensitivity compared to standard LC sensory readers [Fig. 2c3].

Although an EP system becomes highly responsive at the EP, the accompanying defective eigenspace
(where two or more eigenvectors coalesce) can also introduce undesirable susceptibility to noisel206l
complicating the implementation of EP-based sensorsi83l However, appropriately designed non-
linearity can mitigate that susceptibility while preserving the responsiveness, even leading to EP
transitionsi29711208] Baj et a1 [1731 designed a two-component circuit that juxtaposes the non-linearity
and non-Hermitian coupling between two oscillators [Fig. 2d1]. Introducing non-linear gain results in
higher-order non-linear EPs (NEPs), such as third-order NEPs as shown in Fig. 2d2. They effectively
suppresses noise, even when the circuit is intentionally disturbed by a non-negligible external pulsel2091,
With non-linearity, the Petermann factor can be prevented from diverging [Fig. 2d3]. Additionally, the
signal-to-noise ratio reaches its lowest value at the NEP and increases as the system moves away from

the NEP [Fig. 2d4].

PT symmetry-based implementations can also enhance system stability. In semiconductor technologies,
fast-switching devices are widely used, and achieving both speed and stability is highly desirablel2101(211]
Yang et alll7%l demonstrated that transient PT symmetry, as implemented in their electric circuit

[Fig. 2el], can significantly reduce unwanted oscillations during fast switching. Noise-induced
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perturbations in the oscillations decay more rapidly at the EP compared to in the broken or unbroken PT
phases [Fig. 2e2]. For step-like dynamic switching, transient PT symmetry effectively suppresses
unwanted oscillations [red in Fig. 2e3], as observed from the diminishing peak around 36 MHz in the
transient PT phase [blue in Fig. 2e4] in the frequency domain.

Mathematically, EPs can also trace out interesting mathematical structures in either parameter or
real/momentum space. EPs underlie braiding in the complex eigenvalue planel21212131 and define knots in
the band topologyl2/4l By designing non-Hermitian circuits involving multiple bands, Cao et al.
0751 achieved higher-order EPs. The shape of knots or braids primarily depends on the winding paths
around the EPsIZI3]. For example, a circuit with two nodes [Figs. 2f1 and 2] or three nodes [Fig. 2f3] can
exhibit two-component or three-component knot topology, with double or triple twisting in the complex
eigenenergy plane. Momentum-space EP knots are also described in Refs [261[2171[218] 1 5 larger
parameter space, multi-band EPs can also describe mathematical singularities known as catastrophes,
which has deep connections i.e. Mckay correspondence with diverse mathematical constructs such as the
ADE classification of Lie algebras, finite subgroups of SU(2), platonic solids and the monodromy group of
simple singularitiesmm. A recent circuit experiment has mapped out the swallowtail catastrophe in

parameter spacel221l
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2. Exceptional bound states as robust circuit resonances
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Figure 3. Observation of exceptional bound (EB) states in electrical circuits. (a) Exceptional bound states in
the spectrum p of the truncated two-point function matrix arise robustly from eigenspace defectiveness at
EPs. When implemented in an electrical circuit, they show up as strong isolated circuit resonances (yellow) in
addition to the usual peaks near 0 and 1. (b) Schematic of the circuit in implementing the circuit Laplacian
hosting EB states, as studied in Ref. [222) op-amps are used to realize the asymmetric couplings. (c) Simulated
and measured node voltages as a function of AC frequency w exhibit voltage profiles corresponding to the

spatial profile of the EB states at resonant frequencies corresponding to the two EB eigenvalues, p’ ~ —1 and

p’ ~ 2. The figures are adopted from Ref. (222,

The defectiveness of EPs causes the occupied band projector to be singular, leading to substantial non-

locality in its two-point correlation functions. A prominent consequence is the appearance of special
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isolated eigenstates [Fig. 3a] of the real-space truncated two-point correlator matrix known as
exceptional bound (EB) states[223112221[224][225] Thege EB states differ from topological modes, which are
protected by non-trivial bulk topology, and non-Hermitian skin modes, which stem from non-trivial
point gap band topology and are also boundary-localized in open-boundary systems[226112271(228](229]
[2301231][2321233]  hile most eigenvalues $ of the truncated two-point correlator matrix remain
clustered around 0 or 1, as in non-EB cases, a distinctive pair of EB states pgp and 1 — pyp additionally
appears as long as the parent Hamiltonian is defective. The value of pypp scales strongly with the system
size, as detailed in Refs[2231222] gince the spectrum of the truncated two-point correlator matrix
corresponds to fermionic occupation probabilities, EB states also lead to negative entanglement entropy
in the context of free fermionsi22312221[234] \yith interesting ramifications in topologicallﬁ1 or

competitive non-Hermitian skin effect settings[232l.

Experimentally, EB states can be simulated in classical platforms that mathematically describe the two-
point correlator matrix. Electrical circuits are particularly suited for this purpose because any two nodes
can be connected at will, free from the constraints of locality. As a pioneering demonstration, the circuit
[Fig. 3b] designed by Zou et al.[222 successfully demonstrated the robustness of EB states through
measured voltage profiles [Fig. 3c]. Strong resonances at frequencies corresponding to the eigenvalues of
the EB states were detected, demonstrating the direct measurability of these states. These EB states are

shown to be much more robust than the non-EB resonances, which can be significantly disturbed by

relatively minute perturbations of the larger hoppingsm.

B. Non-Hermitian skin effect

One of the most intensely studied non-Hermitian phenomenon is the the non-Hermitian skin effect

(283] challenging conventional condensed-matter insights into the correspondence between bulk and

boundary properties.

In most cases, the NHSE occurs when the periodic boundary condition (PBC) spectrum encloses a finite
area in the 2D complex spectral plane, which generally occurs when asymmetric couplings are present.

Then, it can be shown that the open boundary condition (OBC) spectrum must assume the form of arcs or
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branches within the PBC spectral loop. Referring the reader to the many excellent references that
elaborate on this2861(2271(2301(287)(288](233](2401(2891[2441[29011291) \ye briefly note that the OBC spectrum,
and hence the NHSE, can be understood from the Bloch PBC Hamiltonian H (k) by complex-deforming

the momentum ie. introducing an imaginary flux[241112021(2471[201],
Hi(k) = H(k + ik(k)), (12)

where k and « represent the real and imaginary components of the momentum wavevector, respectively.
The form of the complex deformation «(k), which generically depend on k, is crucial for understanding
the nature of the so-called skin modes which exponentially localize against the system’s boundaries. For
any Bloch wavevector k& with eigenvector 1, an appropriate complex momentum deformation

k — k + ix(k) would yield the OBC eigenequation

H (k) pesinry = EoBCYringe)> (13)

where Eopc belongs to the OBC spectrum. Here ¢y, ;.1 (z) ~ e ¥

¥ is the complex momentum-
deformed eigenstate that tends towards the OBC eigenstate in the thermodynamic limit, with
(k) having the physical interpretation of the inverse skin decay length. From Eq. (13), Eopc and its

corresponding « (k) are related via the characteristic equation

det |H(k + ix(k)) — Eopc| = 0. (14)
Because Eopc is in general not in the Bloch (PBC) spectrum, (k) is in general nonzero too. To determine
values of Egpc which are actually allowed to exist in the OBC spectrum, we note that satisfying OBCs at
both boundaries simultaneously generally require the exact OBC eigenstate to be a superposition of two
different bulk solutions with equal decay lengths x~!. In other words, the OBC eigenenergies are those
values of Eopc for which Eq. (14) simultaneously admits two different & solutions with the same value of

x(k), a condition famously known as the GBZ condition[23812931[2941[295](291]

Note that the GBZ condition, as well as the existence of an unique (k) that quantifies the skin
accumulation, may no longer hold when more than one NHSE channel coexists in the system. A
prominent example of which is the critical non-Hermitian skin effect (c(NHSE) [2961[2971[298](235](299](300]
[224] \where weakly coupling chains with different NHSE directions produces feedback loops that amplify
certain states and lead to qualitatively different band structure descriptions at different system sizes.
Appropriately designed cNHSE systems may even undergo an exceptional phase transition at a particular
system size, with special scaling-induced EP defectiveness and lead to unique entanglement dips[&l.

Fundamentally, the GBZ condition hinges on the assumption that the OBC eigenstate only comprise of
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the superposition of two bulk solutions; relaxing that generally leads to a “fragmented” GBZ in which

more than one (k) participates in the physics substantially[301302]

geios.com doi.org/10.32388/21U8ZI 20


https://www.qeios.com/
https://doi.org/10.32388/2IU8ZI

a) al) a2) — b) b1)

Il
o
Tdo =0

ST effect

I
dilwlxh
r; 1T¢
C c

al e,
SS effect

i
b,
C C
< C
a [
c o0

Ss s
Voltage(mV)

e2) Skin-Topo-Skin
.5 oo

:

Y oo N
e3)  Skin-Topo-Topo
2=s.

h3) e iezeaed [

Figure 4. Circuit realizations of non-Hermitian skin effect (NHSE) phenomena. (a) First experimental
realization of the NHSE using impedance converters (a2) for non-reciprocal couplings. Voltage is localized
either to the left or right when coupling asymmetry is broken (left and right in a4, respectively), while
localization is absent when reciprocity is restored (middle in a4)!48l. (b) Control of the NHSE in a multi-
component circuit with multiple asymmetric couplings. Mode localization (darker colors indicate larger
eigenmode magnitudes) can still occur in models with multiple asymmetric couplings by setting one of the
asymmetric couplings (C,; in bl and b3) relative to the critical valuel2%3l, (¢) Circuit realization of NHSE in a
spherical geometry, exhibiting a localized profile around a topological defect. The elevated voltage measured
at the defective node, shown in c4, demonstrates defect-induced localization(2%4!, (d) Hybrid higher-order
NHSE in non-reciprocal 2D and 3D topolectrical lattices, where topological localization in one direction can
control the skin localization in a transverse direction. The skin-topological (ST effect) and skin-skin-skin
(SSS effect) hybrid higher-order effects are observed as localized voltages at the corners shown in d2 and d3,
scaling with different co-dimensionst 94, (e)Hybrid skin-topological NHSE can be harnessed as topological
switches for the NHSE, where the extent of resistive loss is used to drive topological transitions which in turn
activate or inactivate the NHSE in a transverse direction. The eigenmode localization of skin-topo-skin and
skin-topo-topo cases, shown in e2, exhibit two and four corner localization behaviors222. (f) Control of

topological modes by the NHSE in a honeycomb lattice. The topological mode is dragged by NHSE as the
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capacitance parameter C, increases, as shown in 141306 (g) Realization of particle interaction dynamics in a
classical circuit array by mapping the 1-dimensional degrees of freedom of a multiple particles onto the
degrees of freedom of a single particle in multiple dimensions. Interaction-induced non-Hermitian
aggregation effects are observed as impedance resonances at Hilbert space boundaries. The impedance peaks
shown in g3, while approaching the effective boundaries, demonstrate skin accumulation toward the
boundaryBﬂ. (h) Reciprocal skin effect in a 2D fully passive electrical circuit with diagonal loss elements
introducing non-Hermiticity. The inverse participation ratio shows no localized states (left in h3) under
periodic boundary conditions, but skin states are present under open boundary conditions (right in h3)L27],
(i) NHSE driven by higher-rank chirality in a 2D fully passive electrical circuit, where a 1D chiral mode is most

amplified298], (j)Scale-tailored non-Hermitian localization realized in a circuit with long-range asymmetric

couplings. The spatial profiles of eigenstates show perfect overlap for different combinations of tail and

circuit sizes but become less localized as the tail size [ increasest 67l The figures (a-j) are adopted from Refs.

[46] [303] [304] [164] [305] [306] [307] [127] [308] [167] :
) y y y y K y , Y , respectively.

1. Circuit demonstrations of one-dimensional NHSE phenomena

Extensive eigenmode localization was first observed experimentally in a non-Hermitian electrical circuit
implementation. Helbig et al48l constructed an SSH circuit [Fig. 4al], where intra-cell couplings were
made non-reciprocal using negative impedance converters with current inversion (INICs), as shown in
Fig. 4a2. The INIC changes the phase of the component connected to the inverting (negative) pole of the
op-amp by 180 degrees, producing an effective negative impedance from right to left and positive

impedance from left to right. The two-node Laplacian of this INIC circuit takes the form

(2m) = (3 1) (), 05

where v represents the magnitude of the non-reciprocal capacitance. This Laplacian ensures that the
currents between the two nodes (A and B) flow in opposite directions, i.e., [45 = Ip4, resulting in non-
reciprocal impedance with current conversion. A unit cell of the circuit in Ref. [46] j5 shown in Fig. 4a3,
and includes an INIC (red box). Assembling the unit cells into a circuit array realizes the k-space circuit

Laplacian:
J(k)/iw = eo(w)og + (v(w) + rcos(k))o, + (rsin(k) — iy)oy. (16)

When ~ = 0, the Laplacian describes a Hermitian SSH circuit, with v (w) and r representing the reciprocal

intra- and inter-cell coupling admittances, respectively. When ~ £ 0, the effective intra-cell coupling
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becomes non-reciprocal, leading to a non-Hermitian SSH circuit. All voltages localize at the left (right)
boundary under OBCs when the driving frequency f = w/2x is below (above) the critical frequency [Left

and Right plots in Fig. 4a4]. At the critical frequency, no localized skin modes are present.

Although a single asymmetric coupling within a unit cell may intuitively suggest boundary localization
in the direction of asymmetry, this may not be true due to destructive interference222l. Indeed, the
cumulative effect of multiple asymmetric couplings with opposing decay profiles remains intriguing.
Rafi-Ul-Islam et all2%l investigated circuit lattices with fully non-reciprocal couplings [Fig. 4bl], with
unit cells comprising four non-reciprocal nodes [Fig. 4b2]. Interestingly, the NHSE in their dimer SSH
circuit with both intra- and inter-cell non-reciprocal couplings can vanish when the overall inverse

localization length reaches a critical decay threshold, given by

1, [ (C1 = Cr1)(Cy + Cra)
k=—=In

2 [ (C1+4 Cni)(Ca — Cha)

; (17)

where « depends on both non-reciprocal capacitive parameters C,; and C,2, and becomes zero when

Cn = 010—6;"2 The localization boundary criterion remains governed by the sign of the overall inverse
decay k, consistent with established conventions. For example, in Fig. 4b3, the darker colors represent
node voltage peaks that shift from one boundary to another (node 1 to 40) when C,,; goes from below to

above the critical value.

In a related vein, Shen et al.[2%4 conducted a circuit experiment involving multiple asymmetric hoppings
in coupled 1D SSH chains [Fig. 4cl]. They extended this setup by connecting multiple 1D SSH chains to
form a spherical geometry, paving the framework for studying the interplay between band topology and
real-space lattice topologym. While localization behavior in various lattice geometries, including

kagome and honeycomb latticesm, have been widely studied, in the spherical model [Fig. 4c2, c3],

localization occurs only when a defect is introduced [pointed by red arrow in Fig. 4c4]. Additionally, Jiang

et al. 3 demonstrated how circuits with multiple non-reciprocal couplings can give rise to corner modes

in 2D circuits.

2. Circuit demonstrations of higher-dimensional NHSE phenomena

Typically, the NHSE drags all bulk states toward a boundary[&]. However, in two or more dimensions,
Zou et al. 264! demonstrated that the NHSE can selectively pump topological modes while leaving the bulk

unaffected, in what is known as the hybrid higher-order skin-topological (ST) effect229. The idea is that,
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in a multi-dimensional lattice, it is possible for topological modes under mixed boundary conditions to
possess a spectral point gap, but not the non-topological modes. Further opening up the remaining
boundary/s will then result in the NHSE only for the topological modes. In Ref164 the 2D network
consists of a unit cell with four nodes, with asymmetric intra-cell couplings implemented using INICs
[Fig. 4d1]. With suitable parameter tuning, the 2D and 3D circuit implementations [Figs. 4d2 and d3]
exhibit skin-topological (ST) and skin-skin-skin (SSS) effects, respectively. These hybrid skin-
topological modes arise from the interplay between topological and skin modes, and cannot exist
without either. Notably, these ST modes can exhibit localized skin behavior despite the absence of net
non-reciprocity, since the reciprocity is spontaneously broken by the topological modes taking unequal

amplitudes in the two sub-lattices.

The hybrid skin-topological effect[259 has also inspired a scheme for switching on or off the NHSE by
toggling the topological character of the perpendicular sub-chains, as was first proposed in the cold atom
context312l When the switch is activated by adjusting the loss parameter, non-reciprocal pumping
prevails, driven by non-reciprocity introduced by the switch. Zhang et al.[305] experimentally
demonstrated this topological switching using their 3D circuit [Fig. 4el]. The voltage dynamics across
four different unit cells revealed distinct eigenmode distributions, such as skin-topo-skin and skin-topo-
topo modes [Fig. 4e2, e3]. The absence or presence of skin modes corresponds to trivial or non-trivial

topological modes, which are tuned through relays (model no: G6K2F-Y) that switch resistors on or off

between specific nodes.

The interplay between topology and the NHSE was further explored by Tang et all296l through an
experimental implementation of a rhombus honeycomb lattice electrical circuit [Fig. 4f1]. By tuning the
non-reciprocity (controlled by C in their design), the topologically localized corner modes at the acute
angles of the rhombus lattice [Fig. 4f2] are significantly dragged through the bulk, allowing the NHSE to

control the topological modes [Fig. 4f3, f4].

3. Circuit demonstrations of interacting NHSE phenomena

Despite being classical systems, electrical circuits can also simulate few-body interaction dynamics
through mappings between many-body one-dimensional models and single-body multi-dimensional

models'22122l22]1202] . Besides their practical value, such mappings can also lend new physical

§[316)(317)[318]

insights!222/24011218) , such as the interpretation of two-body repulsion as 2-dimensional boundary effects,

and 3-body non-Hermitian interactions as feedback mechanism on a 2-dimension non-orthogonal non-
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Hermitian lattice whose GBZ description is notoriously subtlel244l. In particular, effective boundaries can
be defined in the Hilbert space even when the lattice has PBCs along each direction. Reverse

implementations of such mappings have also enabled small interacting quantum systems to simulate the

physics in far larger multi-dimensional lattices31913201.

Zhang et al3071 designed a circuit based on mapping the eigenstates of their strongly correlated non-
Hermitian few-body system [Fig. 4g1]. Through impedance measurements, they observed the simulated
aggregation of bosonic clusters in their circuit. The impedance resonances in the spatial circuit [Fig. 4g2]
correspond to eigenstate aggregation in the corresponding Hilbert space [Fig. 4g3]. This realization
serves as a compelling example of the feasibility of topolectrical circuits to model many-body

interactions in a very accessible manner.

4. Implementing NHSE without non-reciprocal couplings

Even though paradigmatic NHSE models i.e. the Hatano-Nelson model32!}

almost always contain non-
reciprocal (asymmetric) couplings, realizing the NHSE itself does not necessary require asymmetric
couplings. In the so-called reciprocal non-Hermitian skin effect, a reciprocal system is designed such
that it contains subsystems harboring equal and opposite NHSE, such that NHSE accumulation occurs in
specific subsectors despite the system being reciprocal on the whole. This was first demonstrated by
Hofmann et al.l27), who measured eigenmode localization at the edges of their 2D circuit [Fig. 4h1]. A
diagonal imaginary hopping within the square plaquette makes the Hamiltonian globally non-Hermitian
but still reciprocal; with a basis transform, it can be shown that it contains “hidden” equal and opposite
NHSE chains at different transverse momentum sectors or effective flux. This imaginary hopping—

realized as a resistor in their model [Fig. #h2]—results in different hopping probabilities in the presence

of this effective flux, resulting in unequal amplitudes in opposite directions [Fig. #h3].

In 2 dimensions, a reciprocal 2D lattice can also exhibit nontrivial system size-dependent NHSE in the
presence of higher-rank chirality!322], characterized by a non-conserved charge current323], First
demonstrated in Ref.322] a higher-rank chiral mode (rank-2) is also achieved by Zhu et al.l2%8! through
gain/loss couplings that create an unbalanced chirality in the unidirectional chiral mode flow [Fig. 4il].
This imbalance causes one specific mode to amplify and hence outlast others, leading to eventual mode
localization. The long-lived rank-2 chiral mode dominates the system’s long-time dynamics and is
observable in momentum-resolved measurements [Figs. 4i2, i3]. Remarkably, momentum-dependent

input excitations lead to mode accumulation at specific driven locations in the lattice [Fig. 4i4]. This
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enables a versatile implementation of NHSE along a desired direction and position in a fully passive and
reciprocal lattice, distinguishing it from the reciprocal skin effect presented in Ref127 (Even in the
absence of gain/loss and non-reciprocity in the lattice bulk, non-Hermiticity can emerge through the
interaction Hamiltonian in an electromagnetically engineered metamaterial that is inversely designed

from a TE latticel324)

5. Demonstrating unconventional NHSE phenomena with long-range couplings

The extreme versatility of electrical circuit connections, which can directly couple any two desired nodes
independent of their physical distance, make them ideal for implementing intrinsically long-ranged
models. Since the NHSE is already highly non-local in that it leads to dramatic state accumulation in a
spatially-distant edge, it is particularly susceptible to the effects of long-ranged hoppings that can
change the overall real-space topology of the lattice. For instance, a single non-reciprocal impurity
hopping in an otherwise homogeneous Hatano-Nelson chain is known to lead to enigmatic scale-free

localization!2£2!122012241

Recently, Guo et al. 887l jntroduced the new notion of scale-tailored localization (STL), distinct from
conventional NHSE or Anderson localization!328], The STL is a spectacular demonstration of how
singularities in the skin localization length subtly interplay with hopping non-locality, as was
implemented via unidirectional couplings with INIC circuit elements, and a long-range coupling
controlled by switches [Fig. 4j1]. For this circuit, some of the admittance eigenvalues encircle the unit
circle, while others are isolated within it [Fig. 4j2]. The spatial distribution of the corresponding STL
eigenstates exhibits varying localization lengths that depend on the long-range coupling distance

[Fig. 4j3].

6. Circuit setups for non-Hermitian sensing

Since the NHSE is a dramatic phenomenon that arises from merely changing the boundary couplings, it
is symptomatic of extreme sensitivity to spatial perturbations. Below, we highlight some experiments

that attempt to point towards potential sensing applications in electrical circuit settings.
The primary interest in the NHSE stems from its strong dependence on local perturbations, such as a

coupling between the two ends of a chain, which can drastically alter the OBC vs. PBC properties.

Furthermore, a non-Hermitian topological lattice exhibits exponential sensitivity to its size due to the

exponential growth of NHSE states, as formulated theoretically by Budich and Bergholtz[ﬁ)], and
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popularized as non-Hermitian topological sensorsi39  This phenomenon was experimentally
demonstrated by Yuan et allo¢l [Fig. 5a1]. The shift in resonance peak frequency occurs through two
mechanisms: (i) control of the boundary coupling capacitance through the displacement and rotation of
the copper electrodes [Fig. 5a2], and (ii) variations in the number of nodes in the circuit. The impedance
resonances exhibit exponential behavior in response to circuit size IV [Fig. 5a3].

Based on the exponential response to boundary perturbations in non-Hermitian circuits, Kénye et al.
[331] designed a non-Hermitian topological ohmmeter with reciprocal coupling between the first and last
terminals (reminiscent to Ref [26]) utilizing it as a sensor to precisely measure large resistances (I" in
Fig. 5bl), typically in the mega-ohm range. The measurement of large resistances often suffers from
reduced precision due to significant losses. However, their multi-terminal non-Hermitian ohmmeter
circuit demonstrated exponentially increasing sensitivity [Fig. 5b2] with the number of terminals,

comparing favorably with standard measurement techniques [Fig. 5b3].
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Figure 5. Non-Hermitian sensing applications with electrical circuits. (@) Non-Hermitian topological sensor
realized in a circuit with adjustable boundary perturbations and circuit size, with size-dependent shifts in the
impedance peak frequency as shown in a3129), (b) Non-Hermitian ohmmeter that exhibiting exponential
sensitivity to large resistance measurements. The sensitivity increases exponentially as the number of nodes
increases, as shown in b33l (¢) Non-local impedance response in a fully passive circuitll99 (c1) The NHSE in
two weakly coupled Hatano-Nelson 1D lattices may not cancel off despite zero net reciprocity, and can be
basis-transformed into a purely lossy reciprocal model. (c2) The corresponding purely resistive electrical
circuit with switches (SR1 to SR6) that controls the boundary conditions. (c3) Ratio of the PBC vs. OBC
impedances between nodes in the two physical chains, with substantially different PBC and OBC impedances
for inter-chain impedances (red, right plot). (c4) Robust isolated boundary modes that emerge only in the
presence of parasitic resistances and sufficiently large system length. The figures (a-c) are adopted from Refs.

(96 3311 {100} regpectively.

In the previous non-Hermitian sensing experiments, the underlying mechanism is directional

amplification, which results in a strongly in a non-local response. Indeed, exponential sensitivity

intuitively requires a non-reciprocal non-Hermitian bulk, achieved through asymmetric couplingsm,
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which necessitate active elements such as op-amps in INICs[3331334] However, Zhang et al [100] presented
a fully passive circuit demonstrating a highly distinct impedance response dependent on the presence of

a boundary coupling, even though the circuit uses only resistors as the non-Hermitian components.

The non-local impedance response in this passive circuit is due to the presence of “hidden” coupled
Hatano-Nelson chains with opposite amplifications, as seen through a basis rotation, [Fig. 5c1]. After the
basis transform, the effective momentum space circuit Laplacian J (k) at the resonant frequency is
expressed as

~ 2wy Ce* + ¢(k) —r1

0l = ( , (18)

—r1 2woCe* + ¢(k)

where ¢(k) =r 1 + 2R —2(R™! + woC)cos(k). Here, £(k) represents the reciprocal part of each

1

)

chain, while 2wyCe*™ denotes the asymmetric contributions. The two chains, coupled by —r~
effectively experience opposite NHSE due to unbalanced gain/loss couplings. The boundary conditions of
the corresponding circuit [Fig. 5c2] are controlled via switches, appropriately configured for desired

behavior.

Experimentally, the circuit’s response to non-local perturbations is characterized by the ratio of two-
point impedance values under PBCs vs. OBCs: Zppc/Zopc. While this impedance ratio across all two-
point configurations within individual chains remains approximately equal to 1 [the two light blue plots
on the left in Fig. 5c3], the impedance across inter-ladder pairs deviates significantly, with the ratio
hovering around 6 [red in the right plot in Fig. 5c¢3]. This indicates substantial non-local impedance
response to the boundary coupling, which is interestingly obtained in a purely resistive circuit, without

using any amplificative components such as op-amps.

While this setup may seem to be just another demonstration of the reciprocal NHSEL27] (see Fig. 4i in
Section IILB), the effective inter-chain —1/r coupling is set to be relatively weak compared to the intra-
chain terms, such that the NHSE from both chains do not simply cancel in the intended experimental
setup. However, due to the exponential sensitivity of the NHSE, they still do cancel for sufficiently long
circuits, as a variation of the critical NHSE[226112351[2971[298] (yefer to the discussion related to Fig. 4b in
Section IILB). In this model, the circuit exhibits curious size-dependent isolated modes only in the
presence of parasitic resistances [Fig. 5c4], when the OBC circuit is sufficiently long. Their spatial profiles
are boundary-localized in a unique manner, as shown in the two rightmost plots in Fig. 5c4. Despite
being robust against perturbations, such isolated modes do not appear to be protected by any

conventional topological invariant, appearing at certain ranges of system sizes.
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IV. Circuit implementations of condensed-matter phenomena

Below, we highlight other works on topolectrical circuits, mostly experimental, that are centered around
more traditional (mostly Hermitian) condensed matter phenomena. In this review, heavier emphasis is

placed on the simulation of phenomena that are not easily achieved in conventional quantum matter.

A. Non-linear phenomena in topolectrical circuits

Introducing non-linear dynamics into a system reveals intriguing phenomena that are unattainable in

linear systems, such as higher harmonic generationl40l3351336] so)iton wave propagation23713381 non-

linear bandsm, non-linear interface modes24% as well as various non-Hermitian interplays24111342

[3431(3441[345]1[2071[346]

Specifically, in the presence of non-linear interactions, coherent collective
dynamics can emerge among the autonomous units hosting non-linear oscillators. Of particular interest
is the incorporation of a topological mechanism, which facilitates self-organized, protected boundary
oscillations3471341[3401 A common approach to realizing non-linear topological phenomena involves
arranging non-linear oscillatory elements in a topological configuration, such as by dimerizing an array

of oscillators in deference to the well-known SSH configuration.

In electrical circuits, non-linear oscillators necessarily involve active components such as op-amps, and
typically do not require external driving. Kotwal et al.8l demonstrated an archetypal topological circuit
implementation hosting non-linear van der Pol (vdP) oscillators. The dynamics of a single oscillator with
coordinate x; is governed by

& —e(l —a?)i; +z; = 0, (19)
where € = a,/L/C, t = VLCt, &; = dx;/dt, and t is physical time. When the tunable real positive
parameter « is zero, the vdP differential equation reduces to that of a simple harmonic oscillator,
representing a linear system. However, vdP oscillators exhibit non-linear oscillations for a # 0, driven by
a negative non-linear resistance that can be tuned via «a. In practice, this negative resistance in a unit
[Fig. 6al] is realized using a Chua diode, which exhibits non-linear current-voltage characteristics. A 1D
array of these oscillators [Fig. 6a2], arranged in a topological dimer configuration, exhibits distinct
oscillations at the edge nodes, reminiscent of topological edge modes [Fig. 6a3]. Extending this concept
to a 2D network [Fig. 6a4], the vdP oscillators display chiral-like edge oscillations that remain robust even
in the presence of edge defects [Fig. 6a5]. These circuits, composed of onsite autonomous units, are

referred to as active topolectrical circuits.
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In addition to having autonomous units serving as on-site potentials in a topological circuit array, it is
also possible to use non-linear components, such as diodes or voltage-dependent capacitors (varactors),
for inter- or intra-cell coupling. Hadad et al. [137] yealized a non-linear SSH circuit by alternating linear
and non-linear capacitances [Fig. 6bl]. The non-linear capacitance is implemented using two varactor
diodes connected in a back-to-back configuration, with the capacitance dependent on the voltage across

the diodes’ terminals:

V) — Vo

v(Va) = ——=
) 1+ V,/Vo

+ Voo, (20)

where v(V,,) represents the intra-cell coupling admittance that can be non-linearly controlled by the
capacitor voltage V,,, and vy, v, and V} are the characteristic constants of the coupling 37 This setup
makes the non-linear coupling (v(V;)) sensitive to the intensity of the driving signal. As the signal
intensity increases, a topological transition is induced, leading to the emergence of topological edge
modes. This transition was observed through admittance versus frequency measurements. Below the
threshold signal intensity, no distinct resonance is detected [Fig. 6b2]. However, when the signal intensity
exceeds the threshold, a pronounced admittance peak appears at the expected resonant frequency

[Fig. 6b3).

A key aspect of such non-linear topolectrical circuit realizations is the ability to achieve a topological
phase transition through the excitation intensity. This dependence eliminates the need for having
separate lattice configurations for trivial or non-trivial phases, and allows access to robust topological
modes through external pumping [Fig. 6cl]. Zangeneh-Nejad and Fleury!&l subsequently realized a
second-order non-linear TE [Fig. 6¢2] that emulates second-order topological corner modes when the
input intensity (P,,) exceeds a certain threshold. This implementation employs non-linear varactor
diodes, similar to Ref37] For instance, when P, is 25dBm, an admittance resonance occurs,

corresponding to the second-order topological 0-dimensional corner mode [Fig. 6¢3].
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Figure 6. Realization of non-linear phenomena in topolectrical circuits. (a) Active topolectrical circuits with
autonomous non-linear on-site oscillators exhibit synchronized oscillations at sites corresponding to
topological modes!8l, (b) Non-linear transmission line containing voltage-dependent intra-cell capacitors. A
topological phase transition (the peak at 98 MHz in b3) occurs with sufficiently strong transmitted signal
intensityM. (c) Second-order non-linear circuit with topological corner modes activated by the intensity of
the input signal@l, (d) Generation of cnoidal solitonic waves in a topological circuit with non-linear
grounded capacitors238l. (e) Topological enhancement of third-harmonic generation in a non-linear
transmission line with voltage-dependent intra-cell capacitors[ﬁl. (f) Topologically enhanced third-
harmonic generation in a ladder circuit with double-edge localization{3481, (g) Observation of frequency
combs induced by the non-linear behavior of strongly pumped operational amplifiersi249l. (h) Non-linearity-
induced non-Hermitian skin effect, realized through Kerr-type non-linearity implemented by back-to-back
onsite varactors239, (i) Global synchronization due to the non-Hermitian skin effect in a non-linear circuit
with on-site Stuart-Landau oscillators'22. (j) Robust edge suppression and topologically protected chaotic
oscillations in a lattice of Chua circuits. The non-linearity can be controlled by adjusting the current-voltage

slope in the Chua diodel322l. The figures (a-j) are adopted from Refs.@,m,@,@,@,m,w,m,@,

[332], respectively.
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Moving away from using varactors as non-linear coupling components, Hohmann et al.[338] employed
varactors to create non-linear on-site potentials [Fig. 6d1]. This approach led to qualitatively different
outcomes: injected sinusoidal waves were distorted into localized cnoidal waves—periodic, soliton-like
waves [Fig. 6d2]. The localization behavior is attributed to topological exponential boundary localization,
evident in the root-mean-square amplitudes decaying toward the bulk, demonstrative of the interplay
between topological and solitonic localization. Additionally, the non-linearity generates higher
harmonics relative to the circuit’s driving frequency, although the amplitudes of these harmonics

decrease with increasing harmonic order [Fig. 6d3].

Using back-to-back varactors as well, Wang et al82l introduced a non-linear transmission line circuit in
which varactors were employed as intra-cell non-linear coupling components [Fig. 6el]. This circuit
exhibits third-harmonic signals [Fig. 6e2] that are much larger than the first harmonic. Interestingly, the
higher-harmonic signal [blue in Fig. 6e3] propagates through the bulk without diminishing in amplitude.
Instead, its amplitude is significantly enhanced, surpassing the edge-localized first-harmonic signal [red
in Fig. 6e3). Unlike in the setup of Ref337L this enhanced higher-harmonic behavior is attributed to the
traveling-wave nature of higher-harmonic modes, which can excite the entire circuit. In contrast, the
first harmonic remains localized at the edge in the deep non-linear topologically non-trivial regime

[Fig. 6e4].

Hu et al.348l demonstrated greatly enhanced third-harmonic resonances in a mirror-stacked design
consisting of two non-linear chains, each unit cell coupled by a linear capacitor [Fig. 6f1]. This mirror-
stacked design enables the realization of both fundamental harmonics and third harmonics due to the
presence of multiple edge nodes with two distinct frequency localized states. Under single-source
excitation, the circuit exhibits prominent third harmonic resonances [Fig. 6f2], with identical voltage

profiles in the first and third harmonics [Fig. 6f3].
While most non-linearity-related phenomena arise from non-linear elements such as varactors, Yang et
al[3%9 observed a frequency comb generated by the non-linear behavior of op-amps under strong

pumping. Frequency combs represent the proliferation of strong higher harmonics323, Yang et al’s

circuit was designed to simulate skyrmion [Fig. 6gl] dynamics in the circuit unit within each

nodel3241 [Fig. 6g2]. Remarkably, distorted voltage oscillations resulting from op-amp saturation under a

strong input signal gave rise to discrete, evenly spaced frequency combs [Fig. 6g3]. This observation

geios.com doi.org/10.32388/21U8ZI 33


https://www.qeios.com/
https://doi.org/10.32388/2IU8ZI

highlights how non-linear behavior can emerge from devices inherently designed for linear operation,

offering a controlled method for introducing non-linearity in circuit designs.

Lo et al[l350 recently presented a non-linear circuit experiment demonstrating NHSE that emerges
depending on the intensity of the driving amplitude. Interestingly, this behavior arises not from
asymmetric couplings but from Kerr-type non-linear dynamicsm. The circuit comprises back-to-
back onsite non-linear varactors [Fig. 6hl] assembled into a circuit array inspired by the physics of
Bogoliubov modes[3271 [Fig. 6h2]. The non-linearity breaks pseudo-Hermiticity, leading to a spectral
point gap that in turns gives rise to NHSE localization. The sideband modes [Fig. 6h3], distinct from
higher-order harmonics, exhibit localized profiles that depend on the auxiliary drive frequency. Due to
the Kerr non-linearity, the NHSE appear only when the input signal amplitude exceeds a certain
threshold [Fig. 6h4]. This work highlights how non-linearity can induce the NHSE in classical electrical
circuits.

The complex emergent dynamical behavior in non-linear systems can sometimes pose significant
challenges for achieving global synchronization338l. However, Zhang et al. 351l recently demonstrated a
Hatano-Nelson (HN) circuit hosting on-site non-linear Stuart-Landau oscillators [Fig. 6il]. Due to the
asymmetric couplings in the HN circuit, Hermiticity is broken, resulting in non-orthogonal eigenmodes.
This facilitates more effective communication between modes, ultimately leading to global
synchronization. This behavior manifests as collective voltage oscillations observed in the time domain
[Fig. 6i2] and in the steady-state voltage profile [Fig. 6i3]. This study highlights how the NHSE can enable

global synchronization in non-linear experimental circuits (also refer to Ref.3291).

A cornerstone of many non-linear systems is their ability to support chaotic dynamics260l36113581(352] A
paradigmatic chaotic system is the Chua oscillator which, unlike Stuart-Landau oscillators, exhibit
irregular and chaotic orbits in some parameter regimesB—(’zl. Mathematically described by the Lorenz
system of differential equations, the Chua oscillator possesses a well-known circuit realization known as
the Chua circuitB61B64IB365] 1t can be constructed with four passive components and one active

component known as the Chua diodeB—éf’l[Fig. 6j1], which provides the requisite non-linear negative
resistance. This non-linearity is evident in its non-linear current-voltage (V) characteristic [Fig. 6j2],

and typical chaotic behavior include the famed double-scroll chaotic attractor [Fig. 6j3].

Of particular interest is how such chaotic behavior interplay with lattice band structure dynamics, such

as when multiple non-linear chaotic oscillators are coupled to form an array. In Ref. 13521 Sahin et al.
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investigated the consequences of coupling Chua oscillators in a topological SSH-like lattice structure
[Fig. 6j4]. Since band topology is only rigorously defined in linear systems, one might intuitively expect
the non-linearity, and especially its chaotic dynamics, to erode the topological localization. However, it
turns out that topological edge localization persists robustly well into the non-linear regime, with the
amplitudes of the chaotic scroll being very different at the bulk and edge oscillators [Fig. 6j5] only in the
black parameter space region [Fig. 6j6] — the region extrapolated from the topological non-trivial
parameter region defined in the linear limit. This extrapolation can be performed by tuning the I-
V characteristic parameter b of the Chua diode [Fig. 6j7], and explicitly showcase how the topological

edge oscillation suppression robustly carries over from the linear into the non-linear regime.

By externally perturbing the voltage oscillations by injecting current at the left edge node, one further
observes that the chaotic oscillations, which are typically highly sensitive to external perturbations,
persist robustly only when in the topologically non-trivial regime: In the regime connected to the trivial
phase, the injected current reduces the chaotic double-scroll portraits to non-chaotic limit-cycle
oscillations [Fig. 6j8]. However, in the non-trivial phase, the same current injection only disturbs the edge
node oscillations, leaving the bulk oscillations mostly intact [Fig. 6j9]. This robustness is captured as a

phenomenon termed “topologically protected chaos”, where chaotic dynamics counterintuitively become

more robust by the remnants of topological localization deep inside the non-linear regime[35—21.

B. Floquet circuits and the observation of temporal phenomena

Typical realizations of tight-binding condensed matter phenomena map the lattice model onto a real
space physical array, and is often met with challenges in implementing or maintaining a large number of
lattice sites to within acceptance levels of error tolerance. One promising alternative approach is to
instead realize the model in the frequency lattice, through a time-periodic driving approach known as
Floquet engineering[ ——————————————————————————————————— . In
analogy to the Fourier correspondence between a periodic Brillouin zone and its real-space lattice, a
system that is periodically driven in time should also correspond to a lattice in frequency space. This
powerful analogy enables the implementation of complicated hoppings and unit cells in terms of
appropriately programmed temporal driving frequency components, all within a single (time-periodic)

physical unit cell.

A key difference between Floquet-driven Hamiltonian systems and Floquet-driven electrical circuits is

that in the latter (electrical circuits), the main physics is contained in the steady-state relationship
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between the current and the voltage ie. the circuit Laplacian J that encapsulates Kirchhoff’s law
I = JV (refer to Section IL1). As such, impedance measurements probe the properties of the Laplacian J,
rather than the time-evolution generator H. As explained in Ref. 01l this fundamental difference is
reflected in the frequency dependence of the Floquet operator: while ordinary Floquet Hamiltonians can
only contain a linear “background” potential in the frequency lattice [38511386] 3 Floquet Laplacian can
depend on the frequency in arbitrarily complicated manners, depending on the frequency dependencies
of its constituent components i.e. iwC or 1/iwL for capacitive and inductive components. As such,
Floquet circuit Laplacians can be engineered to possess a variety of background “potentials” in the
frequency lattice, such that one can also probe impurity or edge phenomena i.e. topological edge states in

appropriately designed temporally driven electrical circuits.

Stegmaier et al. 19 designed an a circuit with two logical nodes that assumes the topological SSH form
in the frequency domain [Fig. 7al]. By employing a combination of AD633 analog multipliers and
capacitors [Fig. 7a2], effectively time-varying capacitors were achieved, modulated at far higher
frequencies (order of MHz) than what is possible with mechanical means. To recreate an SSH model in
frequency space, the inter- and intra-node capacitances are time-modulated such that their temporal
functional dependence resembles that of the momentum dependence of the conventional SSH model.
Notably, the Floquet driving protocol is such that the effective background potential diverges at the
zeroth “site” in the frequency lattice, such that it acts as a strong “barrier”. As conspicuously measured,
topology boundary states exists at frequencies very near these barriers when the effective SSH
parameters are tuned to topologically nontrivial values [Fig. 7a3]. These barrier states exhibit localized
profiles in frequency space, as can be obtained by Fourier transforming the measured temporal voltage
oscillations [Fig. 7a4]. Other than showcasing the utility of analog multipliers in effectively time-
modulating circuit components at very high frequencies, this work [Ref. [1011) 31s0 demonstrated that
Floquet circuit Laplacians can exhibit highly customizable inhomogeneities in the frequency lattice, an

important realization that has far-reaching implications in topological signal processing.
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Figure 7. Circuit experiments for Floquet phenomena and temoral dynamics. (a) Floquet circuit that
showcases topological boundary accumulation at background inhomogeneities of the Floquet Laplacian in
frequency space, with time-modulation physically achieved through the use of an analog multiplier and an
input signalm. (b) Observation of time-dislocated Floquet topological modes in a 3D electrical circuit, with
the third (inter-layer) dimension representing the frequency lattice26l () Demonstration of topological AAH

spectral pumping through dynamical voltage-controlled inductors192]. (d)Observation of the temporal corner
skin dynamics from the higher-order non-Hermitian skin effect in a 2D circuit387] The figures (a-d) are

adopted from Refs.[101] (136 [102) [387] yesphectively.

Although time-varying components enable the construction of a frequency-domain lattice through their
temporal oscillations, directly observing Floquet modes can be challenging due to the substantial heating
in rapidly time-modulated elements. For the goal of experimentally realizing (mathematical) Floquet
behavior, one approach to circumvent this restriction is to directly simulate the frequency lattice in real
space. An attempt along these lines is the experiment by Zhang et al 136l which observed Floquet modes

along temporal dislocations, in analogy to usual spatial dislocations that host topological modes. As
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shown in Fig. 7bl, a (logically) time-dependent 2D higher-order topological lattice is realized as a 3D
stack of 2D layers, where the third dimension represents frequency. The time-dislocation is spatially
implemented as a sudden change in the inter-layer connections between the left and right halves of the
setup. These inter-layer couplings represent the (logical) driving protocol. As a result, Floquet 0 and
7 topological modes exist in the band gaps [Fig. 7b2]. Notably, these modes exist at the dislocation
between the left and right halves of the 3D circuit setup [Fig. 7b3], even though the spatial connectivity
within each 2D layer remains completely homogeneous across the dislocation. These Floquet 0 and

m modes were directly measured through impedance measurements [Fig. 7b4].

Time-modulated electrical circuits can also be used to demonstrate dynamical phenomena such as
Thouless pumpingm. Traditionally, the Thouless pump describes the adiabatic, quantized transport of
charge across a bulk gapi28l, as can be deduced from spectral flow arguments. In the regime of classical
electrical circuits, charge quantization is not accessible, but spectral flow can still be measured since the
Laplacian spectrum corresponds to impedance resonances. Stegmaier et al.ll%2l demonstrated such
spectral pumping in an electrical circuit with inductors that are effectively time-modulated with analog
multipliers [Fig. 7c1]. As in Ref 191 the time modulation is controlled by an external voltage signal which
can be customized at will — here, the modulation is chosen to yield the Aubry-André-Harper (AAH)
model. By measuring the impedances within the circuit, eigenfrequency bands were reconstructed as a
function of the periodically pumped phase. Indeed, the expected AAH spectral flow was observed under
PBCs [Fig. 7c2], and topological in-gap states can also be seen under OBCs [Fig. 7c3]. It is important to
note that, unlike the quantized charge transport predicted by the Kubo formula in quantum settings, here
there is no occupied ground state, and the observed state pumping is purely that of the spectral band

resonances.

Even in a static electrical circuit, techniques used to resolve Floquet dynamics can also be used to
measure the time-dependent behavior. In the non-Hermitian corner localization experiment by Wu et al.
[387] the 2D circuit lattice, hosting non-Hermitian second-order topological phases, incorporates INICs to
implement asymmetric intra-cell couplings [Fig. 7d1]. The modular design of the circuit, featuring
detachable INIC modules, allows switching between Hermitian and non-Hermitian configurations
[Fig. 7d2]. In the Hermitian configuration, a Gaussian pulse injected into the center of the circuit spreads
across the entire lattice, as shown by the time-resolved voltage profile [Fig. 7d3]. In contrast, in the non-

Hermitian setting, the pulse localizes at a corner of the circuit [Fig. 7d4]. These time-resolved voltage
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responses demonstrate how electrical circuits can serve as practical platforms for observing dynamical
physical phenomena in real time (see also Ref.329]).

Another noteworthy result in Ref387l is the demonstration of the generalized Brillouin zone using the

Laplace transform rather than the Fourier transform applied to the measured voltage distribution. The
non-Hermiticity renders the wavevector complex, making it infeasible to obtain the Brillouin zone
directly from the Fourier transform. However, Wu et al. utilized the Laplace transform method to
effectively recover the generalized Brillouin zone, where different onsite admittances correspond to
different contours of the band structure. Such site-resolved field distributions are highly accessible in
topolectrical circuits, which is crucial for studying higher-dimensional lattices. For example, in another
work39l Wu et al. observed degeneracy conversions, including Weyl point—nodal line conversion and

nodal line—entangled nodal line conversion.
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C. Hyperbolic lattices and their realizations in electrical circuits
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Figure 8. Circuit implementations of hyperbolic lattices. (a) Hyperbolic “drum”™shaped eigenmodes on a

Poincaré disk, resolved through the phase information in the node voltages%. (b) Experimental simulation
of a synthetic hyperbolic lattice with four effective hyperbolic band momenta. The synthetic momenta are
implemented through adjustable phases, leading to the observation of graphene-like Dirac conest298l ()
Circuit realization of a Haldane hyperbolic lattice, with the number of measured topological zero modes
increasing exponentially with lattice size2%). (d) Demonstration of defect-induced backscattering-immune
topological states on a hyperbolic lattice3%4l The figures (a-d) are adopted from Refs [392] [106] [393] [394]

respectively.

Lately, there has been much interesting in the band structure and topological properties of hyperbolic

lattices, which can be regarded as a vast generalization of regular lattices in negatively curved spacel2231

[3961[3971[3931[3981[3991[4001[4011[4021[403][4041[405]

In 2D Euclidean (flat) space, regular p-gons can be
tessellated such that every vertex contains g branches, if (p — 2)(¢ — 2) = 4. This leaves only three
possibilities {p, q} = {3,6},{4,4},{6,3} corresponding to the triangular, square and hexagonal lattices

respectively. Relaxing this constraint to (p — 2)(g — 2) > 4 results in an infinite variety of so-called
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hyperbolic lattices, which however need to be embedded in negatively curved spacel. While this
requirement of negatively curved space embedding makes them challenging to realize in most
metamaterial platforms, electrical circuit connections can describe any desired graph structure, and thus
emerge as promising physical platforms for hyperbolic lattices. This negative curvature fundamentally
alters the propagation of modes, enriching the behavior of fundamental phenomena such as topological
propagation[4%8l. Due to the relative proliferation of boundary terminations, a hyperbolic lattice structure
also alters the nature of the non-Hermitian bulk-boundary correspondences in the presence of
asymmetric lattice hoppingsM. The ability of electrical circuits to simulate lattices with high
coordination numbers is also helpful in the realization of higher dimensional lattices[4081[409)[410][114][50]

129][105][130

Lenggenhager et al. 392l achieved one of the first experimental demonstrations of hyperbolic lattices on a
circuit board [Fig. 8a]. By mapping the hyperbolic plane onto the Poincaré disk, the hyperbolic lattice
takes the form of a tree with increasingly fine branches towards the boundary of the unit circle.
Impedance resonances measurements reveal the eigenmodes of the hyperbolic lattice, which are
distorted due to the negative curvature. By resolving the phase information at each node relative to a

reference voltage, the structure of these “hyperbolic drum” eigenmodes can be mapped out.

To mitigate inherent difficulties in realizing large physical hyperbolic lattices, one strategy is to employ
hyperbolic band theorym which expresses a pseudo-infinite hyperbolic lattice in terms of hyperbolic
translation operators. This was demonstrated by Chen et al.m, who experimentally realized a
graphene-like model in a pseudo-infinite synthetic hyperbolic lattice [Fig. 8b] with just one physical unit

cell. The synthetic parameter was implemented via complex-phase elements implemented with analog

multipliers. The two-port Laplacian that introduces a phase is given by

. —i¢
() -z (e 120 G) o
I iwL \ €% 1474 Vs

where the phase ¢ is controlled by adjusting the external voltages of the analog multipliers. The diagonal
entries introduce a constant offset in the admittance spectrum, while the off-diagonal terms generate the

controllable complex phase between ports 1 and 2.

A key feature of a finite hyperbolic lattices is that the number boundary sites scales exponentially with

the radius (i.e. number of lattice generations), reminiscent of fractal latticesi Ll As such, unlike in

Euclidean lattices, boundary sites can dominate the Hilbert space and greatly alter bulk-boundary
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correspondences, even in Hermitian setups. Zhang et al.12%3] demonstrated the exponential proliferation
of zero modes in a hyperbolic circuit [Fig. 9c]. These topological zero modes give rise to a large number of

impedance resonances at the edge nodes, while no resonances occur in the bulk nodes.

This boundary sensitivity is reflective of the small-world connectivity of a hyperbolic lattice, a property
that have inspired their application in holographic dualityw. The high
connectivity also gives rise to heightened susceptibility to lattice defects or perturbations. Pei et al.
[394] experimentally constructed a hyperbolic Haldane circuit and showed that a single defect in the bulk
can induce boundary-dominated one-way propagation. By introducing polygonal bulk defects into the
Haldane hyperbolic lattice, robust boundary propagation was observed, even when induced by a single
point defect in the bulk [Fig. 9d]. While the presence of zero modes was verified through impedance
responses, the one-way propagation of topological edge states was demonstrated using dynamical

voltage analysis.

D. Simulations of other topological and quantum systems

Electrical circuits are also very suited for simulating quantum media, both of conventional topological
materials and more unconventional setups such as'2zH!2=2l22l22ll Described below are some

experimental demonstrations, particularly those of models that are hard to simulate on other platforms.

geios.com doi.org/10.32388/21U8ZI 42


https://www.qeios.com/
https://doi.org/10.32388/2IU8ZI

'EEy,Exp.  'EE,,Sim.

#l> 2222284
Yg 2222283
3 eReeey

822822

P4

3

0392881 §1.8.8.9.8.8.

H

pe 4 3
7(333888319 (2231

2
Ele

=0

—Theory
‘Simiulaton
Experiment

23 458

Figure 9. Electrical circuit realizations of topological and quantum systems. (a) Square-root topological lattice
experiment showcasing higher-order Weyl semi-metallic phases@. (b) Type-1I Weyl points in a 3D circuit
with tilted bands28l. (¢) Interaction-induced two-boson flat-band localization and topological edge states

(423

simulated on a 2D circuit array ], (d) Simulation of Wilson fermions in an electrical circuit, with the

measurement of chiral edge currents along the domain walls of the associated Chern lattice model“24., (e) 3D
circuit realization and measurement of the Hopf insulator modell423], (f)Observation of non-Abelian
Anderson localization and transitions through site-resolved impedance spectra and time-domain voltage
dynamics[426], (g) Demonstration of topological states and their spectral flows at disclinations, showcasing
the correspondence between real-space topology and disclination states’%27] (h) Simulation of many-body
bound states in the continuum and their boundary-localized behavior in a non-linear circuit network[1041, ()
Circuit realization of the octupole higher-order topological insulating model and the observation of their
corner states[428], (j) Non-Hermitian Haldane circuit exhibiting valley-dependent Dirac conesl422], (k) Circuit
realization of topological states in 1D, 2D, and 3D that are delocalized by the NHSE¥39. (1) Fractal circuits with
a proliferation of topological boundary modes3l. (m) Emulation of quantum braiding operations using

classical circuitsi432l, (n) Emulation of a quantum two-player game through a classical circuiti433l, ©)
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Integrated circuit (IC) realization of a topological Kitaev lattice with very high operating frequencies@l. The

figures (a-0) are adopted from Refs.[222) [168] [423) [524] [425) (526 [427) [104] [428) (420 [430) (431 [432) [433]

131 respectively.

One class of models that are particularly amenable to electrical circuit realizations are the square-roots
models. Given a parent Hamiltonian, the square-root of it is a lattice model in which two successive

hoppings yield the same connectivity structure as the parent model (up to an unimportant constant shift)

[434114351(4361(4371[4381(439] 4401 44114421 [443]44641[4451[64611447)  \athematically, they may look contrived and

complicated, but they inherit various porperties from their parent Hamiltonians, such as midgap
topological modes%48l. The number of modes, including topological modes, is doubled in these
lattices49] Electrical circuits are suitable physical platforms due to their versatile connectivity, and Song
et al 422l constructed a 3D square-root higher-order Weyl semi-metal by stacking 2D square-root lattices

along the third dimension [Fig. 9a]. From the admittance spectrum, non-zero mid-gap topological hinge

states were observed.

Electrical circuits are also useful in demonstrating unconventional band structures, particularly in higher
dimensions where fabrication may be challenging for some other metamaterials. For instance, Weyl
points are crossings in 3D band structures, and can tilt over to form type-I1I Weyl points430l[4511[452][453]
[so4][SNNAENSIONTONT - exhibiting great sensitivity during the so-called Lifshitz transition. Li et al.
[168] experimentally demonstrated type-II Weyl points in their 3D circuit [Fig. 9b]. By exciting bulk states
and measuring node voltages, topological surface states were measured, exhibiting tilted bands with two

group velocities in the same direction—key properties of type-II Weyl systems@.

Beyond band structures, 2D or 3D electrical circuit arrays can also simulate few-body physics and other
phenomena. By mapping the 2-photon degrees of freedom onto a 2D lattice@@iﬁ, Zhuo et al.
5231 simulated interaction-induced flat-band localizations and topological edge states, tuning the
effective interaction strength through circuit grounding. By measuring impedance responses and voltage
dynamics in the time domain, they were able to resolve two-boson flat bands and topological edge states
[Fig. 9c]. On a different note, Yang et al.l%24l simulated Wilson fermions — a lattice discretization
conventionally used in the context of lattice QCD to avoid fermion doubling — in a circuit lattice, tuning
circuit parameters to achieve different Wilson fermion states. Through impedance measurements, they

reconstructed the chiral edge domain wall separating two circuits with contrasting fractional Chern
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numbers, and observed localized corner states arising from two Chern lattices with opposite chiralities
[Fig. 9d]. Wang et al23] realized the elusive Hopf insulator in a 3D electrical circuit systematically
implemented with so-called pseudospin modules. Although this lattice required long-range spin-orbit
couplings, the pseudospin modules aided the realization of Hopf bands, including both surface and bulk

bands [Fig. 9e].

Electrical circuits have also been used to simulate non-abelian systems, in which physical outcomes
depend on the sequence of operations i.e. twists/427l4581459114601 yiarious recent experiments have
attempted to classically simulate operations that are mathematically equivalent to that experienced by
anyonic quasiparticles@l‘@[@@[@[‘@l. Wang et al[426l demonstrated non-Abelian Anderson
localization using a 2D electrical circuit that represents the quasiperiodic AAH model with non-Abelian
gauge fields. Both localization and delocalization behaviors were observed through site-resolved
impedance spectra and voltage dynamics [Fig. 9f] (see also the experimental realization of non-Abelian

inverse Anderson transition in Ref [467]),

Circuits are also particularly suitable for demonstrating the effects of lattice defects, since node are

connected at will Xie et all%2Zl experimentally demonstrated disclination states and their

correspondence to real-space topology. Localized topological states at the disclinations—defects in
468

rotational symmetry[—l—were observed in impedance maps and voltage distributions at the lattice

nodes [Fig. 9g] (see also Refs [4691[470])

The notion of bound states in the continuum (BICs)[‘ﬂl, which are localized and isolated from the
environment, is rapidly extending beyond photonics@@l@, ring resonators“’3l and into electrical
circuits&6344TIIAT6) gyp et a1 104 simulated boundary-localized many-body BICs by mapping the Fock
states of three bosons into non-linear circuit networks. The three circuit nodes corresponding to the
three bosonic states are connected by capacitors, and each node consists of a self-feedback module
controlling the effective interaction strength. These modules, which involve op-amps and analog
multipliers, allow for the simulation of few-boson BICs with different effective interaction strengths

[Fig. 9h].

Blessed with the freedom in implementing any desired boundary condition, electrical circuit arrays can
assume unconventional boundary conditions not possible in materials and most metamaterials, such as

higher-dimensional real projective planes or even non-orientable manifolds, with the exception of some

photonic systemsZZ. Combined with nontrivial momentum-space higher-order topology arising from
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the octupole moment of the bulk, Qiu et al. 1228l experimentally demonstrated a 3D lattice [Fig. 9i] which
exhibits defect-like higher-order corner states through impedance analysis. The versatility of electrical
circuit has enabled the realization of such unconventional states resulting from the interplay of non-

trivial real-space and momentum-space topologyl478L471,

Since electrical circuits commonly involve resistive and active elements, they can readily demonstrate
how non-Hermiticity interplays with topology without much additional complication. Xie et al.
[429] gemonstrated the non-Hermitian version of the graphene lattice, which exhibits two non-Hermitian
Dirac cones, one experiencing amplification and the other experiencing decay. Site-resolved band
measurements reveal unidirectional kink statesZ214801 with dissimilar profiles at the two valleys

[Fig. 9j]. Involving asymmetrical real next-nearest-neighbor couplings effectively result in a non-

Hermitian single Dirac cone, leading to valley polarization[48L14821[4831[484] yyith 5 large bandwidth.

The introduction of non-Hermiticity can also greatly alter the locality of topological modes. While
topological modes are typically strongly confined to the boundaries2%, non-Hermitian skin pumping in
the opposite direction can delocalize them while preserving their eigenspectrum, in this case mid-gap
zero—eigenvalues[@. These delocalized topological states, still protected by lattice symmetries, can
extend through the bulk, enabling their robustness to be harnessed not only at the boundaries but also
within the bulkl48611487] 1in et al143% demonstrated these extended states in 1D, 2D, and 3D circuits by
tuning the non-reciprocal coupling strength [Fig. 9Kk]. At a critical strength determined by both the

topological and skin localization length, the topological modes become extended, a phenomenon which

was also studied in Refs.[488114891(381(490]

Beyond hyperbolic lattices (refer to Section IV.C), electrical circuits can also simulate more esoteric
network structures, such as fractals. On such networks, boundary terminations occur at various length
scales, and topological modes localized unconventionally in the form of extended bulk states and inner
states[4211[4921[493)[411][494] ' He et a] [431l demonstrated fractal topological circuits which exhibit a rich
spectrum of topological edge and corner modes. Reminiscent of hyperbolic lattices, the numbers of such
boundary modes increase rapidly with system size, as directly observed through impedance analysis

[Fig. 91].

Topolectrical circuits can simulate not only classical systems, but also quantum setupsw. By
mapping the Hilbert space of few-qubit systems to the nodes of suitably designed circuits, Zou et al.

[432] Gemonstrated [Fig. 9m] the mathematically equivalences of Majorana-like edge states, T-junctions,
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two-qubit unitary operations, and Grover’s search algorithm. Through their resistor-capacitor-based
circuit with segmented fixed resistances, braiding processes can be simulated without significant loss.
Zhang et al433l demonstrated another example of quantum algorithm simulation using classical circuits.
They simulated a two-player quantum game based on AND-OR tree structures [Fig. 9n]. Relays were
employed to disconnect each node simultaneously after applying the initial voltage, allowing the system

to evolve from the initial state.

Although most topolectrical circuit simulations of condensed matter have been built on printed circuit
boards, a few experiments have demonstrated their implementation in integrated circuits (ICs). For
instance, Tizuka et al131 experimentally demonstrated topological Kitaev interface states!28l i high-
frequency ICs [Fig. 90]. Through two-point impedance measurements, this IC realization successfully
captured both topological and trivial phases at frequencies around 13 GHz. These IC realizations, with
their much higher degree of miniaturization, demonstrate the great potential for topolectrical circuits in

scalable high-frequency applications.
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Figure 10. Imaging nodal knots through electrical circuits. (@) Nodal knot construction from the method in
Ref.1429] [Egs. (22) and (23)): Theoretical nodal links or knots shown in orange, with simulated admittance
eigenvalues represented as black points in 3D momentum space. (b) A unit cell of the experimental circuit
featuring variable inductors (cylinders). (c) Mechanism behind the variable inductors: ferrite rods increase the
inductance and a shorted wire loop decreases it, by up to 25% and 50% respectively. (d) The simulated
drumbhead region impedance of the Hopf link (left) agree well with measurements at optimally chosen

momentum points (right). The figures are all adopted from Ref.429],
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1. Nodal knots and topological drumhead surface states

While various experiments have simulated knotted band touchings in 3D parameter space, in both
Hermitian and non-Hermitian (exceptional knots) contexts‘[@]-[m]-[ml, realizing these knots in
momentum space have the benefit of accessing their topological surface states at real-space
terminations. Electrical circuits prove particularly suitable due to the ease in implementing long-range
couplings, which are essential for the construction of nodal knots in momentum space‘@l@’l{ﬂl@]
----------- 1. In general, the topological surface states of nodal knots lie within the interior of
the 2-dimensional surface Brillouin zone projections of these knots, and are thus known as “drumhead”

surface states(@2,

Below, following Ref429 we describe the construction of nodal knot models that are suitable for
platforms with reciprocal elements i.e. passive RLC circuits. In a reciprocal lattice with two nodes per unit

cell, a minimal circuit Laplacian ansatz can be written as
J(k) = LI + Mef(k)o, + Tmf(k)o. (22)

where [y imposes a uniform offset, f(k) is a complex function of the lattice momentum, and o, and
o, are Pauli matrices. The bands cross in the 3D Brillouin zone where 2|f(k)| = 0, i.e. when the
coefficients of both Pauli matrices disappear. To facilitate the knot construction, k € T? is first mapped

onto two complex numbers (z, w):

1
2(k) = cos 2k, + 3 +i(cosk, + cosky + cosk, — 2), (23)

w(k) = sink, + isink,,
such that different knots correspond to different bivariate polynomials in z,w: for instance, the (p, q)-
torus knots correspond to f(k) = z(k)? + w(k)?422, such polynomials were already devised for various

knots[203115061507] Hyt their embedding onto the 3D Brillouin zone, where z(k), w(k) are both periodic

functions of k, have only been considered in the topological nodal context.

As simulated and experimentally demonstrated in Ref.[‘ﬂ, nodal structures can be resolved from the

admittance eigenvalues [Fig. 10a]. These nodal knots form intricate patterns in the 3D momentum space,
while the corresponding drumhead surface states appear as projected flat bands in the surface
admittance spectrum. While the edge-terminated direction was implemented in real space, the two other
directions in the plane of the drumhead surface states were parametrically tuned by adjusting the

inductance of the inductors to correspond to different momentum values [Fig. 10b]. The inductance was
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varied using ferrite rods or shorted wire loops to increase or decrease inductance, respectively [Fig. 10c],
effectively reduces the undesired effects of parasitics and component uncertainties. By utilizing machine
learning-powered optimization and microcontrollers to fine-tune the setup, the drumhead regions could

be resolved with a minimal number of measurements [Fig. 10d].

V. Machine Learning Approaches to Topolectrical Circuit

Construction and Measurement

9
8 Thoy g o ™ T
7 Ofprl e o f simM.
g 6 S,
5 4
8 3 I
o 2 OOIH"‘ ’
i S e | €XP
H oM e
2 0 2

Lom Lo w

OBCz-OBCy
CmNWAULNTI®O

E Ay E
izl 2 exp.
er mode

) Predicted results Experimental results

e
absorption rate

s = :

4
absorption rate

Towaomaw e ——

Rall ) 12345678910 12345678910

Figure 11. Applying machine learning to topolectrical circuit experiments. (a) Application of the physics-
graph-informed machine learning approach in streamlining the measurement of the second-order non-
Hermitian skin effect in a 2D circuit, and the determination of its elgenspectrumﬂ(’—91 (b) Application of deep
learning to the design of the topological model for a circuit realization2%8l. (c) Design of electrical circuits

based on text or image inputs, experimentally tested with a 2D topological circuit299l The figures (a-c) are

adopted from Refs.[@],[m],m—g], respectively.
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Topolectrical circuit simulation of a condensed matter lattice usually entails the design, construction and
voltage measurement of a large number of nodes. To streamline the process, some studies have employed
machine learning (ML) approaches, in particular deep learning, for optimizing their design and
measurement process. In other contexts, ML approaches have already proven themselves as powerful
tools for optimization and prediction based on incomplete information, for instance extrapolating the
dynamics of complex systems as well as optimizing their design@lm. As such, they are
particularly effective in addressing practical challenges such as managing a large number of circuit
variables, designing printed circuit boards with minimal effective node-to-node connections, and

streamlining circuit measurements.

To illustrate, fully acquiring the Laplacian spectrum of a circuit requires N x N impedance
measurements in principle, where N is the total number of nodes. For large N, this process becomes
increasingly tedious, especially in higher-dimensional circuits. To address this, Shang et al.
11691 jntroduced the physics-graph-informed machine learning approach for reconstructing the circuit
spectrum with incomplete data [Fig. 11al], towards a similar objective as Ref 1128 Using physics-graph-
informed ML, they conclusively demonstrated second-order NHSE spectra through impedance
measurements only between selected ports [Figs. 11a2 and a3]. Aided by the K -means clusters algorithm,
only N?/K measurements were required, highlighting how embedding physics-informed priors into ML
frameworks can significantly enhance data interpretation and analysis in topolectrical circuit

experiments.

In addition to data analysis, deep learning can aid the design of the mathematical model itself. Chen et al.
[508] ytilized multilayer perceptrons and convolutional neural networks to predict topological invariants
and the circuit response. They simulated the topolectrical Chern circuiti40l [Fig. 11b1] with 1000 different
sets of circuit component parameters to train their model. The topolectrical Chern circuit features chiral
voltage edge propagation when a Gaussian pulse is injected at an edge node [Fig. 11b2]. Their trained
model demonstrated the approximate phase diagram [Fig. 11b3] and capture aspects of the temporal

evolution of chiral voltage propagation, even in the presence of defects [Fig. 11b4].

Chen et al..2% proposed a framework that integrates text, image, and spectral data to assist in the design
of two-dimensional SSH circuits. Their bidirectional collaborative design framework enables both
forward prediction of measured quantities from the described circuit structure and inverse design of
topolectrical circuits based on textual descriptions. For instance, when provided with an image of a

fabricated 2D SSH circuit [Fig. 1icl], the trained model inferred circuit properties that aligned with
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experimental measurements [Fig. 11c2]. Conversely, given a target voltage profile (e.g., edge-localized
voltage [left in Fig. 11c3]), the model suggested a corresponding circuit design [right in Fig. 11c3]. The
fabricated circuit based on this predicted structure exhibited a voltage profile similar to the intended

design.

VL. Outlook

Electrical circuits, utilizing components such as conventional elements, varactors, op-amps, analog
multipliers, and memristors(222l5141 enable the realization of features and phenomena that are hard to
simulate in most other platforms, such as higher-order topological phasesm, Floquet setupsm,
hyperbolic lattices[m, and synthetic dimensionsZl. Recent advances have expanded the scope of
electrical circuit experiments to include the simulation of flat bandsm, interaction-induced
relativistic effectsl®29 quantum valley Hall effectsl®2ll exceptional Landau quantization[322l Hopf
bundlest®23l inverse Anderson transitionsi224l and non-Abelian topological bound states225l offering
unprecedented control and tunability. These demonstrations highlight the adaptability of topolectrical
circuits in bridging theoretical models with physical realizations. Their direct observability and
scalability present unique opportunities for uncovering new physics. Furthermore, machine learning and

deep learning have enhanced the potential of electrical circuits, enabling their efficient analysis,

prediction, and design, even in systems with complicated topological features or incomplete datall69l

The integration of electrical circuits with advanced computational techniques and emerging
technologiesli61 promises to deepen our understanding of condensed matter phenomena and push the
boundaries of experimental physics[142l1461[285] Thejr adaptabilityl02499 to simulate higher-
dimensional systems!2%, such as those seen in magic-angle Moiré circuits22Zl opens new avenues for
investigating uncharted areas, including relatively esoteric condensed matter systems[2281(5291[5301(531]
[921(5321(533] gy continuing to refine and expand the scope of topolectrical circuit implementations, we are
well-positioned to uncover fundamental insights and advance the development of practical applications

in condensed matter and beyond.
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Footnotes

1 The opposite constraint (p—2)(¢g—2) <4 gives the five possibilities
{p,q} = {3,5},{5,3},{3,4},{4, 3}, {3, 3}, respectively corresponding to the five platonic solids ie.

icosahedron, dodecahedron, octahedron, cube and tetrahedron, all tiling the sphere.
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