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Abstract

With rising global electricity consumption, governments prioritize energy efficiency and the integration of electric

vehicles (EVs) into energy markets. This study evaluates EV aggregator strategies using a smart charging method that

modulates charging power rates based on user preferences. Simulations in Quito's distribution system assess various

actions' impacts on aggregator costs and technical conditions. The study focuses on demand response (DR) strategies,

particularly for residential areas, exploring EVs' potential as energy storage via vehicle-to-home (V2H) and vehicle-to-

grid (V2G) options. It introduces a collaborative evaluation of dynamic-pricing and peak power limiting-based DR

strategies, incorporating bi-directional EV and energy storage system (ESS) use. A novel mixed-integer linear

programming (MILP) model for home energy management (HEM) integrates distributed renewable energy, V2H/V2G

capabilities, and two-way ESS energy trading and diverse DR strategies. This comprehensive approach assesses the

impact of EV owner preferences and ESS availability on reducing total electricity costs through case studies.

Introduction

The future of power systems faces challenges due to population growth and the push for increased green energy

adoption. In response, policies emphasize the development of smart grids (SGs), which integrate various engineering

techniques to create reliable, secure, and efficient grids maximizing renewable energy use [1]. Key SG functions include

enhancing fault detection, deploying distributed energy resources, improving building energy efficiency, and integrating

demand response and demand-side management techniques [2]. These strategies involve microgrids, control and

communications, and sensing and measurement. Electric vehicles present a promising technology for SGs, offering

significant battery storage capacity that can benefit the grid [3]. However, widespread EV adoption can strain the power

grid, causing issues like voltage deviations, distribution losses, peak load increases, high investment costs, and

transformer lifespan reduction [4]. Effective management of EV fleets and understanding charging behavior are

essential [5].

Previous studies have explored various EV charging management opportunities in SGs, including vehicle-to-home

strategies, peak shaving and valley filling using vehicle-to-grid systems, efficient EV charging methodologies through
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multi-objective optimization, and decentralized load management using evolutionary game dynamics [6][7]. Other research

has focused on smart charger design and evaluation, introducing bidirectional smart chargers, voltage-based controllers,

and model predictive control methods [8]. To enhance EV charging management, the concept of an EV aggregator has

been introduced, which efficiently manages a large number of EV chargers [9]. This aggregator requires a smart charging

infrastructure and aims to optimize the economic and technical aspects of EVs. However, some charging management

methods may be efficient for the grid but may not meet user expectations, potentially discouraging EV adoption.

Addressing this, a smart charging methodology for EV aggregators was proposed, considering different customer choice

products (CCPs) based on EV user preferences [10]. This methodology optimizes charging power modulation to achieve

cost savings while maintaining grid reliability [11]. However, many studies assume fixed parameters based on local user

preferences, overlooking variations due to regional differences in user behavior.

This paper aims to assess various strategies based on different input parameters applicable to the smart charging

methodology. It presents multiple test results, suggesting that these EV aggregator strategies can be tailored to grid

conditions and user preferences. Also, the paper discusses the deregulation of the electric power industry and the

importance of smart grid and smart households [12]. Smart grid vision aims to enhance electricity utilization efficiency from

production to end-user, accommodating all generation and storage options and enabling consumer participation [13].

Demand-side actions for smart households focus on demand response (DR) strategies, allowing utility-consumer

interaction. DR strategies aim to shift consumer electric usage from peak to off-peak periods to optimize smart grid

operation efficiency [14]. Enabling technologies for residential DR activities include home energy management (HEM)

systems and smart meters. With the rise of electric vehicles (EVs), understanding their energy needs and potential as grid

resources is crucial [15]. EVs present both challenges and opportunities, with their energy requirements sometimes

exceeding individual home power capacities [16]. This paper introduces a mixed-integer linear programming (MILP) model

for HEM structures to investigate a collaborative evaluation of dynamic-pricing based DR strategies, distributed renewable

energy generation, EV-to-home (V2H) capabilities, two-way EV energy trading (V2G), and energy storage systems [17].

The paper conducts various case studies assessing the impacts of these components under different DR strategies,

evaluating consumer electricity bill reduction performance and utilizing real-time load demand and distributed energy

resource production data for comparisons.

Approach

The Home Energy Management (HEM) system orchestrates smart household operations, integrating price-based signals

from the Load Serving Entity (LSE), self-produced small-scale energy, smart appliance consumption, and consumer

preferences. The goal is to minimize daily electricity costs by balancing grid energy purchases with energy sold back to

the grid through household assets like PV, ESS, and EV. This optimization considers time-varying energy prices and

imposes penalties on energy sourced from different resources to prioritize energy sales [18]. The HEM system's core

operations are outlined, offering flexibility for specific implementations, such as modeling HVAC systems, water heaters,

or customer contract details. The time granularity can be adjusted by selecting ΔT, for example, setting ΔT to 4 for 15-
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minute intervals. Constraints define the maximum power drawn from and injected back into the grid, which can be

adjusted with time-dependent parameters N1 and N2, respectively. Consumer options and behaviors are represented by

setting ESS and EV charging and discharging variables to zero during specific intervals [19]. Different energy selling

policies can be modeled by adjusting selling energy variables. Further details on this methodology are available in [20].

The Electric Vehicle aggregator plays a pivotal role in managing EV charging, offering technical services to Distribution

System Operators and Transmission System Operators [21]. These services ensure that the "maximum load profile" set by

grid operators are not exceeded, preventing grid instability and asset damage [22]. The aggregator optimizes EV charging

costs while adhering to technical constraints.

To enhance EV adoption, the methodology introduces three Consumer Charging Profiles (CCPs): green, blue, and red.

Each profile offers different charging price and duration options, accommodating user flexibility [23]. Green and blue

profiles allow the aggregator to adjust charging rates, while the red profile prioritizes speed, offering the maximum

charging rate of 7.2 kW. The aggregator's objective is to minimize daily charging costs, optimize charging patterns for

each CCP, and avoid penalty costs by staying within the maximum load profile [24]. Given the complexity of the model and

uncertainties in EV user behavior, sensitivity analysis is crucial [25]. This analysis assesses how variations in input

parameters, such as minimum required energy, starting charging time delay, and average charging power rates for green

and blue CCPs, impact output variables like EV load and charging costs. Monte Carlo simulations are employed to

analyze the cost impact of parameter variations through regression analysis, considering 100 simulations per scenario to

capture user behavior uncertainties. The HEM system and EV aggregator aim to optimize household energy management

and EV charging while considering dynamic pricing, consumer preferences, and grid constraints. Sensitivity analysis and

Monte Carlo simulations provide insights into the model's robustness and the impact of variable changes on charging

costs, ensuring efficient and user-friendly EV integration into smart grids.

Results and Discussions

To assess the overall impact of various household operational scenarios on consumer electricity bills, we employ an MILP

model implemented in GAMS v.24.1.3 using CPLEX v.12 as the solver [24]. The findings from these simulations are

elaborated upon in this section. The study uses real-time load demand data from an average Portuguese household

spanning 140 square meters and housing four occupants. The household features a variety of electric appliances, such as

a fridge, TVs, microwave, washing machine, dishwasher, computer, and oven. Notably, the household relies on a gas-

powered water heater. Daily consumption data over a one-month period was collected to derive an average power

consumption profile. The household is equipped with a 1 kW small-scale PV system, with its production data normalized

based on a measured daily solar farm production profile. The study also considers bi-directional Electric Vehicle (EV)

operations, encompassing both Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) functionalities.

The analysis takes into account a Chevy Volt with a 16 kWh battery and a charging station limited to 3.3 kW for both

charging and discharging operations. Charging and discharging efficiencies are set at 95%. Initial EV battery energy upon

arriving home is assumed to be 8 kWh, with a lower limit of 4.8 kWh to prevent deep-discharging. The Energy Storage
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System (ESS) consists of a 1 kWh capacity battery with a charging/discharging rate of 0.2 kW per hour, efficiencies of

95%, and a deep-discharge limit of 0.25 kWh. Notably, no costs associated with using storage facilities like EV and ESS

during Home Energy Management (HEM) operations are considered. The study employs a net-metering approach to

facilitate two-way energy transactions between the end-user and the utility. Excess energy can be sold back to the grid

when available, with a flat rate of 3 cents/kWh paid to the user for such sales. Pricing for grid-sourced energy is based on

a dynamic pricing-based Demand Response (DR) scheme.

Three consumer preference scenarios are analyzed: immediate EV charging, cost-effective EV charging, and cost-

effective EV charging combined with V2H during peak demand periods. Monetary values are used to quantify the impact

of these preferences on daily household operation costs, facilitating comparative analysis and percentage-based cost

reduction assessments. Additional scenarios, such as shifting EV charging to low-price periods post-midnight, are also

explored. This strategy reduces costs but may result in off-peak utility load peaks and EV battery idle periods. The study

further evaluates the impact of an optimization-based HEM strategy on costs for various scenarios, considering daily

electricity prices and regular household load demand patterns. Sensitivity analyses explore the effects of varying minimum

required energy for charging, charging start time delays, and consumer preference proportions on costs. The study

employs detailed modeling and sensitivity analyses to assess the impacts of various operational and consumer

preference scenarios on household electricity costs, providing insights into the optimization potential of HEM strategies

and the benefits of dynamic pricing and net-metering in smart household energy management.

Significance of results

The widespread adoption of Electric Vehicles (EVs) poses significant challenges to power systems. Without intelligent

charging solutions, EVs could strain the grid, exacerbating technical and cost constraints. EV aggregators emerge as

pivotal players capable of managing the uncertainties associated with this new demand. This study delves into the impact

of various input parameters on smart charging strategies, recognizing that these parameters can vary widely based on

user behavior. Our findings highlight that the most substantial cost variations are linked to the average charging power

rate for the green Customer Charging Profile (CCP), showing a 10.26% difference in total EV aggregator costs between

the examined lower and upper bounds. The proportion of green CCP and time delay parameters showed differences of

7.03% and 5%, respectively, between their lower and upper bounds.

Conversely, factors like the minimum energy required to charge an EV showed negligible cost variations, with only a

2.03% difference in total EV aggregator costs between the lower and upper bounds. Similarly, variations in the average

charging power rate for the blue CCP resulted in a 3.40% cost difference between the lower and upper bounds. While EV

aggregators could incentivize users to charge during off-peak hours to maximize benefits, the success of these incentives

hinges on aligning charging times with user flexibility. If users perceive a mismatch between charging times and their

schedules, they may be reluctant to embrace smart charging solutions. Thus, determining optimal input parameter values

that resonate with EV user preferences becomes a critical challenge for EV aggregators. Real-world studies assessing

user reactions to incentives are essential for selecting suitable parameter values and fostering adoption of smart charging
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techniques.

A primary concern in implementing the proposed approach is computational efficiency. For instance, solving the problem

for the most recent case took only 0.11 seconds on a Dual Core Laptop with a 2 GHz CPU and 8 GB RAM, offering a

glimpse into the computational demands of the methodology. While the model developed and used offline in this study, it

can be adapted for online application using dynamic programming. The uncertainty stemming from the deterministic PV

system power production curve in offline mode can be managed through forecasting tools commonly employed across

various scales of applications. To address uncertainties in dynamic pricing data for upcoming hours, shortening the

scheduling horizon to align with the horizon of pricing data received from the Load Serving Entity via smart metering can

be effective. Additionally, uncertainties regarding the state-of-energy of Electric Vehicles upon arrival at home can be

addressed through a secondary optimization stage, adjusting operation scheduling based on real-time data. Machine

learning tools, like neural networks, can also be trained using daily data, potentially reducing the reliance on multi-stage

programming.

Conclusion

This paper integrates dynamic-pricing and peak power limiting DR strategies with renewable energy generation, EV V2H

and V2G capabilities, and two-way energy trading using V2G and ESS. Utilizing a MILP framework, it models an HEM

system with net metering for two-way energy exchange, based on real-world data from a Portuguese family and a PV

plant. In a base scenario without HEM or ESS, immediate EV charging sets a cost benchmark. The proposed strategy

reduces electricity costs by around 65%, with smart technologies and HEM promising further savings. As smart tech

evolves, end-users stand to gain flexibility and economic opportunities, subject to regulatory and installation costs. The

methodology is adaptable for wider smart household applications and multi-household optimization from LSEs and

household owners' viewpoints. The study evaluates EV user impacts on smart charging across three CCPs, using Monte

Carlo simulations for sensitivity analyses of variables like minimum energy, charging delay, and CCP user proportions and

rates. Regression analyses reveal variable relationships with EV aggregator costs. Some variables, like minimum energy,

minimally affect costs, aligning with user preferences. In contrast, changes in CCP user proportions and up to 3-hour

charging delays notably influence costs, with the most significant variations from green CCP average charging power rate

fluctuations.
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