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End-to-end autonomous driving frameworks enable seamless integration of perception and planning but often rely on one-shot trajectory

prediction, which may lead to unstable control and vulnerability to occlusions in single-frame perception. To address this, we propose the

Momentum-Aware Driving (MomAD) framework, which introduces trajectory momentum and perception momentum to stabilize and

re�ne trajectory predictions. MomAD comprises two core components: (1) Topological Trajectory Matching (TTM) employs Hausdorff

Distance to select the optimal planning query that aligns with prior paths to ensure coherence; (2) Momentum Planning Interactor (MPI)

cross-attends the selected planning query with historical queries to expand static and dynamic perception �les. This enriched query, in

turn, helps regenerate long-horizon trajectory and reduce collision risks. To mitigate noise arising from dynamic environments and

detection errors, we introduce robust instance denoising during training, enabling the planning model to focus on critical signals and

improve its robustness. We also propose a novel Trajectory Prediction Consistency (TPC) metric to quantitatively assess planning stability.

Experiments on the nuScenes dataset demonstrate that MomAD achieves superior long-term consistency ( ) compared to SOTA

methods. Moreover, evaluations on the curated Turning-nuScenes shows that MomAD reduces the collision rate by 26% and improves TPC

by 0.97m (33.45%) over a 6s prediction horizon, while closed-loop on Bench2Drive demonstrates an up to 16.3% improvement in success

rate. The source code is available at https://github.com/adept-thu/MomAD.
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1. Introduction

Autonomous driving[1][2][3] has undergone a transformative shift from modular, manually crafted pipelines to a more integrated, end-to-end

paradigm[4][5][6]. Unlike traditional approaches that handle tasks like detection, tracking, mapping, motion prediction, and planning in

isolation, the end-to-end framework emphasizes seamless integration. By prioritizing planning, it strategically directs information from

upstream perception modules, thereby enhancing robustness and reliability in dynamic driving environments.

Achieving high-quality planning in end-to-end frameworks hinges on accurately predicting the future trajectory prediction for the ego

vehicle[4][5][7][8][9][10]. Such future prediction requires a long-horizon understanding of both static and dynamic environmental factors,

including map elements and interactions with surrounding agents. For instance, UniAD[4] queries the ego context from detailed bird’s-eye-view

(BEV) maps at each timestamp, while VAD[5]  uses an ego query to retrieve surrounding context. The retrieved information then informs the

planner, which predicts a deterministic trajectory for the vehicle, as illustrated in Figure 1 (a). Nevertheless, optimal trajectory prediction is

inherently stochastic due to the unpredictability of other road users’ intentions, varying road conditions, and the ambiguity introduced by

human driving behaviors. This stochastic nature complicates the regression target, making deterministic predictions suboptimal and even risk-

prone, potentially leading to severe collisions. To mitigate these uncertainties, methods such as VADv2[7]  and SparseDrive[8]  leverage

probabilistic modeling to capture the continuous planning action space, producing multi-modal trajectories that consider various possible

behaviors of road agents, as shown in Figure 1 (b). While effective, these multi-modal approaches are typically one-shot and solely on the current

perception frame. This limitation makes them susceptible to occlusion or loss of key visual cues, which can degrade multi-modal trajectory
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quality. Additionally, without temporal consistency, consecutive trajectories may lack coherence, causing unstable vehicle control and

introducing undesirable directional shifts and oscillations.

Figure 1. (a) Deterministic Planning[4][5][11][12] predicts deterministic trajectories, but lacks

action diversity, posing safety risks. (b) Multi-modal Trajectory Planning[8][7][13] selects the

highest-scoring trajectory among the multi-modal trajectories, yet fails to ensure stability

and consistency, having risks in vehicle trembling. (c) Momentum Planning leverages the

trajectory and perception momentum to enhance current planning through historical

guidance to overcome temporal inconsistency.

To stabilize trajectory prediction, we draw inspiration from human driving behaviors and introduce the concept of momentum into

autonomous driving. In physics, momentum re�ects an object’s tendency to maintain its velocity based on speed and direction[14]. Analogously,

in driving, momentum captures the smooth, forward progression of movement informed by past trajectories and modulated by present

conditions. As illustrated in Figure 1 (c), by explicitly integrating historical trajectories with current predictions, we aim to achieve smoother and

more coherent planning outcomes. To this end, we propose an end-to-end Momentum-Aware Driving (MomAD) framework, which

incorporates momentum awareness to deliver stable and responsive planning in driving scenarios. MomAD interprets momentum on two

levels: (1) trajectory momentum: By aligning candidate multi-modal trajectory with prior predictions, abrupt shifts in ego vehicle’s path can be

minimized, ensuring consistent control and a more comfortable driving experience. (2) perception momentum: By aggregating historical context

and attending to map elements and surroundings over time, the model broadens its perspective, capturing subtle agent intentions missed in

single-frame observations. To implement these ideas, we introduce (1) Topological Trajectory Matching (TTM): we �rst use this module to
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minimize planning discrepancies across time steps by employing the Hausdorff Distance to identify multi-modal trajectory proposals that best

align with past planning results. This approach ensures temporal coherence by preventing excessive deviation from previous trajectories. (2)

Momentum Planning Interactor (MPI): Since the selected trajectory may still be biased toward the current perception and sacri�ce long-horizon

considerations, we cross-attends the current best planning query with historical plan queries, which implicitly convey critical long-term ego-

temporal, ego-agent, and ego-map information as key and value vectors. This interaction enriches the current query with long-horizon

perception momentum, improving its context awareness. To enhance robustness against environmental noise and perception errors, we

incorporate a Robust Instance Denoising Module in the perception stage. By introducing controlled perturbations during training, the model

learns to denoise perception inputs, achieving resilience to dynamic changes and misdetections.

To evaluate the planning stability of MomAD, we propose a new Trajectory Prediction Consistency (TPC) metric to measure consistency

between predicted and historical trajectories. Experiments demonstrate that MomAD can maintain long-term consistency (  3 seconds). Given

that most scenes in nuScenes involve straight roads, which limit the assessment of temporal inconsistency, we curated a Turning-nuScenes

validation set from turning scenarios within the nuScenes dataset to provide a more challenging evaluation, where our approach outperforms

state-of-the-art end-to-end frameworks. For example, our MomAD reduces the collision rate by 26% and the TPC by 0.97m compared to

SparseDrive[8] for a 6-second horizon prediction in the Turning-nuScenes validation set.

2. Related Work

End-to-end autonomous driving, which learns directly from raw sensor data to generate planning trajectories or driving commands, eliminates

manual feature extraction[1][3]. End-to-end autonomous driving methods[15][16][17][18][19][20][21][13][4][5][22][11][23][24][25][26][27][28][29][30][31][32]

[33]  have garnered increased attention. UniAD[4]  effectively integrates information from various preceding tasks, including perception,

prediction, and planning modules to assist in trajectory planning, and achieves signi�cant performance improvements. VAD[5] models driving

scenarios as fully vectorized representations and employs explicit instance-level planning constraints to enhance planning safety. However,

they[4][5][12][25][24]  adopt a deterministic approach to trajectory prediction, which fails to account for trajectory diversity and may introduce

risks due to intermediate regression results. VADv2[7]  proposes probabilistic planning to address the limitations of deterministic trajectory

prediction, enabling multi-modal trajectory predictions. Building upon the multi-modal trajectory planning framework, SparseDrive[8] designs

planning and motion prediction modules to achieve SOTA performance and ef�ciency on the nuScenes dataset. However, while multi-modal

trajectory planning methods[7][8][13]  have achieved SOTA performance, they overlook the temporal inconsistency caused by maximum score

offsets. Regarding temporal inconsistency, existing methods only address temporal instance characteristics up to now, and they entirely

overlook the issue of temporal planning consistency. In this work, we focus on this issue, aiming to address it using the concept of momentum

planning.

3. Method

Framework Overview

Figure 2 presents an overview of the proposed MomAD system, which integrates sparse perception and momentum-aware planning. To capture

key dynamic and static instances interacting with the ego vehicle, the sparse perception module builds upon the SparseDrive[8] to encode multi-

view image features, which are aggregated into instance features    for road agents and map elements at time step  . These features are

obtained by sampling keypoints around the anchor boxes and polylines, feeding into the detection/tracking and online mapping blocks for

accurate predictions. The core of MomAD is the joint motion and momentum-aware planning module, which comprises two main components:

(1) Topological Trajectory Matching (Sec 3.1), which explicitly selects the candidate trajectory that best matches the prior path among all multi-

modal trajectories to ensure temporal coherence; and (2) Momentum Planning Interaction (Sec 3.2), which expands the perceptive �eld by

cross-attending the selected candidate trajectory’s planning query with queries from the previous time step in the long-horizon query mixer.

This approach provides a broader view of the surrounding environment and the intentions of other agents. The re�ned query is then processed
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by the planning head to generate updated multi-modal trajectories. Since the planning module heavily relies on detection and map instance

features, we introduce a robust instance denoising via perturbation module (Sec 3.3) within the sparse perception component during training.

This ensures robustness by reducing sensitivity to noisy perception features, enhancing the stability of trajectory prediction and planning.

Figure 2. The overall architecture of MomAD. MomAD, as a multi-modal trajectory end-to-end autonomous driving method, �rst encodes multi-view

images into feature maps, then learns a sparse scene representation through a robust instance denoising via perturbation module, and �nally performs a

momentum planning through Topological Trajectory Matching (TTM) module and Momentum Planning Interactor (MPI) module to accomplish

planning tasks. Our approach addresses critical challenges of stability and robustness in dynamic driving conditions.

3.1. Topological Trajectory Matching (TTM)

The proposed TTM module is inspired by the continuity of human driving behavior, where the optimal trajectories   are in�uenced by the

historical path    to maintain temporal consistency and stability. Let    denote a set of    multi-modal candidate trajectories

generated at time step  , where each trajectory   consists of   predicted waypoints. Typically,   is set to   to account

for six trajectory proposals for each of three possible commands (left, right, and straight), and   is chosen as   or   representing 0.5s interval

for a 3- or 6-second prediction horizon.

Trajectory Coordinate Transformation. Since the historical and current predicted trajectories are generated in the ego vehicle’s coordinate

system at different moments, it is essential to transform them into a common coordinate system for accurate matching. This transformation

from moment   to   is achieved as follows:

where   and   denote the rotation and translation matrix, respectively.

Trajectory Distance Measurement. Simple Euclidean distance is inadequate for capturing the global alignment of trajectories, as it only

measures pointwise proximity and is highly sensitive to local variations. This limitation becomes especially apparent in complex scenarios such

as turns or varying point densities, where close points may not represent the alignment of the entire trajectory path. To address these

limitations, TTM employs the Hausdorff distance as a more robust metric for evaluating trajectory alignment. The Hausdorff distance captures

both local and global trajectory structures by measuring the maximum deviation between two sets of points, effectively quantifying the worst-

case alignment between the candidate and historical trajectories. For each candidate trajectory  , the Hausdorff distance to the historical

trajectory   is computed as,

where   and   represent waypoints in the candidate and historical trajectories, respectively. The Hausdorff distance considers the

furthest point discrepancies between trajectories in both directions, ensuring that even minor global misalignments are captured. TTM then

selects the trajectory   that minimizes this distance:
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This selection enforces continuity, aligning with historical driving patterns and providing stable trajectory predictions that are less prone to

sudden shifts.

3.2. Momentum Planning Interactor (MPI)

While TTM selects the most consistent trajectory   based on historical alignment,   is solely based on the current perception  , which

may lack a comprehensive view of the environment and be sensitive to occlusions. Therefore, the MPI module, as illustrated in Figure 3,

incorporates a long-horizon query mixer to enrich the selected planning query    of    with historical planning query 

  and the associated planning scores  , implicitly capturing a broader understanding of the surrounding context and

other agents’ intentions over time. Here,   represents the latent dimension of planning queries. This enriched planing query   will

be combined with instance features to re-generate an improved trajectory  .

Figure 3. The illustration of Momentum Planning Interactor (MPI). MPI cross-attends a selected planning query with historical queries to expand static

and dynamic perception �les, resulting in an enriched query that improves long-horizon trajectory generation and reduces collision risks.

Long-horizon Query Mixer. To achieve a robust perception of temporal momentum, the query mixer allows cross-attention between the

selected candidate trajectory’s planning query with multi-modal planning queries from the previous time step. The historical planning queries 

 and associated scores   are combined through element-wise interaction and processed with an LSTM to simulate temporal evolution:

where   indicates the sigmoid function,   the linear transform and   the element-wise product. The   processes this

interaction, producing a surrogate multi-modal query    that captures the temporal evolution of planning queries. To aggregate

historical information, the current planning query   is used as a query in a cross-attention module. The result   incorporates long-term

spatiotemporal context, which is further combined with the planning instance features and the encoded ego-anchor position information to

inform the subsequent trajectory predictor:

The   module then generates re�ned  . The best trajectory   is then selected based on the highest scores among multi-modal

outputs. Importantly, while the best trajectory is chosen based on the multi-modal trajectory scores, unlike previous selections, the current

multi-modal trajectories now fully consider the temporal consistency. This approach provides a stable, temporally-aware planning solution that

is robust to occlusions and noise, signi�cantly improving trajectory stability and control in complex driving environments.
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3.3. Robust Instance Denoising via Perturbation

Our trajectory prediction and re�nement rely heavily on the instance features   of road agents and map elements provided by the sparse

perception module. However, due to detector instability and the dynamically changing map, these instance features may be noisy, potentially

introducing errors in downstream planning. To enhance the stability of planning against such noisy inputs, we introduce controlled noise

perturbations during training and employ a lightweight encoder-decoder transformer block (see Figure 2) to learn effective denoising. This

approach enables the model to distinguish between essential and extraneous features, reducing the impact of perception noise on trajectory

predictions. During test-time inference, this denoising capability allows the trajectory predictor to be resilient to �uctuations in instance

features. As a result, the model can produce smoother, more stable trajectories even in challenging scenarios with occlusions, temporary

obstacles, or misdetections.

4. Experiments

4.1. Experimental Setup

Datasets. We conducted extensive experiments on the widely adopted nuScenes dataset[34]  to evaluate tasks including detection, online

mapping and planning in an open-loop setting. The nuScenes dataset comprises 1,000 driving scenes, with 700 and 150 sequences allocated for

training and validation. Each scene spans around 20 seconds and contains roughly 40 key-frames annotated at 2Hz, where each sample

includes six images captured by surrounding cameras covering 360° FOV horizontally and point clouds collected by both LiDAR and radar

sensors. Since most planning tasks in nuScenes focus predominantly on go-straight commands, we curate a challenging subset of turning

scenarios to form the Turning-nuScenes dataset, aimed at verifying the temporal consistency of predicted trajectories across time steps.

Planning samples for turns are selected by setting the threshold between 3s and 0.5s of ‘gt_ego_fut_trajs’ to 25. The turning nuScenes validation

dataset constitutes only one-tenth of the full nuScenes validation set, including 17 scenes with 680 samples. We use Bench2Drive[35], a closed-

loop evaluation protocol under CARLA Leaderboard 2.0 for end-to-end autonomous driving. It provides an of�cial training set, where we use the

base set (1000 clips) for fair comparison with all the other baselines. We use the of�cial 220 routes for evaluation.

Evaluation Metrics for Planning. For planning evaluation, we adopt the commonly used L2 Displacement Error (L2) and Collition Rate to assess

planning performance. The calculation of the L2 error follows VAD[5]  and the collision rate is aligned with SparseDrive[8]. However, the

mainstream planning metrics cannot faithfully reveal the stability of predicted trajectories. Therefore, we introduce a novel metric, Trajectory

Prediction Consistency ( ), to measure the disparity between current predicted trajectories and historical predicted trajectories, allowing

for a more comprehensive assessment of the consistency of trajectories. With coordinates transformed, the   between the current predicted

trajectory   and historical one   is de�ned as,

where    is the total number of GT trajectories in the validation set, and    is the mask for trajectories exceeding the overlapped time

period of two trajectories. Our   metric evaluates whether autonomous vehicles adhere to predicted trajectories, ensuring continuity across

frames. Notably, the   metric provides a statistical perspective on the dataset-wide evaluation rather than at the individual sample level.

4.2. Main Results

To conduct a comprehensive comparison, we have undertaken an exhaustive analysis of two distinct metrics presented in Table 1, which are

derived from UniAD[4]  and VAD[5]. It is noteworthy that, aside from Table 1, all other tables rely on the VAD[5]  evaluation metrics for their

assessments.
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1s 2s 3s 1s 2s 3s 1s 2s 3s

[4] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 0.45 0.89 1.54 0.96
1.8 

[5] 0.54 1.15 1.98 1.22 0.10 0.24 0.96 0.43 0.47 0.83 1.43 0.91 -

[8] 0.44 0.92 1.69 1.01 0.07 0.19 0.71 0.32 0.39 0.77 1.41 0.85 9.0 

0.43 0.88 1.62 0.98 0.06 0.16 0.68 0.30 0.37 0.74 1.30 0.80 7.8 

[4] 0.45 0.70 1.04 0.73 0.62 0.58 0.63 0.61 0.41 0.68 0.97 0.68
1.8 

[5] 0.41 0.70 1.05 0.72 0.03 0.19 0.43 0.21 0.36 0.66 0.91 0.64 -

[8] 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08 0.30 0.57 0.85 0.57 9.0 

0.31 0.57 0.91 0.60 0.01 0.05 0.22 0.09 0.30 0.53 0.78 0.54 7.8 

Table 1. Planning results on the   validation dataset. † denotes evaluation protocol used in  [4]. ∗ denotes results reproduced with the

of�cial checkpoint. As Ref. [36] states, we deactivate the ego status information for a fair comparison.

4.2.1. Planning Results

NuScenes. As shown in Table 1, MomAD achieves an L2 error of 0.60m, a collision rate of 0.09%, and a TPC of 0.54m, respectively. Compared to

SOTAs like UniAD[4], VAD[5] and SparseDrive[8], our method shows SOTA performance in planning results. It is worth noting that we have made

signi�cant improvements in TPC, which directly proves our effectiveness in timing consistency. It is worth noting that we achieved signi�cant

improvements in TPC at 0.30m, 0.53m, and 0.78m at 1s, 2s, and 3s on the nuScenes dataset, directly demonstrating our effectiveness in temporal

consistency. Additionally, our MomAD is straightforward and achieves an FPS of 7.8, a slightly slower than SparseDrive. In summary, our

MomAD effectively utilizes the smoothing advantage of Momentum and has a signi�cant effect on improving temporal consistency.

Turning-nuScenes. As noted in[36], the nuScenes dataset features many straight routes, which limits the assessment of end-to-end methods.

The simplicity of these paths can mask a model’s true performance in complex scenarios. To address this, we evaluated our MomAD on the

Turing-nuScenes validation set, as shown in Table 2. SparseDrive[8], a SOTA end-to-end method utilizing multi-modal trajectories, performs

well across various scenarios but struggles with driving stability during turns. In contrast, MomAD exhibits superior consistency in trajectory

predictions, as indicated by the TPC metric. Overall, MomAD not only delivers effective trajectory predictions under standard conditions but

also maintains reliability amid dynamic changes and complex environments.

Method

1s 2s 3s 1s 2s 3s 1s 2s 3s

[8] 0.35 0.77 1.46 0.86 0.04 0.17 0.98 0.40 0.34 0.70 1.33 0.79

0.33-0.02 0.70-0.07 1.24-0.22 0.76-0.10 0.03-0.01 0.13-0.04 0.79-0.19 0.32-0.08 0.32-0.02 0.54-0.16 1.05-0.28 0.63-0.16

Table 2. Planning results on the   validation dataset.  [8] is a SOTA end-to-end multi-modal trajectory planning

method. Italic indicates improvement. We follow the VAD[5] evaluation metric.

Method Input Backbone

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓
FPS

↑
Avg. Avg. Avg.

UniAD† Camera ResNet101 (A100

)

VAD† Camera ResNet50

SparseDrive†∗ Camera ResNet50 (RTX4090)

MomAD

(Ours

)†

Camera ResNet50 (RTX4090)

UniAD Camera ResNet101 (A100

)

VAD Camera ResNet50

SparseDrive Camera ResNet50 (RTX4090)

MomAD

(Ours)
Camera ResNet50 (RTX4090)

nuScenes UniAD

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓

Avg. Avg. Avg.

SparseDrive

MomAD

(Ours)

Turning − nuScenes SparseDrive
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Long Trajectory Prediction. Accurate long trajectory prediction is vital for enhancing the stability of autonomous driving, is useful to evaluate

molels’ ability to address temporal inconsistency issues in multi-modal trajectory planning. As shown in Table 3, we compared SparseDrive and

MomAD in 4-6s long trajectory prediction on the nuScenes and Turning-nuScenes dataset, demonstrating a signi�cant performance

improvement. Speci�cally, in nuScenes dataset, compared with SparseDrive, MomAD experienced a decrease of 0.09m (5.14%), 0.34m (14.66%),

and 0.50m (16.95%) in the 4s, 5s, and 6s of L2 error, a decrease of 0.04%, 0.11%, and 0.20% in the 4s, 5s, and 6s of collision rate, and a decrease of

0.14m (10.53%), 0.21m (12.65%), and 0.38m (19.10%) in the 4s, 5s, and 6s of TPC, respectively. Futhermore, in Turning-nuScenes dataset,

compared with SparseDrive, MomAD experienced a decrease of 0.27m (13.04%), 0.64m (23.62%), and 0.85m (25.30%) in the 4s, 5s, and 6s of L2

error, a decrease of 0.06%, 0.14%, and 0.26% in the 4s, 5s, and 6s of collision rate, and a decrease of 0.17m (11.04%), 0.73m (31.60%), and 0.97m

(32.45%) in the 4s, 5s, and 6s of TPC, respectively. We can observe that MomAD signi�cantly improves trajectory predictions at farther

distances, with a magnitude improvement at 6s. In summary, our MomAD has improved the performance of long trajectory predictions, which

further proves that MomAD can effectively alleviate the problem of temporal inconsistency.

Split Method

4s 5s 6s 4s 5s 6s 4s 5s 6s

[8] 1.75 2.32 2.95 0.87 1.54 2.33 1.33 1.66 1.99

1.67 1.98 2.45 0.83 1.43 2.13 1.19 1.45 1.61

-0.09 -0.34 -0.50 -0.04 -0.11 -0.20 -0.14 -0.21 -0.38

[8] 2.07 2.71 3.36 0.91 1.71 2.57 1.54 2.31 2.90

1.80 2.07 2.51 0.85 1.57 2.31 1.37 1.58 1.93

-0.27 -0.64 -0.85 -0.06 -0.14 -0.26 -0.17 -0.73 -0.97

Table 3. Long trajectory planning results on the   and   validation sets. We train models for 10 epochs for 6s-horizon

prediction.   indicates the challenging  . We follow the VAD[5] evaluation metric.

Bench2Drive. We have included evaluations on the challenging closed-loop results on Bench2Drive dataset, as shown in Table 4, w which covers

44 interactive scenes (e.g., cut-ins, overtaking, detours) and 220 routes across diverse weather conditions and locations. Our MomAD improves

success rate by 16.3% and 8.4% over the VAD multi-modal variant and SparseDrive, and enhances the Comfortness score (trajectory

smoothness) by 7.2% and 5.3%, demonstrating its effectiveness.

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓

nuScenes

SparseDrive

MomAD

T

− nuScenes

SparseDrive

MomAD

nuScenes Turning − nuScenes

T − nuScenes Turning − nuScenes
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Method

Open-loop Metric Closed-loop Metric

Avg. L2 ↓ DS ↑ SR (%) ↑ Ef� ↑ Comf ↑

VAD 0.91 42.35 15.00 157.94 46.01

VADmmt 0.89 42.87 15.91 158.12 47.22

MomAD (Euclidean) 0.87 44.22 16.91 161.77 48.70

MomAD 0.85 45.35 17.44 162.09 49.34

SparseDrive* 0.87 44.54 16.71 170.21 48.63

MomAD (Euclidean) 0.84 46.12 17.45 173.35 50.98

MomAD 0.82 47.91 18.11 174.91 51.20

Table 4. Open-loop and Closed-loop results on Bench2Drive (V0.0.3) under base training set. ‘mmt’ refers multi-modal trajectory variant of VAD and *

the re-implementation.

4.2.2. Perception and Motion Prediction Results

Sparse representation is ef�cient but suffers from instability issues caused by the variability of instance features. To address these issues, we

have enhanced the instance features using the Encoder and Denoise ( ) module (denoted as ED) within the sparse perception framework,

ensuring end-to-end stability for autonomous driving. As shown in Table 5, our MomAD perception module includes 3D object detection, multi-

object tracking, and online mapping tasks. For 3D object detection, MomAD achieves 42.3% mAP and 53.1% NPS, improving the mAP by 0.5%

and the NDS by 0.6% compared to the baseline SparseDrive[8]. For multi-object tracking, MomAD achieves an AMOTA of 39.1%, surpassing the

baseline SparseDrive by 0.5%. For online mapping, compared to 55.1% mAP for the baseline SparseDrive, our MomAD achieves 55.9% mAP,

improving the mAP by 0.8%. For motion prediction, our MomAD outperforms SparseDrive[8] and UniAD[4], achieves better motion prediction

performance by considering the in�uence of an ego vehicle on other agents. In detail, Our MomAD achieves a 0.61m minADE, 0.98 minFDE, and

13.7% MR, and 0.499 EPA, respectively.

Method

3D Object Detection Multi-Object Tracking Online Mapping Motion Prediction

mAP

↑

NDS

↑

mATE

↓

mASE

↓

mAOE

↓

mAVE

↓

mAAE

↓

AMOTA

↑

AMOTP

↓

Recall

↑

IDS

↓

mAP

↑

APped

↑

APd

↑

APb

↑

mADE

↓

mFDE

↓

MR

↓

EPA

↑

UniAD[4] 0.380 0.498 0.684 0.277 0.383 0.381 0.192 0.359 1.320 0.467 906 - - - - 0.71 1.02 0.151 0.456

VAD†[5] 0.312 0.435 0.610 0.288 0.541 0.534 0.228 - - - - 47.6 40.6 51.5 50.6 - - - -

SparseDrive[8] 0.418 0.525 0.566 0.275 0.552 0.261 0.190 0.386 1.254 0.499 886 55.1 49.9 57.0 58.4 0.62 0.99 0.136 0.482

MomAD (Ours) 0.423 0.531 0.561 0.269 0.549 0.258 0.188 0.391 1.243 0.509 853 55.9 50.7 58.1 58.9 0.61 0.98 0.137 0.499

Table 5. Perception and motion results on the nuScenes validation dataset. † indicates the results are reproduced with the of�cial checkpoint. 

 denotes  .   denotes  .   denotes  .   denotes  .

σ

APd APdivider APb APboundary mADE minADE mFDE minFDE
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4.3. Ablation Study

Roles of ‘ED’ module in Sparse Perception. Sparse representation end-to-end methods yield ef�cient computation but unstable metrics.

Further details are available in the Appendix. As shown in Table 6, the Encoder and Denoise ( ) module (ED) within sparse perception enhances

the instance features, signi�cantly impacts the overall pipeline. By introducing Gaussian noise and employing techniques, the robustness of

instance features is improved, particularly when training with Noisy at 0.1. Our �ndings suggest that a controlled level of noise can enhance the

end-to-end capabilities of sparse methods during training, offering insights for the community on sparse end-to-end methods.

Detection Tracking Online Mapping Motion Planning (Avg.)

0.0 0.407 0.521 0.381 55.0 49.3 0.63 0.62 0.14 0.56

✔ 0.0 0.405 0.520 0.380 55.1 49.5 0.63 0.61 0.13 0.55

✔ 0.1 0.420 0.530 0.390 55.8 50.5 0.58 0.61 0.12 0.55

✔ ✔ 0.0 0.417 0.528 0.386 55.4 50.6 0.63 0.61 0.11 0.55

✔ ✔ 0.05 0.421 0.529 0.388 55.6 50.8 0.62 0.61 0.11 0.54

✔ ✔ 0.1 0.423 0.531 0.391 55.9 50.7 0.61 0.60 0.09 0.54

✔ ✔ 0.2 0.418 0.520 0.388 54.4 49.2 0.63 0.62 0.18 0.58

✔ ✔ 0.3 0.412 0.518 0.383 54.0 48.8 0.65 0.64 0.22 0.61

Table 6. Ablation studies of the sparse perception module in MomAD on the nuScenes validation split. The Encoder and Denoise ( ) module is denoted

as  .   represents Momentum planning.   is the Gaussian noise factor controlling the noise level. Noise is applied during training only. We follow

the VAD[5] evaluation metric.

Roles of ‘MP’ module in Planing. As Li et al.[36]  have stated, most end-to-end autonomous driving methods perform poorly in turning

scenarios. As shown in Table  7, to better evaluate the planning performance of end-to-end methods in turning scenarios, our MomAD is

evaluated on the Turning-nuScenes validation dataset rather than only on the full nuScenes validation dataset. Speci�cally, under the premise

of executing ‘ED’, at  , providing a 0 value to the MP module does not improve performance. We have tried to change the MLP operation of

the planning to a more complex operation, but it does not enhance the results. However, when  , historical queries and results are used, L2

(Avg) reaches 0.76m, Col. (Avg) reaches 0.32 %, and TPC reaches 0.63m, which represents a signi�cant improvement. In addition, when  ,

more frames are fused, the improvement has actually decreased, which may be due to the uncertainty introduced by the departure of historical

features, but there is still an overall improvement.

σ

ED MP NS

mAP ↑ NDS ↑ AMOTA ↑ mAP ↑ A ↑Pped mADE ↓ L2 ↓ Col. ↓ TPC ↓

σ

ED MP NS

t = 1

t = 2

t = 3
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2s 3s Avg. 2s 3s Avg. 2s 3s Avg.

0.77 1.46 0.86 0.17 0.98 0.40 0.70 1.33 0.79

✔ 2 0.71 1.27 0.77 0.14 0.83 0.34 0.55 1.07 0.65

✔ 0.1 0.77 1.45 0.86 0.18 0.97 0.39 0.69 1.33 0.79

✔ ✔ 0.1 1 0.78 1.48 0.88 0.18 0.98 0.39 0.70 1.35 0.81

✔ ✔ 0.1 2 0.70 1.24 0.76 0.13 0.79 0.32 0.54 1.05 0.63

✔ ✔ 0.1 3 0.72 1.27 0.78 0.14 0.84 0.35 0.56 1.09 0.66

Table 7. Impact of history frames in MomAD on the Turning-nuScenes validation set.   denotes the frame number, where   indicates the history is

empty (represented by  ),   signi�es that the historical result corresponds to the previous 1 frame, and   indicates that the historical result pertains to

the previous 2 frames. We follow the VAD[5] evaluation metric.

Roles of different sub-modules in ‘MP’ module. As shown in Table 8, we conducted an in-depth analysis of the internal mechanism of

momentum planning. We found that simply using the native ‘Add’ operation to regenerate the planning results can achieve a good

improvement, with L2 (Avg.), Col. (Avg.), and TPC (Avg.) decreasing by 0.04m, 0.04%, and 0.12m, respectively. However, the ‘Add’ operation alone

does not fully utilize historical features. Our Long-horizon Query Mixer has achieved the current optimal performance. Overall, historical

results are very important for current outcomes, and their reasonable utilization can maximize the performance of end-to-end planning.

2s 3s Avg. 2s 3s Avg. 2s 3s Avg.

0.77 1.46 0.86 0.17 0.98 0.40 0.70 1.33 0.79

✔ ✔ 0.76 1.38 0.82 0.14 0.88 0.36 0.62 1.21 0.67

✔ ✔ 0.70 1.24 0.76 0.13 0.79 0.32 0.54 1.05 0.63

Table 8. Ablation studies of the impact of the different modules in   on the Turning-nuScenes validation dataset.   denotes Long-horizon Query

Mixer,   denotes Trajectory Predictor.   refers to the addition operation between the historical planning query   and the selected planning

query  . We follow the VAD[5] evaluation metric.

4.4. Visualization

As shown in Figure 4, we showcase multi-frame qualitative comparisons of end-to-end solutions, including UniAD[4], VAD[5], SparseDrive[8],

and the proposed MomAD. In a representative turning scenario, the MomAD approach demonstrates superior long-term awareness of

surrounding vehicles, reducing the likelihood of collisions. Additionally, it generates smoother ego-vehicle trajectories (shown in yellow and

blue) that closely align with the ground-truth trajectory (in red). This highlights its strong temporal consistency and lower TPC scores.

Additional visualizations for various driving commands are provided in the Appendix.

ED MP NS t

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓

t 1

0 2 3

QM Add TP

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓

MP QM

TP Add Q
p
t−1

Q
p∗
t
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Figure 4. Visualization results of MomAD compared with UniAD, VAD and SparseDrive across multiple frames. The proposed MomAD achieves temporal

consistency whichever from the predicted trajectory compared with ground truth (GT) or from the TPC metric.

5. Conclusion and Future Work

The proposed MomAD framework addresses key challenges in planning stability and robustness for end-to-end autonomous driving systems.

By leveraging trajectory momentum and perception momentum, MomAD stabilizes trajectory predictions through Topological Trajectory

Matching (TTM) and Momentum Planning Interactor (MPI), ensuring temporal coherence and enriching long-horizon context. Evaluations on

nuScenes and the curated Turning-nuScenes validation set demonstrate its superior performance in reducing collision rates and improving

trajectory consistency compared to state-of-the-art methods. While MomAD improves temporal consistency in long-horizon trajectory

prediction, a gap remains due to mode collapse induced by the standard teacher-forcing approach to trajectory regression, limiting trajectory

diversity. Future work will explore diffusion models and speculative decoding to enhance trajectory diversity while balancing ef�ciency.

Appendix

This supplementary material provides additional descriptions of the proposed MomAD framework, including the following supplementary

material:

A.1: Summary of contributions.

A.2: The details of Turning-nuScenes dataset.

A.3: Implementation details.

A.4: More planning results.

A.5: Detailed Result Analysis on Robustness.

A.6: More visualizations of planning results.

A.1. Contributions

Our contributions are summarized below.

�. MomAD Framework. We propose MomAD, an end-to-end autonomous driving framework that employs momentum planning.

Momentum planning leverages trajectory and perception momentum to enhance current planning through historical guidance,
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overcoming temporal inconsistency. It addresses key challenges in planning stability and robustness for end-to-end autonomous driving

systems.

�. TTM and MPI. We propose the Topological Trajectory Matching (TTM) module, which utilizes the Hausdorff Distance to align candidate

trajectories with past paths, ensuring temporal coherence and reducing abrupt trajectory changes. Furthermore, we propose the

Momentum Planning Interactor (MPI) module. By cross-referencing current and past trajectory data, this module expands the system’s

perceptual awareness over time, enhancing long-horizon prediction and reducing collision risks.

�. New∗ Turning-nuScenes Validation Dataset. We create the Turning-nuScenes val dataset, derived from the nuScenes full validation

dataset. This new dataset focuses on turning scenarios, providing a specialized benchmark for evaluating the performance of autonomous

driving systems in complex driving situations.

�. New∗ Trajectory Prediction Consistency (TPC) Metric. We introduce the TPC metric to quantitatively assess the consistency of trajectory

predictions in existing end-to-end autonomous driving methods, addressing a critical gap in the evaluation of trajectory planning.

A.2. The Detail of Turning-nuScenes dataset

When turning, vehicles need to quickly and accurately adjust their direction, making turning scenarios particularly challenging for the model’s

ability to maintain stable planning. However, there is currently no dataset speci�cally designed for evaluating models in turning scenarios.

Based on the nuScenes val dataset, we selectively extracted data involving the ego vehicle in turning situations from the validation set to create

the Turning-nuScenes dataset.

�. Preparation Work. We extract the data information from the val dataset based on the annotations of NuScenes dataset. Speci�cally, we

establish a correspondence between sample_token (the unique identi�er of each sample) and scene_token (the unique identi�er of each

scene) grounded in the provided data annotation information as illustrated in formula 1. We also extracted the future trajectory   of the

ego vehicle for each sample in the validation dataset over the next three seconds.

�. Sample Select. Considered that the ego vehicle’s driving direction aligns with the y-axis of the world coordinate system, signi�cant

changes in the x-coordinate will occur during turns. Thus, we assess potential future turns of the ego vehicle based on changes in its x-

coordinate, recording the unique identi�er of each sample (sample_token). The speci�c criteria for judgment are as outlined in the

formula 2,

where   and   represent the states of the ego vehicle during turning and going straight, respectively. And   represents the judgment

threshold, with a default setting of 25.

�. Generate Dataset. After sample select, we obtained a series of sample_tokens associated with turning scenarios, denoted as 

. Based on the mapping relationship   from scene_token to sample_token, we derive a series of driving scenarios

involving the ego vehicle’s turning maneuvers. The Turning-NuScene dataset comprises 17 scenes with 680 samples and includes diverse

urban turning scenarios, such as intersections, T-junctions, roundabouts, traf�c islands, and alleyway turns. The visualization of some

data from Turning-nuScenes dataset is shown in Figure A1.

Tfut

[sample_token] = scene_tokendictscsa (1)

{
| [0] − [5]| ≥ εST Tfut Tfut

| [0] − [5]| < εSS Tfut Tfut
(2)

ST SS ε

sample_tokenselect dictscsa
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Figure A1. Visualization of turning scenarios in the Turning-nuScenes dataset. “LIDAR_TOP” represents the visualization of the corresponding scene

from BEV. While “CAMERA_FRONT” refers to the images captured by the front camera of the ego vehicle in the respective scene.

A.3. Implementation Details

The training process of MomAD is divided into two stages following SparseDrive[8]. In stage 1, we train the sparse perception module, including

3D object detection, multi-object tracking, and online mapping, from scratch to learn sparse scene representations. In stage 2, we train the

sparse perception, motion, and planning modules without freezing the weights of the sparse perception module. For MomAD, we use

ResNet50[37] as backbone network and the input image size is 256   704. For detection, the perception range is a circle with a radius of 55m. For

online mapping, the perception range is 60m   30m longitudinally and laterally. For motion and planning, the number of stored frames   in

the instance memory queue is set to 3, and the number of modes    in motion is set to  , accounting for six trajectory proposals. All

experiments are conducted on 8 NVIDIA RTX 4090 24GB GPUs.

Stage-1 Overall Objectives. In alignment with SparseDrive[8]  and VAD[5], MomAD does not enforce tracking constraints during the identity

assignment process. As a result, we do not include a tracking loss in our framework. The loss function for the supervised process during the

�rst phase is de�ned as follows,

Stage-2 Overall Objectives. MomAD is trained utilizing the losses from all tasks, which include 3D object detection, multi-object tracking,

online mapping, motion prediction, and planning. This training is conducted over a duration of 10 epochs, employing a total batch size of 48 and

a learning rate of  . The loss function for the supervised process during this stage is de�ned as follows,

Detection Loss. The detection loss is formulated as a linear combination of the Focal Loss[38]  for classi�cation and the L1 Loss for box

regression.

which   and   are set to 2 and 0.25, respectively.

Online Mapping Loss. In accordance with VAD[5] and SparseDrive[8], we de�ne the online mapping loss as the following equation,

×

× H

Km 6

= + .L1 LD LM (3)

3 × e−4

= + + .L2 LD LM LMP (4)

= + ,LD λcLDc λrLDr
(5)

λc λr

= + ,LM λcLMc λrLMr
(6)

qeios.com doi.org/10.32388/2VUIDZ 14

https://www.qeios.com/
https://doi.org/10.32388/2VUIDZ


which   and   are set to 1 and 10, respectively.

Motion and Planning Loss. We compute the average displacement error (ADE) between the multi-modal outputs and the ground truth

trajectory. The trajectory with the lowest ADE is designated as the positive sample, while the remaining trajectories are treated as negative

samples. In addition, for the planning component, the ego state is also predicted. We employ Focal Loss for classi�cation and L1 Loss for

regression,

which   and   are set to 0.2 and 0.2,  ,   and   are set to 0.5, 1.0 and 1.0, respectively.

A.4. More Planning Results

We have extended the results of Tables A2 and A3 in the main by including UniAD[4]  and VAD[5]  to provide additional experimental data. As

shown in Tables A1 and A2, our conclusion is consistent with those presented in the main text: end-to-end autonomous driving methods

represented by UniAD[4], VAD[5], and SparseDrive[8] suffer challenges in turning scenarios. Our TPC metric demonstrates issues of robustness in

temporal consistency, as these methods enable seamless integration of perception and planning but often rely on one-shot trajectory

prediction, which may lead to unstable control and vulnerability to occlusions in single-frame perception. Overall, our proposed MomAD

addresses key challenges in planning stability and robustness for end-to-end autonomous driving systems.

Method

L2 (m) ↓ Col. Rate (%) ↓ TPC (m) ↓

1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

UniAD[4] 0.52 0.88 1.64 1.01 0.16 0.51 1.41 0.69 0.47 0.81 1.58 0.95

VAD[5] 0.48 0.80 1.55 0.94 0.07 0.41 1.20 0.56 0.38 0.78 1.51 0.89

SparseDrive[8] 0.35 0.77 1.46 0.86 0.04 0.17 0.98 0.40 0.34 0.70 1.33 0.79

MomAD (Ours) 0.33-0.02 0.70-0.07 1.24-0.22 0.76-0.10 0.03-0.01 0.13-0.04 0.79-0.19 0.32-0.08 0.32-0.02 0.54-0.16 1.05-0.28 0.63-0.16

Table A1. Planning results on the   validation dataset.  [4] and  [5] are SOTA end-to-end deterministic planning

methods.  [8] is a SOTA end-to-end multi-modal trajectory planning method. Italic indicates improvement. We follow the ST-

P3[12] evaluation metric.

λc λr

= + + + +LMP λmc LMOc
λmr LMOr

λ
p
cLPc λ

p
rLPr λ

p
sLs (7)

λmc λmr λ
p
c λ

p
r λ

p
s

Turning-nuScenes UniAD VAD

SparseDrive
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Split Method

4s 5s 6s 4s 5s 6s 4s 5s 6s

[4] 1.91 2.57 3.21 0.91 1.66 2.51 1.49 1.81 2.41

[5] 1.82 2.23 3.01 0.89 1.71 2.41 1.55 1.73 2.17

[8] 1.75 2.32 2.95 0.87 1.54 2.33 1.33 1.66 1.99

1.67 1.98 2.45 0.83 1.43 2.13 1.19 1.45 1.61

-0.09 -0.34 -0.50 -0.04 -0.11 -0.20 -0.14 -0.21 -0.38

[4] 2.45 2.98 3.76 1.21 1.99 3.25 1.81 2.75 3.42

[5] 2.27 2.87 3.46 1.08 1.86 2.81 1.68 2.56 3.21

[8] 2.07 2.71 3.36 0.91 1.71 2.57 1.54 2.31 2.90

1.80 2.07 2.51 0.85 1.57 2.31 1.37 1.58 1.93

-0.27 -0.64 -0.85 -0.06 -0.14 -0.26 -0.17 -0.73 -0.97

Table A2. Long trajectory planning results on the   and   validation sets. We train models for 10 epochs for 6s-horizon

prediction.   indicates the challenging  . We follow the ST-P3[12] evaluation metric.

0.418 0.525 0.386 55.1 0.62 0.61 0.08 0.57

0.423 0.531 0.391 55.9 0.61 0.60 0.09 0.54

0.140 0.161 0.133 22.3 0.95 0.85 0.30 0.79

0.172 0.195 0.169 27.9 0.72 0.71 0.18 0.66

0.232 0.254 0.198 30.7 0.96 0.87 0.31 0.83

0.270 0.293 0.222 34.8 0.71 0.67 0.18 0.67

0.294 0.312 0.260 41.2 0.93 0.84 0.36 0.80

0.348 0.356 0.299 43.2 0.68 0.64 0.19 0.61

Table A3. Robustness analysis on  [39].

A.5. Detailed Result Analysis on Robustness

As shown in Table A3, we furthur evaluated MomAD on nuScenes-C[39], which benchmarks robustness against diverse corruptions including

extreme weathers. Our MomAD consistently outperforms SparseDrive across all tasks, by 22.9% (detection), 27.1%(tracking), 25.1% (mapping),

24.2% (motion), and 40.0% (planning) on average. These results highlight the robustness of MomAD against various noise perturbations.

L2(m) ↓ Col.Rate(%) ↓ TPC(m) ↓

nuScenes

UniAD

VAD

SparseDrive

MomAD

T -nuScenes

UniAD

VAD

SparseDrive

MomAD

nuScenes Turning-nuScenes

T -nuScenes Turning-nuScenes

Scene Method

Detection T racking Mapping Motion Planning

mAP ↑ NDS ↑ AMOTA ↑ mAP ↑ mADE ↓ L2 ↓ Col. ↓ TPC ↓

Clean

SparseDrive

MomAD

Snow

SparseDrive

MomAD

Rain

SparseDrive

MomAD

Fog

SparseDrive

MomAD

nuScenes − C
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A.6. More Qualitative Study of Planning Results

To better illustrate the exceptional planning capabilities of MomAD, we selected planning results from complex traf�c scenarios for

visualization, such as turning maneuvers and congested scenes. We provide three qualitative results: (1) planning for 3s trajectory prediction, (2)

planning for 6 trajectory prediction, and (3) trajectory prediction across multiple frames.

�. Planning for 3s Trajectory Prediction. Consistent with most end-to-end autonomous driving methods, we provide conventional 3-second

prediction results, including the selected optimal trajectory and multi-modal proposal trajectory, as well as the optimal motion trajectory.

As shown in Figure A2, MomAD performs well across various turning scenarios, successfully executing large-angle turns without any

collisions.

�. Planning for 6s Trajectory Prediction. Unlike most end-to-end autonomous driving methods, we offer long-horizon trajectory

predictions with a 6-second horizon. As depicted in Figure A3, even under more challenging conditions, MomAD maintains superior

planning performance. Speci�cally, the predicted trajectory remains smooth and consistent even over a long-horizon trajectory. This

strong performance can be attributed to the proposed MomAD’s effective use of historical trajectory data. By incorporating past

trajectories, MomAD is able to predict and adapt to dynamic changes in the environment, ensuring smoother navigation and more

accurate decision-making during turns.

�. Trajectory Prediction across Multiple Frames. As shown in Figure A4, we present two multi-frame qualitative results to highlight the

consistency and robustness of the proposed MomAD method. In the turning scenario, MomAD generates a smooth and accurate trajectory,

demonstrating its ability to avoid oscillatory behavior during the planning process—a critical factor for ensuring driving safety. In

conclusion, the visual results clearly illustrate the superior performance of MomAD in trajectory planning.
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Figure A2. Visualization results (Planning for 3s Trajectory Prediction). We visualize results for detection, online mapping, motion prediction, and

planning. MomAD demonstrates stable and temporally consistent planning across various complex turning scenarios, especially in crowded

environments. For motion prediction, we present the model’s selected trajectory from multi-modal proposals, with each trajectory spanning a 6-second

duration. For planning, the selected (optimal) trajectory is visualized in red, alongside two suboptimal (proposal) multi-modal trajectories in gray.
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Figure A3. Visualization results (Planning for 6s Trajectory Prediction). Long-horizon trajectories often face greater temporal consistency issues. We

present 6-second trajectory prediction results to demonstrate how MomAD addresses these inconsistencies. Despite the increased challenge of long-

horizon trajectories, MomAD continues to exhibit robust and stable performance. For motion prediction, we show the trajectory with the highest score

from the model’s output, each spanning 6 seconds. For planning, the selected (optimal) trajectory is visualized in red, accompanied by two suboptimal

(proposal) multi-modal trajectories in gray.
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Figure A4. More visualization results of MomAD with SOTA methods across multiple frames.
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