Review of: "Nanocrystals, whose use causes The life span of nano memories to increase, is involved"

Kiara Peterson

University of Colorado Denver

Potential competing interests: No potential competing interests to declare.

[1] Creating Chips Nano Memory Cloud - The nano memory cloud is made of carbon nanotubes. Although the discovery of small carbon nanotubes has been very resistant, flexible, and conductive, with dimensions equal to DNA strands, and the use of small organic molecules to absorb charge instead of charge storage capacitors in nano-type memory chips. Nanocrystals, whose use causes the life span of nano memories to increase, are involved.

Indeed, using nanotechnology, the storage capacity of information can be increased by a thousand times or more. Storing information is a very important and necessary topic that can be addressed in different ways through the cloud and nano memories. One of the new tools for storing information is the use of nickel quantum dots in nanometer sizes, which are expected to be used to store terabytes of data. According to cloud nano memories, there is high potential for activity in this field. The structure and design of supercapacitors based on nanoelectronics store 100 times more charge than electrolyte types in the same volume and are charged and discharged much faster than batteries.

Of course, these capacitors still store up to 10 times less charge than some types of batteries in the same volume. According to these characteristics, supercapacitors are used in cases where frequent charging and discharging are required, high charging speed is required, or sudden discharge of the charge is required. (Until now, their main use in the electronics industry has been as a backup for SRAM memories.) Nanoelectronics shows a schematic of a supercapacitor. The main idea to achieve high capacitance is to reduce the distance between positive and negative charges in the capacitor. The design of these capacitors is such that the thickness of the dielectric layer in them does not exceed one or more molecules.

References


9. Monta O, konte. (2023). Review of: “[linking nanoelectronics and nanoplasmronics) many advantages such as ease of production, the possibility of industrialization, the ability to control the dimensions of the raw materials of nanochips and nanotransistors]”. Qeios. doi:10.32388/r9g095.


