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1. Independent researcher

Vision-Language Models (VLMs) often generate plausible but incorrect responses to visual queries. However,
reliably quantifying the effect of such hallucinations in free-form responses to open-ended queries is
challenging as it requires visually verifying each claim within the response. We propose Programmatic VLM
Evaluation (PROVE), a new benchmarking paradigm for evaluating VLM responses to open-ended queries.
To construct PROVE, we provide a large language model (LLM) with a high-fidelity scene-graph
representation constructed from a hyper-detailed image caption, and prompt it to generate diverse
question-answer (QA) pairs, as well as programs that can be executed over the scene graph object to verify
each QA pair. We thus construct a benchmark of 10.5k challenging but visually grounded QA pairs. Next, to
evaluate free-form model responses to queries in PROVE, we propose a programmatic evaluation strategy
that measures both the helpfulness and truthfulness of a response within a unified scene graph-based
framework. We benchmark the helpfulness-truthfulness trade-offs of a range of VLMs on PROVE, finding

that very few are in-fact able to achieve a good balance between the two. Project page: https://prove-

explorer.netlify.app/.
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1. Introduction

Vision-language models (VLMs) have emerged as an effective solution for generating responses to queries
about visual content. However, despite impressive progress (and much like their LLM-counterparts), VLMs are
still known to hallucinate — to generate plausible but incorrect answers that are either inconsistent or
unverifiable against the provided visual context!. This crucial shortcoming has the potential to erode trust in

such systems and has already begun to attract significant researchlliZI3ll4l and regulatoryl®l interest,
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particularly as using such models as the “foundation” of various high-stakes applications becomes

imminentl6l,

This has led to a flurry of research on reliably benchmarking VLM performancem, by measuring not just the
helpfulness but also the truthfulness of their responses. Existing benchmarks fall into two categories —
discriminativew, which evaluate the model’s responses to close-ended, existence-based queries (“Is there a
man in this image?”), and generativem@m@, which evaluate responses to free-form, open-ended
questions (“Describe this image.”). While discriminative benchmarks ease evaluation, they do not realistically
simulate in-the-wild usage. On the other hand, generative benchmarks, while realistic, are extremely
challenging to reliably evaluate, as they require verifying both that the model response fully answers the

question (i.e. is helpful) and does not make any false claims (i.e. is truthful).

Evaluating such free-form responses typically relies on external models (usually, a proprietary LLM) to score
responses given some image context (typically ground-truth annotations). However, we find that in several
such benchmarks, the context provided is completely insufficient to judge if the response contains
hallucinations. Consider Fig. 1: a VLM may respond to the query “How many puppies are in the image?” (correct
answer = “four”), with “There are four labradoodle puppies”. Evaluating the truthfulness of this statement
requires verifying multiple claims about the puppies (<count == four> and <breed == labradoodle>); however, an
LLM judge provided only with a brief image caption as context (“four puppies placed on a light blue rug”) will
be unable to do so! Further, the absence of a clear scoring rubric coupled with the sensitivity of LLMs to minor
prompt differences often leads to inconsistent and arbitrary scores in such cases. In Fig. 2, we provide real

examples from existing benchmarks that illustrate these challenges.

We propose Programmatic VLM Evaluation (PROVE), a new evaluation paradigm that performs reliable and
interpretable programmatic evaluation of free-form VLM responses to challenging, diverse, and grounded
questions. To build this dataset, we first use hyper-detailed image captions to construct a high-recall scene
graph image representation. We then use an LLM to generate a diverse set of open-ended question-answer (QA)
pairs along with accompanying verification programs. While the QA pairs are meant to test a range of model
capabilities under real-world use, the verification programs can be executed over a given scene graph object to
verify the correctness and groundedness of its corresponding QA pair. We only retain the QA pairs that we can
programmatically verify and construct a benchmark of 10.5k diverse and challenging examples which are

visually grounded by design, that we can use to reliably benchmark VLM responses.

Next, we benchmark VLM responses to queries in PROVE by comparing scene graph representations. First, we
measure the helpfulness of a response by computing its scene graph-based recall against the ground truth

answer. Next, we measure response truthfulness as its scene graph-based precision against both the scene-
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graph constructed from the full caption or the image itself. We benchmark a range of VLM responses using this
approach, and study their respective trade-offs between helpfulness and truthfulness. Our findings suggest
that much of the recent progress in training “better” VLMs also translate to improved helpfulness on our

benchmark, but not necessarily to higher truthfulness.
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Figure 1. Top. Existing VLM benchmarks either limit query-types to easy-to-evaluate but restrictive binary
questions, or use external LLMs to generate open-ended questions (without verifying their validity) and score
answers (often without complete image context or a clear scoring rubric). Bottom. We propose PROVE, a new
benchmark that constructs high-fidelity scene-graph representations from hyper-detailed image captions, that are
queried via an LLM-generated program to verify a free-form generated question-answer pair. At test-time, we
perform an interpretable programmatic evaluation of the helpfulness and truthfulness of free-form VLM responses

by comparing scene-graphs.

2. Related work
Benchmarking VLM hallucination. Existing benchmarks fall into one of two groups (see Fig. 2):

= Discriminative benchmarks generate a series of binary questions to verify the presence (or absence) of
various entities (or distractors) in the image. Early benchmarks like POPELY limited their scope to object
entities annotated by humans or external off-the-shelf models!4l whereas follow-up works additionally

evaluate responses to negative presence queries2l which stress-test the model’s abstention capabilities on

questions about entities absent from the image, or use an LLM to generate a broader range of existence-
based questions covering objects and their attributes(8L However, while the binary questions that typify

such benchmarks simplify evaluation, they do not realistically simulate in-the-wild use.
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¢ Generative benchmarks instead evaluate model hallucinations in response to free-form questions.
CHAIRI measures the precision and recall of entities mentioned in a generated image description against
the ground truth. HaELMI2l additionally uses a large language model (LLM) to judge generations, whereas
M-HalDetect!2l has humans annotate hallucinations in model generated descriptions are used to train a
predictive model. Recently, AMBERI®! combines a POPE style evaluation with a generative evaluation over

an open-ended split. While these benchmarks are indeed more realistic, they still restrict the query

instruction to image captioning-style templates (“Describe this image in detail”).

Most recently, a few benchmarks with truly open-ended queries have been proposedd2lR2II7I3] which either
hand-design or use an LLM to generate free-form questions, and use external models to judge the
corresponding responses. However, these too have limitations: MMHal22! and HallusionBench!2! rely on a
series of off-the-shelf models at various stages which introduce noise (see Fig. 2, col 3). GAVIE'sI3 reliance on
dense captions and bounding boxes leads to a majority of questions querying localized image regions and
spatial relationships, many of which have unnatural-sounding responses (eg. mentioning image coordinates,

see Fig. 2, col 4). Finally, GPT-4-based evaluation is both expensive and inherits the model’s own limitations.

discriminative (POPE) generative, templated (CHAIR) generative, free-form (MMHal-Bench, GAVIE)
| ;

Label: two girls under a large Label: a woman talking on a Labels: girl, head, hair, dog,
umbrella in the rain cell-phone person==4, face

- 2 S

L Y S
Question Is there a man? Describe this image. How many people do you see? Is the buckle width & height=50?
Answer “no” == no “a wor;;g:];a(l)k: :n a cel\ugh one  “four, two adults, two children.”  “the size is hard to determine”
’ 4istrue The buckle is described to have
Score acc=100% \/ CHAIRi () =0.33 2 adults, 2 childrenis false. width and height of 19
GPT-4 score: 1/5 GPT-4 Score: 2/5

Figure 2.Top. Existing VLM hallucination evaluation benchmarks either measure VLM performance on object
existence queries (“discriminative”l1%) or object precision/recall in generated image captions (“generative,
templated”ml), neither of which realistically simulate in-the-wild usage. Some recent benchmarks contain open-
ended queries (“generative, free-form”12l) which are more realistic but also harder to both generate (e.g. see
unnatural QA-pair from GAVIEZ3 — first from right), and evaluate with an LLM-as-judge (e.g. see GPT-4 penalizing a
correct response that includes details absent from the ground truth in MMHal-Bench!22! — second from right).
Bottom. We propose PROVEIZL a benchmark of challenging but verifiable open-ended questions that we use to

jointly evaluate both the truthfulness and helpfulness of free-form model responses.
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Understanding and mitigating VLM hallucination. Several works have sought to better understand why VLMs

hallucinate. One prevalent theory is the model learning spurious correlations between the input and the output:
either due to overly strong text priors learned by the LLM backbonel4l8l or due to distilling synthetic outputs
generated by stronger models (such as GPT-4V) that may themselves contain confabulation2l. This is often

exacerbated by the predominant training recipe121129] that learns a shallow projection from the visual input to

the text embedding space which limits the expressivity of the model to learn visually grounded representations.

Recent work has proposed training-based and training-free strategies for mitigating hallucinations. The
former involves finetuning2l or preference optimizationl2l of “preferred” ground truth responses against
dis-preferred synthetically generated “hallucinations”. Training-free methods instead focus on specialized
decoding strategies!l[21118] that seek to correct for potential statistical bias that may lead to hallucination.

However, developing better understanding and mitigation strategies are both contingent on the availability of
reliable evaluation benchmarks. In this work, we introduce such a benchmark of challenging but verifiable

open-ended visual questions that we use to jointly evaluate both the truthfulness and helpfulness of free-form

model responses.
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3. Approach

A view out of a glass window of concrete with 2 blue and white planes parked on it. There are some shadows on the " "
glass. The planegin front has "jetBlue" on the tail and the other :ne nexF: to it has "ANA on the tail. There are several Q. Describe the condition of the cargo carts. .
cargo carts grouped together on the right and left in front of the jetBlue plane. There are 3 tall spotlights in front of the A. The cargo carts are grouped together on both the left and the right
jetBlue plane. The sky is light blue with cumulous clouds all across the whole sky. There are tall buildings visible in the in front of the jetBlue plane.
distance. =00 e e cc e e
def verify(sg):
for entity in sg.get_entities():
if ‘cargo carts' in entity:
return sg.describe(sg.subgraph([entity]))
return None
# Ooutput: There is a cargo carts (with count
==several and state grouped together).

Q. What color are the planes on the concrete?
A. The planes on the concrete are blue and white.
def verify(sg):

for entity in sg.get_entities(Q:

if ‘planes’ == entity:
return sg.get_attrs(entity).get('color"')

return None

# output: blue and white
2 ——— Q. What is located on the platform in front of the fake castle fencing?
A high-angle shot of miniature statues of Warhammer fantasy figures on a platform with fake castle fencing. There are  A. Miniature Warhammer fantasy figures are located on the platform in
eight figures in the frame, they are humanoid figures with a tree-like head that branches up with a round pedestal at  front of the fake castle fencing.

their base. The figure on the upper right has a gray owl perched on the branch of its head. A figure in the left center has

a skeleton placed on the branches of its head. All the:;:iu;ivav:‘e. light gray except for one on the middle row, which is def veri fy(sg) .

for entity in sg.get_entities(Q:
if ‘platform’ in entity:
return sg.get_incoming_rels(entity)
return None
# output: [castle fencing, warhammer fan. figs.]

Q. Canyou tell me about the common characteristic of the figures'
heads?
A. The figures' heads are tree-like and branch up.
def verify(sg):
for entity in sg.get_entities():
if ‘figures’ head’ in entity:
attrs = sg.get_attrs(entity)
return {k: attrs[k] for k in [‘shape’,
‘type’]
return None
# output: {shape: branch up, type: tree-Tike}

Figure 3. The PROVE dataset. For each image-caption pair, we generate a high-fidelity scene graph representation
with which we prompt an LLM to generate challenging QA pairs and their verification programs. We only retain QA

pairs that we can programmatically verify, ensuring diverse but reliable evaluation data that is grounded by design.

Vision-language models are trained to respond to a question @ about an image Z with a ground-truth answer
A. Let mg(.) denote a VLM model trained on a large dataset of such (Z, 9, A) triplets. At test time, we wish to
evaluate the model response A:mg(Q, T). Specifically, while prior work typically evaluates either the
response’s correctness (is A:A) or truthfulness (is p(./i |Z) > threshold), we propose a unified framework that

jointly evaluates both.

3.1. Generating verifiable Visual Question-Answers

To build PROVE , we first download image-caption pairs (Z, C) from the test set of the recently proposed
poccr (22 dataset, containing 5k manually curated images with comprehensive human-annotated
descriptions. DOCCI is particularly well-suited for VLM evaluation because: i) its captions are extremely

detailed, with a higher median caption length than competing datasets, which correlates with high image recall
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ii) its comprehensive and rigorous 3-stage human annotation protocol leads to high-fidelity captions that are
suitable to test a range of image understanding challenges including spatial reasoning, counting, text
rendering, and compositionality, and iii) its images are newly curated and so more likely to be truly held-out for

existing models.

Building a robust scene-graph representation. Scene-graphs are comprised of entity ({entity)), attribute (
(entity, attribute)), and relationship ({entity:, attribute, entitys)) tuples that describe a scene. We use the
tuples included with the DOCCI test set that were automatically extracted from its captions using an LLM @1,
and use it to construct a scene graph representation g(C) as a directed graph with attributed entities as nodes
and relationships as edges. The scene graph is implemented as a Python class with methods to query the graph
for its entities, attributes, and relationships, as well as to extract and describe subgraphs in natural language

(full API in Lst. 1).

Generating open-ended questions with verifiable answers. Next, for each image, we prompt a pre-trained
LLM to generate 10-15 challenging, diverse, and unambiguous question-answer (QA) pairs given a caption and
scene graph, along with an accompanying verification program that accepts the scene graph as input and can be
executed to verify the generated QA pair 241251 We include a few in-context examples of such scene-graph and
QA+program input/output pairs in the prompt (see Fig. 8). We repeat this procedure to generate a large dataset

of open-ended image+QA pairs {(Z;, Q;, A )}fi , and their verification programs.

Filtering QA pairs. Next, we perform two rounds of filtering:

1. Programmatic: First, we execute the generated program with the scene graph as input to verify the QA pair.
We discard pairs for which the program either fails or returns an answer that is semantically
different (28] from the ground truth answer.

2. Text-based: Next, we perform a few additional post-processing steps to exclude low-quality QA pairs which
are i) trivial, ungrammatical, ambiguous, or incomplete (using an LLM, see Fig. 9), ii) not entailed by the
image (using a visual entailment model Iﬂl), iii) include one or more words from a manually curated list of
taboo words that we find to result in low-quality questions, or iv) semantic duplicates for the same image
(using SemDeDup [28l). Our final dataset after filtering contains 105k high-quality visual question

answers — see Fig. 3.

Dataset statistics. We now present some statistics about PROVE, which comprises of 10.5k QA pairs generated
from 5k image-caption pairs from the DOCCI test set. These are obtained after applying both programmatic
filtering i.e. either the unit test fails (18.3%) or returns the wrong answer (9.8%), and text-based filtering (~ 50%
of the total from the previous stage). Note that we opt to filter out such a large percentage of QA pairs in the

interest of ensuring high-quality evaluation data. Further, our benchmark curation process is fully automatic
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and so can be readily scaled to a larger image-caption source. Questions in PROVE average 10.3 words in length
whereas answers average 13.4 words (see Fig. 6, right). In Fig. 6, left we present a sunburst visualization of the

first 4 words in the questions, highlighting the diversity of questions in our benchmark.

3.2. Programmatic VLM Evaluation (PROVE)

After ensuring the validity of the generated QA pairs, we proceed to evaluating free-form VLM responses to the
same A:mg(g, T). We first extract tuples from ./i (using an LLM22 with in-context prompting), that we use to
build a scene graph representation g(./i). We also build a similar scene graph from the ground truth answer
tuples after excluding “premise” tuples included in the question g(.A) — g(Q). We then measure response
helpfulness hscore()) based on recall of this scene graph, ie. the fraction of tuples (nodes, attributes, and
relationships) in g(A) — g(Q) that are recovered by g(/i). Concretely, we compute average cosine similarity
between each ground truth tuple and its closest response tuple in embedding[z—(’] space.

score( ) Dteg(A)-g(Q) MAK 0 SIm(E, 1)
score = ;
lg(A) — g(Q)]

(1)
Next, we compute tscore(.) as the precision of the response i.e. the fraction of response tuples that are consistent
with either the original scene graph or the image itself2. We define:

N Zt'Eg(/{) max (ma'XtEg(C) sim(t’,t),p(I ': tl))
tscore(A) = A
l9(A)|

; (2)

where |= denotes visual entailment, and p(Z = t') is approximated using a visual entailment model2Z), Note
that hscore and tscore are not necessarily correlated — a response can be helpful (by answering the query) but
not entirely truthful (might contain hallucinations), and vice versa. Naturally, different models may achieve

different trade-offs between the two — an aspect that PROVE is uniquely suited to analyze.
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4. Experiments

Method #params hscore (1) tscore (1) average (1)

Qwen2-VLEA 2B 69.36 80.64 75.00
InternvL2{31 2B 73.96 79.51 76.74
Phi-3.5-Visionl22 4B 7335 82.27 77.81
LLavA-1.5[32] 7B 72.67 82.58 77.62
LLaVA-Next[2] 7B 74.28 80.03 71715
InternvL.231 8B 74.55 80.56 7756
Pixtrall23l 12B 7334 82.43 77.88
LLavA-1.51321 13B 72.46 82.40 7743
InternvL2{31 26B 74.63 79.23 7693
Claude-3.5-Sonnet 241 - 71.06 7731 74.19
GPT-40-mini 23] - 7318 79.24 76.21
Gemini-1.5-Flash 126l - 7273 81.74 77.23
GPT-40'133 - 76.53 8092 78.72

Oracle* - 82.84 85.59 84.22

Table 1. Benchmarking VLMs on PROVE (*=LLaMA-3.1222 backbone, "=closed-source). For each model, we report
helpfulness (hscore), truthfulness (tscore), and their average. We find larger and more recent models achieve higher

hscore but not necessarily higher tscore.

We now present our benchmarking experiments on PROVE. We include a broad set of models spanning a range
of sizes and learning strategies and extensively analyze their performance, including their performance trade-
offs. We also conduct a human study to validate both the quality of our benchmark and how well our proposed

metrics correlate with human judgement.
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4.1. Setup

Baselines. We include VLMs of three sizes — small (<5B parameters), medium (5-10B parameters), and large
(>10B parameters) — and include both open-source and proprietary models. We also benchmark an additional
LLM-based “oracle” model as an upper bound (a blind model that is provided with the ground truth caption

image). For the model, we use a LLaMA-3.1-8B backbone22! with in-context prompting.

Data. PROVE is constructed from images, tuples, and captions released under a CC by 4.0 license as the test split
of the DOCCI'22! dataset. DOCCI images were reviewed both by human and automatic methods to remove or
obfuscate PII (faces, phone numbers, and URLs) and unsafe content. Images underwent a rigorous 3-stage

human annotation phase resulting in hyper-detailed and high-recall captions averaging 136 words.

Implementation details. We use GPT-40'22] for generating structured question, answers, and verification
programs using the batch API and prompting it with a detailed task description, examples, and a Python
definition of the SceneGraph class. We also use GPT-40 for the first round of text-based post-processing
described in Sec. 3.1. We use OFA2Z) fine-tuned for visual entailment for both post-processing and measuring

image-tuple entailment (Eq. 2), and Sentence-Bert[28! to extract text embeddings.
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Figure 4. We plot hscore and tscore for VLMs on PROVE — as seen, models with higher

helpfulness tend to lag behind on truthfulness, with very few striking a good trade-off

between the two. Averaged across models, we observe a weak linear correlation of 0.03

between hscore and tscore .

4.2. Results

Table 1and Figure 4 present evaluation results. We find that:

= Few models strike a good balance between helpfulness and truthfulness. As Fig. 4 (left) shows, models
tend to exhibit a range of trade-offs between helpfulness and truthfulness, with very few from the subset
that we study (GPT-40, Phi-3.5-Vision, Pixtral) managing to strike a good balance between the two. In fact,
we find that many recent models that rank highly on perception and reasoning-focused aggregate
benchmarks3Zl, such as Claude-3.5-Sonnet!24l and Intern-VL2 (26B)21l do not necessarily translate to high
truthfulness on PROVE, lagging behind simpler and smaller models like LLaVA-1.532 in tscore. In fact, we
find the LLaVA-1.5 model series to obtain the best tscore overall. Overall, we observe a weak linear

correlation of 0.03 between hscore and tscore averaged across models, suggesting that the impressive recent

gains in model helpfulness have not necessarily translated to higher truthfulness.
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Table 1 shows a more detailed breakdown of performance and includes additional baselines, categorized by

parameter count. As seen, the oracle model does considerably better than other models, indicating that there is

still significant room for improvement in the current generation of VLM:s.

= Increasing model size improves hscore but not necessarily tscore. Across both model families that we

benchmark at multiple sizes — InternvL23U (2B, 8B, and 26B), and LLaVAL2! (15-7B, Next-7B, and 1.5-13B), we

find that larger or more recent variants tend to outperform smaller ones in terms of helpfulness but not

necessarily truthfulness.

Q1: What is written on the wall in graffiti style?
A1: The word 'BUSIER' is written in a graffiti bomb style on
the wall.

GPT-40: The graffiti on the wall appears to spell out
“BISTER". (hscore=72.7,tscore=85.0)

LLaVA-1.5-7b: The graffiti on the wall reads "Misthi”
(hscore=61.7, tscore=78.2)

Q2: What color are the bricks at the bottom of the wall?
A2: The bricks at the bottom of the wall are gray.

GPT-40: The bricks at the bottom of the wall are painted
white, similar to the rest of the wall. However, there are
some areas at the very bottom where the paint has worn
off, revealing the original gray color of the bricks.
(hscore=93.8, tscore=77.9)

LLaVA-1.5-7b : The bricks at the bottom of the wall are
white. (hscore=78.1, tscore=86.4)

Q1: How many stripes are on the concrete wall on the right?
A1: There are 5 dark horizontal stripes on the wall.

GPT-40: The concrete wall on the right has 4 horizontal stripes.
(hscore=78.4, tscore=72.8)

LLaVA-1.5-7b: There are three stripes on the concrete wall on
the right. (hscore=74.8, tscore=65.3)

Q2: What type of day is it based on the scene outside the
window?
A2: Itis a sunny day based on the view from the window.

GPT-40: Based on the scene outside the window, it appears to
be a bright and sunny day. The sunlight is illuminating the lush
green foliage and white flowers, indicating clear weather.
(hscore=82.5, tscore=85.0)

LLaVA-1.5-7b: It appears to be a sunny day. The sunlight is
shining through the window, illuminating the flowers and plants
in the garden. The presence of sunlight suggests that the
weather is pleasant and suitable for outdoor activities.
(hscore=70.8, tscore=80.5)

Q1: What time does the pocket watch show?
A1: The hands on the pocket watch's face point to 8:30

GPT-40: The pocket watch in the image shows
approximately 10:10. (hscore=73.7, tscore=75.3)
LLaVA-1.5-7b : The pocket watch in the birdhouse
shows the time as 12:00. (hscore=74.7,
tscore=77.3)

Q2: What's located on the tree in the scene?
A2: The small wooden structure, resembling a hut
without a front wall, is mounted on the tree.

GPT-40: The tree in the scene has a wooden birdhouse
attached to it. Inside the birdhouse, there is a round
object that appears to be a clock or a barometer, with a
chain hanging down from it. (hscore=74.7,
tscore=77.3)

LLaVA-1.5-7b: A birdhouse is located on the tree in the
scene. (hscore=46.8, tscore=83.3)

Figure 5. Example responses from two VLMs that achieve high hscore (GPT-40) and tscor (LLaVA-1.5 (7B))

respectively. While both models struggle with sub-tasks such as OCR, counting, and reading an analog clock, GPT-

40’s errors tend to be less egregious which leads to a higher hscor.

= Models fail in different ways. In Fig. 5 we provide example responses from two models with high
hscore (GPT-40) and tscore (LLaVA-1.5-7B) respectively. We find that while both models struggle with
subtasks such as OCR, counting, and reading an analog clock, GPT-40’s errors tend to be less egregious (e.g.
reading 3/6 letters of the graffiti correctly, while LLaVA only gets 1/6). Further, GPT-40 tends to generate
more descriptive answers (e.g. correctly identifying that while the wall in the first image is white, the bricks

at the bottom are gray), which boost its hscore. In Fig. 7(a), we include a fine-grained analysis of GPT-40

performance across different question types.
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Human evaluation of PROVE and proposed metrics. Finally, we conduct two human studies of our benchmark.
We first ask human annotators (3 per example) to evaluate the question relevance and answer correctness of QA
pairs generated from the qual-test split of the DOCCI dataset (100 images, 170 generated QA pairs) that is
specifically set aside for human evaluation. After majority voting, annotators judge 163/170 questions to be
relevant (95.9%) and 167/170 answers to be correct (98.2%). We manually inspect the small number of examples
judged as irrelevant or incorrect in and find most to be either particularly challenging or subjective, rather than

irrelevant or incorrect.

In the second study, we ask subjects (3 per example) to rate responses from four models — GPT-40, LLaVA-1.5-
7B, LLaVA-Next-7B, and GPT-40-mini — on the same set of 170 QA pairs based on their helpfulness
(O=unhelpful, 1=helpful) and truthfulness (0=fully false, 0.5=partially false, 1.0=fully true), and average. We then
automatically compute hscore and tscore for the same set of responses and measure the Pearson correlation
between the two, observing a strong correlation of 0.81 for hscore and a modest correlation of 0.45 for tscore,

supporting the validity of these metrics.

5. Discussion

Our work takes a step towards reliably evaluating the helpfulness-truthfulness trade-offs of vision-language
models. Our design leverages an LLM prompted with a robust scene graph representation and API to construct
“in-the-wild” visual question answer pairs that are grounded by design. Further, these QA pairs lend themselves
to programmatic evaluation via comparing scene-graph representations. The reliability of our benchmark
comes from three factors: i) high-recall human-annotated image captions that seed the scene graphs, which
make it possible to (almost) exhaustively validate the veracity of any claim ii) programmatic verification of the
generated QA pairs that ensure that both the question and answer are indeed grounded in the visual input, and
iii) evaluation metrics that are both holistic (i.e. consider all the provided context) and interpretable (i.e. provide

a concrete scoring rubric based on scene graph-based matching).

Limitations. While we hope that PROVE will serve as a useful test-bed for reliable VLM evaluation and spur
future research on the topic, it is not without limitations. While we try to ensure high precision in QA pairs
retained in our benchmark (via programmatic verification), this naturally comes at some cost to recall (i.e. some
hard-to-verify question types may be excluded from the benchmark). Next, even high-recall image captions
may not capture every aspect of an image, and so our evaluation may not be able to catch all model
hallucinations. Further, our evaluation relies on off-the-shelf models for computing text-embeddings, scene
graph tuples, and image-text entailment, and so almost certainly inherits some of their limitations. Finally, we
hope future work will study the effectiveness of recent fine-tuningl2l, preference-tuningl12l and training-

freel4ll21108] ha)lycination mitigation strategies on PROVE, as well as agentic models that can plani23124]
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reason, and self—reflect@, towards the elusive goal of achieving Pareto improvements in both helpfulness and

truthfulness.
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A. Appendix

A.1. Additional dataset details
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Figure 6. PROVE: Additional dataset statistics. Fig. 6(a), left presents a sunburst visualization of the first 4 words in
the questions within the PROVE dataset. As seen, the questions are diverse and span a wide range of question types.
Further, while nearly 50% of the questions begin with “What”, even this subset spans a range of topics testing
numerous model capabilities — see Fig. 5. Fig. 6, right shows the distribution of question and answer lengths in
PROVE. Questions in the dataset average 10.3 words in length, whereas answers average 13.4 words, with both

following a normal distribution spread.

A.2. Additional implementation details

Lst. 1 provides a Python implementation of the SceneGraph class used to represent scene graphs in PROVE. The

class provides methods to generate subgraphs, describe subgraphs in natural language, and query entities,
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attributes, and relationships. We include the prompts used for generating verifiable question-answer pairs as

well as the post-processing prompt used to filter out low-quality QA pairs in Figs. 8- 9.

A.3. Additional performance analysis
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Figure 7. Fine-grained performance analysis. Fig. 7(a) presents a fine-grained performance analysis of GPT-40 on

PROVE. We break down helpfulness and truthfulness scores by question type, and display the top-10 most common

question types sorted by performance. As seen, the model performs particularly well on questions that require

reasoning about spatial relationships (where are/is), object attributes (what color), and generating image

descriptions. Fig. 7(b) shows a word cloud of the most commonly hallucinated objects in answers to questions from

)«

PROVE across all models. As seen, models commonly hallucinate common objects such as “tree”, “building’, “wall”,

and “sign”.
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4 class SceneGraph (nx.DiGraph):

def

def

def

def

def

def

def

__init__ (self, caption, sg_dict, *args, xxkwargs):

"""Tnit scene graph from entity—attribute-relationship dict"""
super () .__init__ (vargs, =xkwargs)
for source_ent, metadata in sg_dict.items() :
self.add _node (source_ent, **metadata["attributes"])
for target_ent, rel_info in metadata["relations_to"].items():
self.add_edge (source_ent, target_ent, xxrel_info)
self.caption = caption
self.sg_dict = sg_dict

generate_subgraph (self, node_list)->"SceneGraph":
"""Generates a subgraph with nodes in node_list"""
return nx.subgraph(self, node_list)

describe (self, subgraph): -> str:
"""Generate a natural language description of a subgraph"""
return generate_description (subgraph)

get_entities (self) -> List[str]:
"""Returns a list of entities in the scene graph."""
return list (self.nodes)

get_attributes(self, ent_name) —-> dict[List]:

nman

Returns a list of attributes for ent_name in the scene graph
Format: { "att_type": f"att_value_1, att_value_2, ..." }

nman

return self.nodes.get (ent_name, {})

get_outgoing_relations(self, ent_name) -> dict:

nuan

Returns a dict of relations for which ent_name is the source.
Format: {target_ent_1: { rel_type_1: [rel_val_1, ...]1} ... }
nuan

out_edges = list (self.out_edges(ent_name, data=True))
out_edges = { tup[l]: {*xtup[2]} for tup in out_edges }
return out_edges

get_incoming_relations(self, ent_name) -> dict:
nuan

Returns a dict of relations for which ent_name is the target

Format: {source_ent_1: { rel_type_1l: [rel_val_1, ...]} ...}
nuan

in_edges = list (self.in_edges (ent_name, data=True))
in_edges = { tup[0]: {*xtup[2]} for tup in in_edges }

return in_edges

Listing 1. Python API for the SceneGraph class
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Consider the SceneGraph class defined below, which takes as input an image caption and a dictionary
of tuples (entities, attributes, and relations) parsed from the image caption, and builds a directed
graph representation with attributed entities as nodes and relations as edges.

You will be provided with such an image caption, tuple dictionary, and corresponding SceneGraph
object. Your task is to generate a set of:

1. Free-form question-answer pairs that test non-trivial image understanding and reasoning
capabilities.

2. A Python function that receives as input the SceneGraph object and can be executed to
answer the query by reasoning over the scene graph.

Guidelines. The generated questions should be:

* Clear and conversational, in the tone of a person who is asking another person about the
scene. You may paraphrase where appropriate to improve clarity (eg. “Can you describe the
dog?” is better than “What is the state of the dog?””). Note that the tuples in the scene graph
are generally accurate but not necessarily precise, and so may require rephrasing to generate
meaningful questions from.

* Diverse, both in question type (e.g. starting with “is”, “where”, “what”, “when”, “how”,
“which”, “why”, etc.) and length.

* Non-trivial (eg. avoid “What color are the green trees?”’) and unambiguous (eg. avoid
“What is the color of the puppy?” for an image with multiple puppies).

The generated Python functions should be:
* Executable: The code should run without requiring modifications.

* General: The code should generalize to similar scene graphs as the one provided. Do NOT
hard-code specific attributes or relations.

For each image, generate 10-15 such question-answer pairs and corresponding Python functions.

Figure 8. LLM prompt for generating visual question-answer pairs along-with verification programs.
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You will be provided with a list of question-answer pairs about an image. Your task is to identify
whether each pair has any of the following issues:

1.

Trivial question. A trivial question can be answered directly from information provided in
the question or using common-sense, without requiring looking at the image. Examples:
Question: What is the material of the stadium’s horizontal concrete bar?

Answer: The stadium’s horizontal concrete bar is made of concrete.

Judgement: Trivial (The question already mentions that the bar is made of concrete)

Question: What text rendering is found on the stop sign?
Answer: The stop sign has white text rendering of the word "STOP".
Judgement: Trivial (Stop signs almost always have the word "STOP" on them)

Question: What feature of the scene reflects sunlight?
Answer: The hard surfaces reflect sunlight.
Judgement: Trivial (Hard surfaces are known to reflect sunlight)

. Incomplete answer. An incomplete answer does not completely answer the question. It

may be missing key details or may not provide a full description, or may also be entirely
irrelevant. Examples:

Question: What is between the red neon light and the frame?

Answer: The red neon light is behind the metal construction frame.

Judgement: Incomplete (does not answer the question)

Question: How would you describe the trees surrounding the green lake?
Answer: The trees surrounding the green lake are large in size.
Judgement: Incomplete (“large” is not a sufficiently detailed description)

Question: In which part of the image is there no visible cloud coverage?
Answer: The rest of the image has the clear blue sky with no visible cloud coverage.
Judgement: Incomplete (“the rest of the image” is meaningless without context)

. Unnatural-sounding. The question-answer pair may sound awkward, ambiguous, or

unnatural. This could be due to its phrasing, structure, or grammar. Examples:

Question: Can you describe the role of the stones in relation to the anemones?

Answer: The stones are covered with anemones and line the bottom of the tank and go up
its left side.

Judgement: Unnatural (“role” of stones is odd phrasing and the overall question is
ambiguous)

Question: What is the overall shape of the section of grass?
Answer: The section of grass is small in shape.
Judgement: Unnatural (“small” is not a shape)

Question: What kind of state is the sign experiencing due to the brightness?
Answer: Due to the brightness, the sign is experiencing a duller state.
Judgement: Unnatural (“experiencing a state” is awkward phrasing)

Figure 9. LLM text-based post-processing prompt.
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Footnotes

1 A few LLM-focused works also consider responses that contradict world knowledge as hallucinations, but we

exclude these from our scope.

2 This reduces false-positive hallucination detections, as no caption can capture every aspect of an image.
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