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1. Independent researcher

Vision-Language Models (VLMs) often generate plausible but incorrect responses to visual queries. However,

reliably quantifying the effect of such hallucinations in free-form responses to open-ended queries is

challenging as it requires visually verifying each claim within the response. We propose Programmatic VLM

Evaluation (PROVE), a new benchmarking paradigm for evaluating VLM responses to open-ended queries.

To construct PROVE, we provide a large language model (LLM) with a high-�delity scene-graph

representation constructed from a hyper-detailed image caption, and prompt it to generate diverse

question-answer (QA) pairs, as well as programs that can be executed over the scene graph object to verify

each QA pair. We thus construct a benchmark of 10.5k challenging but visually grounded QA pairs. Next, to

evaluate free-form model responses to queries in PROVE, we propose a programmatic evaluation strategy

that measures both the helpfulness and truthfulness of a response within a uni�ed scene graph-based

framework. We benchmark the helpfulness-truthfulness trade-offs of a range of VLMs on PROVE, �nding

that very few are in-fact able to achieve a good balance between the two. Project page: https://prove-

explorer.netlify.app/.
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1. Introduction

Vision-language models (VLMs) have emerged as an effective solution for generating responses to queries

about visual content. However, despite impressive progress (and much like their LLM-counterparts), VLMs are

still known to hallucinate – to generate plausible but incorrect answers that are either inconsistent or

unveri�able against the provided visual context1. This crucial shortcoming has the potential to erode trust in

such systems and has already begun to attract signi�cant research[1][2][3][4]  and regulatory[5]  interest,
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particularly as using such models as the “foundation” of various high-stakes applications becomes

imminent[6].

This has led to a �urry of research on reliably benchmarking VLM performance[7], by measuring not just the

helpfulness but also the truthfulness of their responses. Existing benchmarks fall into two categories –

discriminative[8][9][10], which evaluate the model’s responses to close-ended, existence-based queries (“Is there a

man in this image?”), and generative[11][12][13][2][3], which evaluate responses to free-form, open-ended

questions (“Describe this image.”). While discriminative benchmarks ease evaluation, they do not realistically

simulate in-the-wild usage. On the other hand, generative benchmarks, while realistic, are extremely

challenging to reliably evaluate, as they require verifying both that the model response fully answers the

question (i.e. is helpful) and does not make any false claims (i.e. is truthful).

Evaluating such free-form responses typically relies on external models (usually, a proprietary LLM) to score

responses given some image context (typically ground-truth annotations). However, we �nd that in several

such benchmarks, the context provided is completely insuf�cient to judge if the response contains

hallucinations. Consider Fig. 1: a VLM may respond to the query “How many puppies are in the image?” (correct

answer = “four”), with “There are four labradoodle puppies”. Evaluating the truthfulness of this statement

requires verifying multiple claims about the puppies (<count == four> and <breed == labradoodle>); however, an

LLM judge provided only with a brief image caption as context (“four puppies placed on a light blue rug”) will

be unable to do so! Further, the absence of a clear scoring rubric coupled with the sensitivity of LLMs to minor

prompt differences often leads to inconsistent and arbitrary scores in such cases. In Fig.  2, we provide real

examples from existing benchmarks that illustrate these challenges.

We propose Programmatic VLM Evaluation (PROVE), a new evaluation paradigm that performs reliable and

interpretable programmatic evaluation of free-form VLM responses to challenging, diverse, and grounded

questions. To build this dataset, we �rst use hyper-detailed image captions to construct a high-recall scene

graph image representation. We then use an LLM to generate a diverse set of open-ended question-answer (QA)

pairs along with accompanying veri�cation programs. While the QA pairs are meant to test a range of model

capabilities under real-world use, the veri�cation programs can be executed over a given scene graph object to

verify the correctness and groundedness of its corresponding QA pair. We only retain the QA pairs that we can

programmatically verify and construct a benchmark of 10.5k   diverse and challenging examples which are

visually grounded by design, that we can use to reliably benchmark VLM responses.

Next, we benchmark VLM responses to queries in PROVE by comparing scene graph representations. First, we

measure the helpfulness of a response by computing its scene graph-based recall against the ground truth

answer. Next, we measure response truthfulness as its scene graph-based precision against both the scene-
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graph constructed from the full caption or the image itself. We benchmark a range of VLM responses using this

approach, and study their respective trade-offs between helpfulness and truthfulness. Our �ndings suggest

that much of the recent progress in training “better” VLMs also translate to improved helpfulness on our

benchmark, but not necessarily to higher truthfulness.

Figure 1. Top. Existing VLM benchmarks either limit query-types to easy-to-evaluate but restrictive binary

questions, or use external LLMs to generate open-ended questions (without verifying their validity) and score

answers (often without complete image context or a clear scoring rubric). Bottom. We propose PROVE, a new

benchmark that constructs high-�delity scene-graph representations from hyper-detailed image captions, that are

queried via an LLM-generated program to verify a free-form generated question-answer pair. At test-time, we

perform an interpretable programmatic evaluation of the helpfulness and truthfulness of free-form VLM responses

by comparing scene-graphs.

2. Related work

Benchmarking VLM hallucination. Existing benchmarks fall into one of two groups (see Fig. 2):

Discriminative benchmarks generate a series of binary questions to verify the presence (or absence) of

various entities (or distractors) in the image. Early benchmarks like POPE[10]  limited their scope to object

entities annotated by humans or external off-the-shelf models[14], whereas follow-up works additionally

evaluate responses to negative presence queries[9], which stress-test the model’s abstention capabilities on

questions about entities absent from the image, or use an LLM to generate a broader range of existence-

based questions covering objects and their attributes[8]. However, while the binary questions that typify

such benchmarks simplify evaluation, they do not realistically simulate in-the-wild use.
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Generative benchmarks instead evaluate model hallucinations in response to free-form questions.

CHAIR[11] measures the precision and recall of entities mentioned in a generated image description against

the ground truth. HaELM[15] additionally uses a large language model (LLM) to judge generations, whereas

M-HalDetect[3]  has humans annotate hallucinations in model generated descriptions are used to train a

predictive model. Recently, AMBER[16] combines a POPE style evaluation with a generative evaluation over

an open-ended split. While these benchmarks are indeed more realistic, they still restrict the query

instruction to image captioning-style templates (“Describe this image in detail.”).

Most recently, a few benchmarks with truly open-ended queries have been proposed[12][2][17][13], which either

hand-design or use an LLM to generate free-form questions, and use external models to judge the

corresponding responses. However, these too have limitations: MMHal[12]  and HallusionBench[2]  rely on a

series of off-the-shelf models at various stages which introduce noise (see Fig. 2, col 3). GAVIE’s[13] reliance on

dense captions and bounding boxes leads to a majority of questions querying localized image regions and

spatial relationships, many of which have unnatural-sounding responses (eg. mentioning image coordinates,

see Fig. 2, col 4). Finally, GPT-4-based evaluation is both expensive and inherits the model’s own limitations.

Figure 2.Top. Existing VLM hallucination evaluation benchmarks either measure VLM performance on object

existence queries (“discriminative”[10]) or object precision/recall in generated image captions (“generative,

templated”[11]), neither of which realistically simulate in-the-wild usage. Some recent benchmarks contain open-

ended queries (“generative, free-form”[12]), which are more realistic but also harder to both generate (e.g. see

unnatural QA-pair from GAVIE[13] – �rst from right), and evaluate with an LLM-as-judge (e.g. see GPT-4 penalizing a

correct response that includes details absent from the ground truth in MMHal-Bench[12] – second from right).

Bottom. We propose PROVE[13], a benchmark of challenging but veri�able open-ended questions that we use to

jointly evaluate both the truthfulness and helpfulness of free-form model responses.
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Understanding and mitigating VLM hallucination. Several works have sought to better understand why VLMs

hallucinate. One prevalent theory is the model learning spurious correlations between the input and the output:

either due to overly strong text priors learned by the LLM backbone[4][18], or due to distilling synthetic outputs

generated by stronger models (such as GPT-4V) that may themselves contain confabulation[19]. This is often

exacerbated by the predominant training recipe[19][20] that learns a shallow projection from the visual input to

the text embedding space which limits the expressivity of the model to learn visually grounded representations.

Recent work has proposed training-based and training-free strategies for mitigating hallucinations. The

former involves �netuning[13]  or preference optimization[1][12]  of “preferred” ground truth responses against

dis-preferred synthetically generated “hallucinations”. Training-free methods instead focus on specialized

decoding strategies[4][21][18] that seek to correct for potential statistical bias that may lead to hallucination.

However, developing better understanding and mitigation strategies are both contingent on the availability of

reliable evaluation benchmarks. In this work, we introduce such a benchmark of challenging but veri�able

open-ended visual questions that we use to jointly evaluate both the truthfulness and helpfulness of free-form

model responses.
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3. Approach

Figure 3. The PROVE dataset. For each image-caption pair, we generate a high-�delity scene graph representation

with which we prompt an LLM to generate challenging QA pairs and their veri�cation programs. We only retain QA

pairs that we can programmatically verify, ensuring diverse but reliable evaluation data that is grounded by design.

Vision-language models are trained to respond to a question    about an image    with a ground-truth answer 

. Let  (.) denote a VLM model trained on a large dataset of such ( ,  ,  ) triplets. At test time, we wish to

evaluate the model response  = ( ,  ). Speci�cally, while prior work typically evaluates either the

response’s correctness (is  ) or truthfulness (is  ( | )   threshold), we propose a uni�ed framework that

jointly evaluates both.

3.1. Generating veri�able Visual Question-Answers

To build PROVE  , we �rst download image-caption pairs ( ,  ) from the test set of the recently proposed

DOCCI  [22]  dataset, containing 5k manually curated images with comprehensive human-annotated

descriptions. DOCCI is particularly well-suited for VLM evaluation because: i) its captions are extremely

detailed, with a higher median caption length than competing datasets, which correlates with high image recall

Q I

A mθ I Q A
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Â=A p Â I >
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ii) its comprehensive and rigorous 3-stage human annotation protocol leads to high-�delity captions that are

suitable to test a range of image understanding challenges including spatial reasoning, counting, text

rendering, and compositionality, and iii) its images are newly curated and so more likely to be truly held-out for

existing models.

Building a robust scene-graph representation. Scene-graphs are comprised of entity ( ), attribute (

), and relationship ( ) tuples that describe a scene. We use the

tuples included with the DOCCI test set that were automatically extracted from its captions using an LLM [23],

and use it to construct a scene graph representation  ( ) as a directed graph with attributed entities as nodes

and relationships as edges. The scene graph is implemented as a Python class with methods to query the graph

for its entities, attributes, and relationships, as well as to extract and describe subgraphs in natural language

(full API in Lst. 1).

Generating open-ended questions with veri�able answers. Next, for each image, we prompt a pre-trained

LLM to generate 10-15 challenging, diverse, and unambiguous question-answer (QA) pairs given a caption and

scene graph, along with an accompanying veri�cation program that accepts the scene graph as input and can be

executed to verify the generated QA pair [24][25]. We include a few in-context examples of such scene-graph and

QA+program input/output pairs in the prompt (see Fig. 8). We repeat this procedure to generate a large dataset

of open-ended image+QA pairs   and their veri�cation programs.

Filtering QA pairs. Next, we perform two rounds of �ltering:

�. Programmatic: First, we execute the generated program with the scene graph as input to verify the QA pair.

We discard pairs for which the program either fails or returns an answer that is semantically

different [26] from the ground truth answer.

�. Text-based: Next, we perform a few additional post-processing steps to exclude low-quality QA pairs which

are i) trivial, ungrammatical, ambiguous, or incomplete (using an LLM, see Fig. 9), ii) not entailed by the

image (using a visual entailment model [27]), iii) include one or more words from a manually curated list of

taboo words that we �nd to result in low-quality questions, or iv) semantic duplicates for the same image

(using SemDeDup  [28]). Our �nal dataset after �ltering contains   10.5k   high-quality visual question

answers – see Fig. 3.

Dataset statistics. We now present some statistics about PROVE, which comprises of 10.5k QA pairs generated

from 5k image-caption pairs from the DOCCI test set. These are obtained after applying both programmatic

�ltering i.e. either the unit test fails (18.3%) or returns the wrong answer (9.8%), and text-based �ltering (  50%

of the total from the previous stage). Note that we opt to �lter out such a large percentage of QA pairs in the

interest of ensuring high-quality evaluation data. Further, our benchmark curation process is fully automatic

⟨entity⟩

⟨entity, attribute⟩ ⟨entit , attribute, entit ⟩y1 y2
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∼
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and so can be readily scaled to a larger image-caption source. Questions in PROVE average 10.3 words in length

whereas answers average 13.4 words (see Fig. 6, right). In Fig. 6, left we present a sunburst visualization of the

�rst 4 words in the questions, highlighting the diversity of questions in our benchmark.

3.2. Programmatic VLM Evaluation (PROVE)

After ensuring the validity of the generated QA pairs, we proceed to evaluating free-form VLM responses to the

same  = ( ,  ). We �rst extract tuples from   (using an LLM[29] with in-context prompting), that we use to

build a scene graph representation  ( ). We also build a similar scene graph from the ground truth answer

tuples after excluding “premise” tuples included in the question  . We then measure response

helpfulness  (.) based on recall of this scene graph, i.e. the fraction of tuples (nodes, attributes, and

relationships) in    that are recovered by  ( ). Concretely, we compute average cosine similarity

between each ground truth tuple and its closest response tuple in embedding[26] space.

Next, we compute  (.) as the precision of the response i.e. the fraction of response tuples that are consistent

with either the original scene graph or the image itself2. We de�ne:

where   denotes visual entailment, and    is approximated using a visual entailment model[27]. Note

that   and   are not necessarily correlated – a response can be helpful (by answering the query) but

not entirely truthful (might contain hallucinations), and vice versa. Naturally, different models may achieve

different trade-offs between the two – an aspect that PROVE is uniquely suited to analyze.

Â mθ Q I Â

g Â

g(A) − g(Q)

hscore

g(A) − g(Q) g Â

hscore( ) = ;Â
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4. Experiments

Method #params hscore ( ) tscore ( ) average ( )

Qwen2-VL[30] 2B 69.36 80.64 75.00

InternVL2[31] 2B 73.96 79.51 76.74

Phi-3.5-Vision[20] 4B 73.35 82.27 77.81

LLaVA-1.5[32] 7B 72.67 82.58 77.62

LLaVA-Next[19] 7B 74.28 80.03 77.15

InternVL2[31] 8B 74.55 80.56 77.56

Pixtral[33] 12B 73.34 82.43 77.88

LLaVA-1.5[32] 13B 72.46 82.40 77.43

InternVL2[31] 26B 74.63 79.23 76.93

Claude-3.5-Sonnet†[34] - 71.06 77.31 74.19

GPT-4o-mini†[35] - 73.18 79.24 76.21

Gemini-1.5-Flash†[36] - 72.73 81.74 77.23

GPT-4o†[35] - 76.53 80.92 78.72

Oracle* - 82.84 85.59 84.22

Table 1. Benchmarking VLMs on PROVE (*=LLaMA-3.1[29] backbone, †=closed-source). For each model, we report

helpfulness (hscore), truthfulness (tscore), and their average. We �nd larger and more recent models achieve higher

hscore but not necessarily higher tscore.

We now present our benchmarking experiments on PROVE. We include a broad set of models spanning a range

of sizes and learning strategies and extensively analyze their performance, including their performance trade-

offs. We also conduct a human study to validate both the quality of our benchmark and how well our proposed

metrics correlate with human judgement.

↑ ↑ ↑
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4.1. Setup

Baselines. We include VLMs of three sizes – small (<5B parameters), medium (5-10B parameters), and large

(>10B parameters) – and include both open-source and proprietary models. We also benchmark an additional

LLM-based “oracle” model as an upper bound (a blind model that is provided with the ground truth caption

image). For the model, we use a LLaMA-3.1-8B backbone[29] with in-context prompting.

Data. PROVE is constructed from images, tuples, and captions released under a CC by 4.0 license as the test split

of the DOCCI[22]  dataset. DOCCI images were reviewed both by human and automatic methods to remove or

obfuscate PII (faces, phone numbers, and URLs) and unsafe content. Images underwent a rigorous 3-stage

human annotation phase resulting in hyper-detailed and high-recall captions averaging 136 words.

Implementation details. We use GPT-4o[35]  for generating structured question, answers, and veri�cation

programs using the batch API and prompting it with a detailed task description, examples, and a Python

de�nition of the SceneGraph class. We also use GPT-4o for the �rst round of text-based post-processing

described in Sec. 3.1. We use OFA[27] �ne-tuned for visual entailment for both post-processing and measuring

image-tuple entailment (Eq. 2), and Sentence-Bert[26] to extract text embeddings.
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Figure 4. We plot   and   for VLMs on PROVE – as seen, models with higher

helpfulness tend to lag behind on truthfulness, with very few striking a good trade-off

between the two. Averaged across models, we observe a weak linear correlation of 0.03

between   and   .

4.2. Results

Table 1 and Figure 4 present evaluation results. We �nd that:

Few models strike a good balance between helpfulness and truthfulness. As Fig.  4 (left) shows, models

tend to exhibit a range of trade-offs between helpfulness and truthfulness, with very few from the subset

that we study (GPT-4o, Phi-3.5-Vision, Pixtral) managing to strike a good balance between the two. In fact,

we �nd that many recent models that rank highly on perception and reasoning-focused aggregate

benchmarks[37], such as Claude-3.5-Sonnet[34] and Intern-VL2 (26B)[31] do not necessarily translate to high

truthfulness on PROVE, lagging behind simpler and smaller models like LLaVA-1.5[32]  in  . In fact, we

�nd the LLaVA-1.5 model series to obtain the best    overall. Overall, we observe a weak linear

correlation of 0.03 between   and   averaged across models, suggesting that the impressive recent

gains in model helpfulness have not necessarily translated to higher truthfulness.

hscore tscore

hscore tscore

tscore

tscore

hscore tscore
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Table  1 shows a more detailed breakdown of performance and includes additional baselines, categorized by

parameter count. As seen, the oracle model does considerably better than other models, indicating that there is

still signi�cant room for improvement in the current generation of VLMs.

Increasing model size improves    but not necessarily  . Across both model families that we

benchmark at multiple sizes – InternVL2[31] (2B, 8B, and 26B), and LLaVA[19] (1.5-7B, Next-7B, and 1.5-13B), we

�nd that larger or more recent variants tend to outperform smaller ones in terms of helpfulness but not

necessarily truthfulness.

Figure 5. Example responses from two VLMs that achieve high   (GPT-4o) and   (LLaVA-1.5 (7B))

respectively. While both models struggle with sub-tasks such as OCR, counting, and reading an analog clock, GPT-

4o’s errors tend to be less egregious which leads to a higher  .

Models fail in different ways. In Fig.  5 we provide example responses from two models with high 

  (GPT-4o) and    (LLaVA-1.5-7B) respectively. We �nd that while both models struggle with

subtasks such as OCR, counting, and reading an analog clock, GPT-4o’s errors tend to be less egregious (e.g.

reading 3/6 letters of the graf�ti correctly, while LLaVA only gets 1/6). Further, GPT-4o tends to generate

more descriptive answers (e.g. correctly identifying that while the wall in the �rst image is white, the bricks

at the bottom are gray), which boost its  . In Fig.  7(a), we include a �ne-grained analysis of GPT-4o

performance across different question types.

hscore tscore

hscore tscor

hscor

hscore tscore

hscore
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Human evaluation of PROVE and proposed metrics. Finally, we conduct two human studies of our benchmark.

We �rst ask human annotators (3 per example) to evaluate the question relevance and answer correctness of QA

pairs generated from the qual-test split of the DOCCI dataset (100 images, 170 generated QA pairs) that is

speci�cally set aside for human evaluation. After majority voting, annotators judge 163/170 questions to be

relevant (95.9%) and 167/170 answers to be correct (98.2%). We manually inspect the small number of examples

judged as irrelevant or incorrect in and �nd most to be either particularly challenging or subjective, rather than

irrelevant or incorrect.

In the second study, we ask subjects (3 per example) to rate responses from four models – GPT-4o, LLaVA-1.5-

7B, LLaVA-Next-7B, and GPT-4o-mini – on the same set of 170 QA pairs based on their helpfulness

(0=unhelpful, 1=helpful) and truthfulness (0=fully false, 0.5=partially false, 1.0=fully true), and average. We then

automatically compute    and    for the same set of responses and measure the Pearson correlation

between the two, observing a strong correlation of 0.81 for   and a modest correlation of 0.45 for  ,

supporting the validity of these metrics.

5. Discussion

Our work takes a step towards reliably evaluating the helpfulness-truthfulness trade-offs of vision-language

models. Our design leverages an LLM prompted with a robust scene graph representation and API to construct

“in-the-wild” visual question answer pairs that are grounded by design. Further, these QA pairs lend themselves

to programmatic evaluation via comparing scene-graph representations. The reliability of our benchmark

comes from three factors: i) high-recall human-annotated image captions that seed the scene graphs, which

make it possible to (almost) exhaustively validate the veracity of any claim ii) programmatic veri�cation of the

generated QA pairs that ensure that both the question and answer are indeed grounded in the visual input, and

iii) evaluation metrics that are both holistic (i.e. consider all the provided context) and interpretable (i.e. provide

a concrete scoring rubric based on scene graph-based matching).

Limitations. While we hope that PROVE  will serve as a useful test-bed for reliable VLM evaluation and spur

future research on the topic, it is not without limitations. While we try to ensure high precision in QA pairs

retained in our benchmark (via programmatic veri�cation), this naturally comes at some cost to recall (i.e. some

hard-to-verify question types may be excluded from the benchmark). Next, even high-recall image captions

may not capture every aspect of an image, and so our evaluation may not be able to catch all model

hallucinations. Further, our evaluation relies on off-the-shelf models for computing text-embeddings, scene

graph tuples, and image-text entailment, and so almost certainly inherits some of their limitations. Finally, we

hope future work will study the effectiveness of recent �ne-tuning[13], preference-tuning[1][12], and training-

free[4][21][18]  hallucination mitigation strategies on PROVE, as well as agentic models that can plan[25][24],

hscore tscore

hscore tscore
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reason, and self-re�ect[38], towards the elusive goal of achieving Pareto improvements in both helpfulness and

truthfulness.
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A. Appendix

A.1. Additional dataset details

Figure 6. PROVE: Additional dataset statistics. Fig. 6(a), left presents a sunburst visualization of the �rst 4 words in

the questions within the PROVE dataset. As seen, the questions are diverse and span a wide range of question types.

Further, while nearly 50% of the questions begin with “What”, even this subset spans a range of topics testing

numerous model capabilities – see Fig. 5. Fig. 6, right shows the distribution of question and answer lengths in

PROVE. Questions in the dataset average 10.3 words in length, whereas answers average 13.4 words, with both

following a normal distribution spread.

A.2. Additional implementation details

Lst. 1 provides a Python implementation of the SceneGraph class used to represent scene graphs in PROVE. The

class provides methods to generate subgraphs, describe subgraphs in natural language, and query entities,
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attributes, and relationships. We include the prompts used for generating veri�able question-answer pairs as

well as the post-processing prompt used to �lter out low-quality QA pairs in Figs. 8- 9.

A.3. Additional performance analysis

Figure 7. Fine-grained performance analysis. Fig. 7(a) presents a �ne-grained performance analysis of GPT-4o on

PROVE. We break down helpfulness and truthfulness scores by question type, and display the top-10 most common

question types sorted by performance. As seen, the model performs particularly well on questions that require

reasoning about spatial relationships (where are/is), object attributes (what color), and generating image

descriptions. Fig. 7(b) shows a word cloud of the most commonly hallucinated objects in answers to questions from

PROVE across all models. As seen, models commonly hallucinate common objects such as “tree”, “building’, “wall”,

and “sign”.
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Listing 1. Python API for the SceneGraph class
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Figure 8. LLM prompt for generating visual question-answer pairs along-with veri�cation programs.
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Figure 9. LLM text-based post-processing prompt.
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Footnotes

1 A few LLM-focused works also consider responses that contradict world knowledge as hallucinations, but we

exclude these from our scope.

2 This reduces false-positive hallucination detections, as no caption can capture every aspect of an image.
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