Research Article

On the Application of the Rayleigh-Ritz Method to a Projected Hamiltonian

Francisco M. Fernández¹

1. DQT, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, La Plata, Argentina

We apply the well known Rayleigh-Ritz method (RRM) to the projection of a Hamiltonian operator chosen recently for the extension of the variational principle to ensemble states. By means of a toy model we show that the RRM eigenvalues approach to those of the projected Hamiltonian from below in most cases but a few ones. We also discuss the effect of an energy shift and the projection of the identity operator.

1. Introduction

The Rayleigh-Ritz method (RRM) is one of the most widely used approaches for the study of the electronic structure of atoms and molecules^{[1][2]}. One of its main advantages is that the RRM eigenvalues converge from above towards the exact energies of the physical system^[3] (see also^[4] and references therein).

In their introduction to the Rayleigh–Ritz variational principle Ding et al^[5] resorted to a most curious Hamiltonian operator on a D-dimensional Hilbert space. Although such an operator is quite unrealistic for the treatment of actual physical problems, it seems to be worth further investigation.

2. The Rayleigh-Ritz method

The RRM applies to any Hermitian operator H with eigenvalues E_k and eigenvectors $\ket{\psi_k}$

$$H\ket{\psi_k} = E_k\ket{\psi_k}, k = 0, 1, \dots$$
 (1)

If we have a complete set of non-orthogonal vectors $|u_i\rangle$, i = 0, 1, ..., then the approximate RRM eigenvalues W_n are roots of the secular determinant $\frac{[1][2][6]}{[1][2][6]}$

$$|\mathbf{H} - W\mathbf{S}| = 0, \tag{2}$$

where **H** and **S** are $N \times N$ matrices with elements $H_{ij} = \langle u_i | H | u_j \rangle$ and $S_{ij} = \langle u_i | u_j \rangle$, $i, j = 0, 1, \ldots N - 1$, respectively. It is well known that $W_k \ge E_k$ for all $k = 0, 1, \ldots, N - 1^{[1][2][3][4]}$ [6].

2.1. Projected Hamiltonian

In their introduction to the Rayleigh-Ritz variational principle, Ding et al^[5] considered the projection

$$H_D = \sum_{k=0}^{D-1} E_k \ket{\psi_k} ig \psi_k ert,$$
 (3)

of H on a subspace \mathcal{H}_D of dimension D spanned by the set of eigenvectors $\mathcal{S}_D = \{ |\psi_k \rangle, k = 0, 1, \dots, D-1 \}.$ They correctly stated that

$$rac{\langle \psi | H_D | \psi
angle}{\langle \psi | \psi
angle} \ge E_0 orall \psi \in \mathcal{H}_D.$$

$$(4)$$

This introduction of the variational principle is far from what we commonly face in ordinary applications of nonrelativistic quantum mechanics where we do not know \mathcal{H}_D . If we already know \mathcal{H}_D then we can choose a complete basis set $\mathcal{B} = \{|i\rangle, i = 0, 1, \dots, D - 1\}$ of orthonormal vectors and, consequently, the diagonalization of the matrix of H_D in such a basis is a trivial problem. For this reason, in what follows we assume that \mathcal{H}_D is unknown. Typically, we have to deal with a Hamiltonian operator H defined on an infinite-dimensional Hilbert space \mathcal{H} and we do not know its eigenvalues and eigenvectors. However, we can try and do something interesting with the projected Hamiltonian of Ding et al by simply assuming that $\mathcal{H} \subset \mathcal{H}_D$.

If we assume that H_D is also defined on \mathcal{H} we can apply the RRM to this projected Hamiltonian. In such a case, the matrix elements are given by

$$(H_D)_{ij} = \sum_{k=0}^{D-1} E_k \langle u_i | \psi_k \rangle \langle \psi_k | u_j \rangle, \tag{5}$$

where $\{\ket{u_j}, j=0,1,\ldots\}$ spans the Hilbert space \mathcal{H} . We do not assume the vectors $\ket{u_j}$ to be orthonormal.

Under the conditions given above the results may be unexpected. For example, if $\psi \in \mathcal{H} \subset \mathcal{H}_D$ and $\langle \psi_k | \psi \rangle = 0, k = 0, 1, \dots, n-1, n+1, \dots, D-1$, then

$$\frac{\langle \psi | H_D | \psi \rangle}{\langle \psi | \psi \rangle} = E_n \frac{\left| \langle \psi_n | \psi \rangle \right|^2}{\langle \psi | \psi \rangle} \le E_n \frac{\langle \psi_n | \psi_n \rangle \langle \psi | \psi \rangle}{\langle \psi | \psi \rangle} = E_n, \tag{6}$$

where we have used the Cauchy-Schwartz inequality^[7]. We appreciate that it is possible to obtain lower bounds instead of upper ones.

2.2. Simple example

A suitable toy model is given by

$$H = -\frac{1}{2}\frac{d^2}{dx^2},\tag{7}$$

with the boundary conditions $\psi(0) = \psi(1) = 0$. This example was chosen in recent discussions of the RRM^{[4,][6]}. The exact eigenvalues and eigenfunctions are

$$E_k = rac{k^2 \pi^2}{2}, \psi_k(x) = \sqrt{2} \mathrm{sin}(k \pi x), k = 1, 2, \dots$$
 (8)

For simplicity, we choose the non-orthogonal basis set

$$u_i(x) = x^i(1-x), i = 1, 2, \dots,$$
 (9)

already used earlier^[6]. Table 1 shows that the RRM eigenvalues W_k converge from above towards the exact eigenvalues E_k as expected^{[1][2][3][4][6]}.

N	W_1	W_2	W_3	W_4
1	5			
3	4.934874810	21	51.06512518	
5	4.934802217	19.75077640	44.58681182	100.2492235
7	4.934802200	19.73923669	44.41473408	79.99595777
9	4.934802200	19.73920882	44.41322468	78.97848206
11	4.934802200	19.73920880	44.41321981	78.95700917
13	4.934802200	19.73920880	44.41321980	78.95683586
15	4.934802200	19.73920880	44.41321980	78.95683521
17	4.934802200	19.73920880	44.41321980	78.95683520
19	4.934802200	19.73920880	44.41321980	78.95683520

Table 1. Lowest RRM eigenvalues for the Hamiltonian (7)

Tables 2 and 3 show the RRM results for the projected Hamiltonian H_D with D = 1 and D = 2, respectively (note that k = 1, 2, ..., D in this example). We appreciate that there are D meaningful eigenvalues $W_k \neq 0$, k = 1, 2, ..., D, and the remaining roots vanish $W_k = 0$, $D < k \leq N$. It is interesting that the RRM yields the eigenvalues E = 0 exactly while the others are approximate (though, they converge towards the exact ones as N increases). A most curious fact is that the RRM eigenvalues W_k converge towards the exact ones E_k from below. However, this result is not general. In table 4 we show RRM eigenvalues for D = 3. We see that this approach yields an upper bound to E_1 for N = 1 and lower bounds to all the eigenvalues for N > 1. The well known proofs for the upper bounds mentioned above ^{[3][A]} (and references therein) do not apply here because the functions $u_i(x)$ cannot be expressed in terms of the finite set { $\psi_k(x), k = 1, 2, ..., D$ }.

N	W_1	$W_k, 1 < k \leq N$
1	4.927671482	
3	4.934799721	0
5	4.934802200	0
7	4.934802200	0

Table 2. RRM for the projected Hamiltonian with D=1

N	W_1	W_2	$W_k, 2 < k \leq N$
1	4.927671482		
3	4.934799721	19.40270646	0
5	4.934802200	19.73799899	0
7	4.934802200	19.73920734	0
9	4.934802200	19.73920880	0
11	4.934802200	19.73920880	0

Table 3. RRM for the projected Hamiltonian with D=2

N	W_1	W_2	W_3	$W_k, 3 < k \leq N$
1	4.988506932			
3	4.934799541	19.40270646	41.72191568	0
5	4.934802200	19.73799899	44.37877225	0
7	4.934802200	19.73920734	44.41306667	0
9	4.934802200	19.73920880	44.41321950	0
11	4.934802200	19.73920880	44.41321980	0
13	4.934802200	19.73920880	44.41321980	0

Table 4. RRM for the projected Hamiltonian with D=3

For every RRM eigenvalue W_k we obtain an approximate solution $\frac{[1][2][6]}{[2][6]}$

$$|arphi_k
angle = \sum_{j=1}^N c_{jk} \, |u_j
angle,$$
 (10)

and we choose such solutions to be orthonormal $\langle \varphi_k | \varphi_n \rangle = \delta_{kn}$. The results of tables 2, 3 and 4 suggest that

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \langle \varphi_{i} | H_{D} | \varphi_{j} \rangle | \varphi_{i} \rangle \langle \varphi_{j} | = \sum_{i=1}^{D} W_{i} | \varphi_{i} \rangle \langle \varphi_{i} |, \qquad (11)$$

because $\langle \varphi_i | H_D | \varphi_j \rangle = W_i \delta_{ij}$ [1][2][6].

In order to investigate the particular case N = 1 in more detail we calculated the expectation value $\langle H_D \rangle$ with the function $u_1(x)$. The results in table 6 clearly show that $\langle H_1 \rangle < E_1 < \langle H \rangle = 5$ and $E_1 < \langle H_D \rangle < \langle H \rangle$ for D > 1. The table suggests the obvious conclusion that $\lim_{D \to \infty} \langle H_D \rangle = \langle H \rangle$ that can be proved analytically:

$$\sum_{k=1}^{\infty} \frac{k^2 \pi^2}{2} \frac{\langle u_1 | \psi_k \rangle \langle \psi_k | u_1 \rangle}{\langle u_1 | u_1 \rangle} = \frac{240}{\pi^4} \sum_{k=1}^{\infty} \frac{1 - (-1)^k}{k^4} = 5.$$
(12)

It is worth adding that for D=4 we have $W_1>E_1$ for N=1 as aready discussed and also $W_2>E_2$ for N=3.

We also carried out some numerical experiments with $E_k = k^2 \pi^2/2 + c$, where c is a real constant. Table 5 shows that for $c = -5 W_1$ becomes an upper bound while W_2 and W_3 remain lower bounds.

N	W_1	W_2	W_3	$W_k, 3 < k \leq N$
1	-0.01111693899			
3	-0.06519776461	14.48794350	37.02490009	0
5	-0.06519779945	14.73830544	39.38265032	0
7	-0.06519779945	14.73920771	39.41308391	0
9	-0.06519779945	14.73920880	39.41321953	0
11	-0.06519779945	14.73920880	39.41321980	0
13	-0.06519779945	14.73920880	39.41321980	0

Table 5. RRM for the projected Hamiltonian with D=3 and $E_k=k^2\pi^2/2-5$

D	$\langle H_D angle$
1	4.927671482
3	4.988506932
5	4.996391207
7	4.998443548
9	4.999194603
11	4.999531169
13	4.999703701
15	4.999801038
17	4.999860037
19	4.999897849
21	4.999923186
23	4.999940795
25	4.999953410
27	4.999962682
29	4.999969649
31	4.999974985
33	4.999979140
35	4.999982424
37	4.999985053
39	4.999987183
41	4.999988927
43	4.999990368
45	4.999991570

Table 6. Expectation value of H_D with $u_1(x)$

2.3. Arbitrary example

We can extend the results of the preceding subsection to a more general case based on the same toy model. Suppose that we have a set of orthonormal vectors $|\psi_k\rangle$, k = 1, 2, ..., D and construct the projected Hamiltonian operator

$$H_{D} = \sum_{k=1}^{D} \alpha_{k} |\psi_{k}\rangle \langle\psi_{k}|, \qquad (13)$$

where α_k are arbitrary real numbers. We can obviously apply the RRM as in the preceding example. Table 7 shows RRM eigenvalues for the case D = 3 and $\alpha_k = k$. In this case we appreciate that $W_1 > 1$ for N = 1 and $W_1 < 1$ for all N > 1. Also $W_2 > 2$ for N = 3 and $W_2 < 2$ for all N > 3. We conclude that the RRM yields upper and lower bounds for this kind of projected Hamiltonian operators.

N	W_1	W_2	W_3	$W_k, 3 < k \leq N$
1	1.002664294			
3	0.9999994479	2.027339721	2.818209291	
5	0.9999999999	1.999877421	2.997673155	0
7	0.9999999999	1.999999852	2.999989656	0
9	0.9999999999	1.9999999999	2.999999979	0
11	0.9999999999	1.9999999999	2.999999999	0
13	1.0000000000	1.999999999	2.999999999	0

Table 7. RRM for the arbitrary Hamiltonian (13) with D=3 and $lpha_k=k$

3. What about the identity operator?

In the calculations discussed above we have considered the identity operator on ${\cal H}$

$$I = \sum_{k=1}^{\infty} |\psi_k\rangle \langle \psi_k|, \qquad (14)$$

so that the overlap matrix is given by $S_{ij} = \langle u_i | I | u_j \rangle$, i, j = 1, 2, ..., N. We obtain completely different results if we consider the projection of I on \mathcal{H}_D

$$I_D = \sum_{k=1}^{D} |\psi_k\rangle \langle \psi_k|, \qquad (15)$$

and the overlap matrix $S_{i,j}^D = \langle u_i | I_D | u_j \rangle$, i, j = 1, 2, ..., N. In this case, we obtain upper bounds for $1 \le N < D$ and the exact eigenvalues when N = D. For example, for D = N = 5 we have

$$\left|\mathbf{H}_{D} - W\mathbf{S}^{D}\right| = \frac{67108864 \left(\pi^{2} - 2W\right) \left(2\pi^{2} - W\right) \left(8\pi^{2} - W\right) \left(9\pi^{2} - 2W\right) \left(25\pi^{2} - 2W\right)}{9765625\pi^{46}}, \quad (16)$$

that yields the fifth lowest eigenvalues exactly.

4. Conclusions

It is not clear to us why Ding et al^[5] introduced the variational principle by means of a projected Hamiltonian operator because this principle as well as the properties of the RRM have already been proved for the kind of operators commonly found in actual physical problems^{[3][4]}. However, when the RRM is applied to the projected Hamiltonian in the usual way, one obtains lower bounds in most cases as shown above. It is interesting that the null N - D eigenvalues are given exactly for all N > D although the linear combinations of the approximate basis vectors $|u_i\rangle$ only yield the exact ones $|\psi_k\rangle$ in the limit $N \to \infty$. We have also shown that the RRM yields upper bounds for $1 \le N < D$ and exact eigenvalues for N = D when we consider the identity operator (15) instead of (14).

References

- 1. <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>f</u>F. L. Pilar, Elementary Quantum Chemistry (McGraw-Hill, New York, 1968).
- 2. ^{a, b, c, d, e, f}A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Dover Publications, Inc., Mineola, New York, 1996).
- 3. ^{<u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>J. K. L. MacDonald, Phys Rev. 43, 830 (1933).}
- 4. ^{a, b, c, d, e, f}F. M. Fernández, On the Rayleigh-Ritz variational method, arXiv:2206.05122 [quant-ph].
- 5. ^{a, b}, ^cL. Ding, C-L. Hong, and C. Schilling, Quantum 8, 1525 (2024). arXiv:2401.12104v2 [quant-ph]

- 6. <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>, <u>f</u>, <u>g</u>F. M. Fernández, J. Math. Chem. 62, 2083 (2024). arXiv:2405.10340 [quant-ph]
- 7. $^{\Lambda}$ T. Apostol, Calculus, Second ed. (John Wiley & Sons, New York, 1967).

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.