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On the Application of the Rayleigh-Ritz
Method to a Projected Hamiltonian
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We apply the well known Rayleigh-Ritz method (RRM) to the projection of a Hamiltonian operator
chosen recently for the extension of the variational principle to ensemble states. By means of a toy
model we show that the RRM eigenvalues approach to those of the projected Hamiltonian from
below in most cases but a few ones. We also discuss the effect of an energy shift and the projection of

the identity operator.

1. Introduction

The Rayleigh-Ritz method (RRM) is one of the most widely used approaches for the study of the
electronic structure of atoms and molecules!!ll2 One of its main advantages is that the RRM
eigenvalues converge from above towards the exact energies of the physical systeml3! (see alsol4] and

references therein).

In their introduction to the Rayleigh-Ritz variational principle Ding et all3l resorted to a most curious
Hamiltonian operator on a D-dimensional Hilbert space. Although such an operator is quite

unrealistic for the treatment of actual physical problems, it seems to be worth further investigation.

2. The Rayleigh-Ritz method

The RRM applies to any Hermitian operator H with eigenvalues E}, and eigenvectors |1)

H [g) = B ) k= 0,1,.... )
If we have a complete set of non-orthogonal vectors |u;), ¢ = 0,1,..., then the approximate RRM

eigenvalues W, are roots of the secular determinant1[21(6]

H - WS| =0, (2)
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where H and S are N x N matrices with elements H;; = (u;|H|u;) and S;; = (uiluj),

i,7=0,1,...N — 1, respectively. It is well known that W, > Ej, for all k = 0,1,..., N — 1[1[21[31[4]
Lol

2.1. Projected Hamiltonian

In their introduction to the Rayleigh-Ritz variational principle, Ding et alt3] considered the projection

D-1

Hp = ;} Ey, |r) (Yxl, (3)

of H on a subspace Hp of dimension D spanned by the set of eigenvectors

Sp = {|¢w),k =0,1,...,D — 1}. They correctly stated that

WHDW) v < . B

(L)

This introduction of the variational principle is far from what we commonly face in ordinary
applications of nonrelativistic quantum mechanics where we do not know Hp. If we already know
‘Hp then we can choose a complete basis set B = {|i),i = 0,1, ..., D — 1} of orthonormal vectors and,
consequently, the diagonalization of the matrix of Hp in such a basis is a trivial problem. For this
reason, in what follows we assume that # p is unknown. Typically, we have to deal with a Hamiltonian
operator H defined on an infinite-dimensional Hilbert space # and we do not know its eigenvalues
and eigenvectors. However, we can try and do something interesting with the projected Hamiltonian

of Ding et al by simply assuming that # C Hp.

If we assume that Hp is also defined on H we can apply the RRM to this projected Hamiltonian. In

such a case, the matrix elements are given by
D-1

(Hp)yy = Y Bx (wily) (Wiluy), (5)

k=0
where {|u;),j=0,1,...} spans the Hilbert space 7. We do not assume the vectors |u;) to be

orthonormal.

Under the conditions given above the results may be unexpected. For example, if v € H C Hp and

(WrlY) =0,k=0,1,...,n—1,n+1,...,D—1,then

2
WD) _ o (0 Gl ) _ (6)
W) 1) W)
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where we have used the Cauchy-Schwartz inequalityl”l. We appreciate that it is possible to obtain

lower bounds instead of upper ones.

2.2. Simple example

A suitable toy model is given by

1
2 dz?’

(7)

with the boundary conditions (0) = (1) = 0. This example was chosen in recent discussions of the

RRMI4I8], The exact eigenvalues and eigenfunctions are

K _
E, = ) ,Ur(z) = +/2sin(krz), k= 1,2,. ... (8)

For simplicity, we choose the non-orthogonal basis set
ui(z) = z'(1—2),5=1,2,..., (9)

already used earlierl®l. Table 1 shows that the RRM eigenvalues W}, converge from above towards the

exact eigenvalues Ej, as expectedt[21[31[41(6]
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N Wi W W3 W,

1 5

3 4.934874810 21 51.06512518

5 4.934802217 19.75077640 44.58681182 100.2492235
7 4.934802200 19.73923669 44.41473408 79.99595777
9 4.934802200 19.73920882 44.41322468 78.97848206
11 4.934802200 19.73920880 44.41321981 78.95700917
13 4.934802200 19.73920880 44.41321980 78.95683586
15 4.934802200 19.73920880 44.41321980 78.95683521
17 4.934802200 19.73920880 44.41321980 78.95683520
19 4.934802200 19.73920880 44.41321980 78.95683520

Table 1. Lowest RRM eigenvalues for the Hamiltonian (7)

Tables 2 and 3 show the RRM results for the projected Hamiltonian Hp with D =1 and D = 2,
respectively (note that k = 1,2,..., D in this example). We appreciate that there are D meaningful
eigenvalues Wy, #0, k=1,2,...,D, and the remaining roots vanish W, =0, D <k < N. It is
interesting that the RRM vyields the eigenvalues E = 0 exactly while the others are approximate
(though, they converge towards the exact ones as N increases). A most curious fact is that the RRM
eigenvalues W}, converge towards the exact ones Ej, from below. However, this result is not general. In
table 4 we show RRM eigenvalues for D = 3. We see that this approach yields an upper bound to
E; for N = 1 and lower bounds to all the eigenvalues for NV > 1. The well known proofs for the upper
bounds mentioned above [3ll4] (and references therein) do not apply here because the functions

u;(z) cannot be expressed in terms of the finite set {¢(z),k = 1,2,...,D}.
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N wh Wi, 1<k<N
1 4.927671482
3 4.934799721 0
5 4.934802200 0
7 4.934802200 0
Table 2. RRM for the projected Hamiltonian with D = 1
N Wi W, Wi,2<kE<N
1 4.927671482
3 4.934799721 19.40270646 0
5 4.934802200 19.73799899 0
7 4.934802200 19.73920734 0
9 4.934802200 19.73920880 0
11 4.934802200 19.73920880 0

Table 3. RRM for the projected Hamiltonian with D = 2
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N Wi W, Ws Wi,3<kE<N
1 4.988506932

3 4.934799541 19.40270646 41.72191568 0

5 4.934802200 19.73799899 44.37877225 0

7 4.934802200 19.73920734 44.41306667 0

9 4.934802200 19.73920880 44.41321950 0

11 4.934802200 19.73920880 44.41321980 0

13 4.934802200 19.73920880 44.41321980 0

Table 4. RRM for the projected Hamiltonian with D = 3

For every RRM eigenvalue W}, we obtain an approximate solution[tl[21[6]

N
lor) = zcjk ), (10)
j=1
and we choose such solutions to be orthonormal (|, ) = O, . The results of tables 2, 3 and 4 suggest
that
N N
SO (eilHples) o) () —ZW l:) (il (11)
=1 j=1 =1

because (g; |Hp|p;) = W;8;; L2161

In order to investigate the particular case N = 1 in more detail we calculated the expectation value

(Hp) with the function u;(z). The results in table 6 clearly show that (H;) < Ey < (H) =5 and

E, < (Hp) < (H) for D > 1. The table suggests the obvious conclusion that l%im (Hp) = (H) that
—00

can be proved analytically:

f: K2 (unlye) (Yelu) 240 $- 1-(-1)"

=5. (12)
k=1 (ur]ur) T k=1 K
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It is worth adding that for D =4 we have W; > E; for N =1 as aready discussed and also

Wy > Es for N = 3.

We also carried out some numerical experiments with B, = k*7%/2 + ¢, where c is a real constant.

Table 5 shows that for c = —5 W3 becomes an upper bound while W5 and W3 remain lower bounds.

N W W, W; Wi,3<k<N

1 —0.01111693899

3 —0.06519776461 14.48794350 37.02490009 0

5 —0.06519779945 14.73830544 39.38265032 0

7 —0.06519779945 14.73920771 39.41308391 0

9 —0.06519779945 14.73920880 39.41321953 0

11 —0.06519779945 14.73920880 39.41321980 0

13 —0.06519779945 14.73920880 39.41321980 0

Table 5. RRM for the projected Hamiltonian with D = 3and E;, = k*x2/2 — 5
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D (Hp)

1 4.927671482
3 4.988506932
5 4.996391207
7 4.998443548
9 4.999194603
11 4.999531169
13 4.999703701
15 4.999801038
17 4.999860037
19 4.999897849
21 4.999923186
23 4.999940795
25 4.999953410
27 4.999962682
29 4.999969649
31 4.999974985
33 4.999979140
35 4.999982424
37 4.999985053
39 4.999987183
41 4.999988927
43 4.999990368
45 4.999991570
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Table 6. Expectation value of Hp with u; (z)

2.3. Arbitrary example

We can extend the results of the preceding subsection to a more general case based on the same toy
model. Suppose that we have a set of orthonormal vectors |y;), k = 1,2,...,D and construct the

projected Hamiltonian operator

D
Hp =Y o |w) (¥l (13)
P

where ay, are arbitrary real numbers. We can obviously apply the RRM as in the preceding example.
Table 7 shows RRM eigenvalues for the case D =3 and «j = k. In this case we appreciate that
Wiy >1for N=1and W; <1 forall N > 1. Also Wy > 2 for N =3 and W5 < 2 for all N > 3. We

conclude that the RRM vyields upper and lower bounds for this kind of projected Hamiltonian

operators.
N W1 W, Ws Wg,3<k<N
1 1.002664294
3 0.9999994479 2.027339721 2.818209291
5 0.9999999999 1.999877421 2.997673155 0
7 0.9999999999 1.999999852 2.999989656 0
9 0.9999999999 1.999999999 2.999999979 0
11 0.9999999999 1.999999999 2.999999999 0
13 1.0000000000 1.999999999 2.999999999 0

Table 7. RRM for the arbitrary Hamiltonian (13) with D = 3and o, = k&

3. What about the identity operator?

In the calculations discussed above we have considered the identity operator on H
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1= 3" ) il (14)
k=1

so that the overlap matrix is given by S;; = (u;|I|u;), 4,5 = 1,2,..., N. We obtain completely different

results if we consider the projection of I on #p

D
Ip =) ) (vrl, (15)

=1
and the overlap matrix Si% = (u;|Iplu;), i,j = 1,2,...,N. In this case, we obtain upper bounds for

1 < N < D and the exact eigenvalues when N = D. For example, for D = N = 5 we have

67108864 (72 — 2W) (2w2 — W) (872 — W) (972 — 2W) (2572 — 2W
| _ STIOSEBA (x2 = 2W) (2 — W) (8n° W) (o — ) (25 —2W)
9765625746

that yields the fifth lowest eigenvalues exactly.

4. Conclusions

It is not clear to us why Ding et all3l introduced the variational principle by means of a projected
Hamiltonian operator because this principle as well as the properties of the RRM have already been
proved for the kind of operators commonly found in actual physical problems2ll4]. However, when
the RRM is applied to the projected Hamiltonian in the usual way, one obtains lower bounds in most
cases as shown above. It is interesting that the null NV — D eigenvalues are given exactly for all
N > D although the linear combinations of the approximate basis vectors |u;) only yield the exact
ones |¢;) in the limit N — co. We have also shown that the RRM vyields upper bounds for

1 < N < D and exact eigenvalues for N = D when we consider the identity operator (15) instead of

(14).
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