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Bessel’s correction adjusts the denominator in the sample variance formula from   to   to produce

an unbiased estimator for the population variance. This paper includes rigorous derivations,

geometric interpretations, and visualizations. It then introduces the concept of "bariance", an

alternative pairwise distances intuition of sample dispersion without an arithmetic mean. Finally, we

address practical concerns raised in Rosenthal’s article[1] advocating the use of  -based estimates

from a more holistic  -based viewpoint for pedagogical reasons and in certain practical contexts.

Finally, the empirical part using simulation reveals that the run-time of estimating population

variance can be shortened when using an algebraically optimized “bariance“ approach to estimate an

unbiased variance.
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1. Introduction and Motivation

Variance estimation is a foundational task in statistics and econometrics, with the sample variance being

the default estimator in most applications. The unbiased version, corrected by Bessel’s factor (dividing

by    rather than  ), compensates for the loss of one degree of freedom due to pre-estimating the

population mean. This correction is not just a simple algebraic trick–it admits deep geometric

interpretations via orthogonal projections in   and can be derived rigorously from them.

Despite its theoretical appeal, the unbiased estimator is not always the most optimal in practice. In small

samples especially, its higher variance may lead to suboptimal inference. This has led researchers to

consider shrunken estimators that intentionally trade off a small amount of bias for a signi�cant
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reduction in variance, thereby minimizing mean squared error (MSE). For example, empirical Bayes

methods shrink sample variances toward a global prior, stabilizing estimation across thousands of

features in genomic studies[2]. Similar techniques based on James-Stein shrinkage have been explored

for variance estimation in high-dimensional settings[3].

Beyond the univariate case, shrinkage ideas are especially powerful in multivariate settings. In particular,

shrinkage estimators for covariance matrices–such as the Ledoit-Wolf estimator[4]—have gained

popularity in �elds like econometrics and �nance, particularly in the �eld of asset pricing. These

estimators enhance the stability of sample covariance matrices by shrinking them toward structured

targets (e.g., the identity matrix), signi�cantly improving conditioning in high-dimensional models,

which are known to break down[4]. This has practical relevance in the construction of variance-

covariance matrices for portfolio optimization, factor models, and robust standard error estimation in

large-scale regression analysis for econometric applications[5].

In this broader context, this paper revisits classical variance estimation and introduces a novel

perspective through the concept of an alternative measure of sample dispersion based on the average

squared differences between all unordered pairs in a sample. It can be shown that for mean-centered

data, the "bariance" equals exactly twice the unbiased sample variance. Moreover, a linear-time

optimized formulation of the "bariance" can be derived using simple algebraic properties that avoids

quadratic pairwise computation, making it both theoretically elegant and computationally ef�cient.

Through a simulation study, I demonstrate that this optimized unbiased sample variance estimator

remains unbiased and improves runtime. We then revisit the controversial idea—advocated by

Rosenthal[1]—that dividing by   (rather than  ) may yield lower-MSE variance estimators in practice,

especially when unbiasedness is not strictly required.

This paper tries to bridge classical econometric and statistical theory with modern considerations of

ef�ciency, robustness, and computational scalability, while re-instating the often under-estimated

choices in estimator design or usage.

2. De�nitions and Setup

Let   be i.i.d. random variables with: 

n n − 1

, , … , ∈ RX1 X2 Xn

E[ ] = μ, Var( ) =Xi Xi σ2
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De�ne the sample mean and biased/unbiased variance estimates: 

3. Derivation of Bias and Bessel’s Correction

An estimator   for a parameter   is called unbiased if its expected value equals the true value: 

The normal  -based sample variance with denominator   is de�ned as:

We aim to compute  , the expected value of this estimator, to show that it is biased.

We start by expanding the squared deviations:

Thus:

Then, take expectation of  . By linearity of expectation to each term:

Compute  . Using the known identity:

So, the   cancels out, eventually:

Compute  . Recall that:
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Combining both terms now:

This shows that the estimator    is biased, underestimating the population variance  , because the

denominator is larger then the numerator.

Bessel’s Correction. To correct the bias, we de�ne the unbiased sample variance as:

This is known as Bessel’s correction — using   instead of   in the denominator compensates for the

loss of one degree of freedom from estimating the mean   with  .

4. Geometric Interpretation of Estimated Variance and 

 Degrees of Freedom

Orthogonal Decomposition

Let  . De�ne the mean 

 Then 

 Indeed,  .

E[ ] = Var( ) + (E[ ] = +X̄
2
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Figure 1. Orthogonal decomposition of 

Dimension and Degrees of Freedom

Sample Variance

Common Application using Orthogonal Decomposition for Dimensionalty reduction:

Principal Component Analysis (PCA)

Let   be a data matrix with rows as observations and columns as variables. Let  ,

where  .

PCA seeks orthonormal vectors   satisfying: 
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5. Introducing the “Bariance”

We de�ne the bariance of a sample    as the average squared difference over all

unordered pairs:

This can be interpreted as the average squared length of all edges in the complete graph on the sample

points.

We begin by expanding the inner squared difference:

Summing over all distinct  :

We split this into three terms:

Note the following observations:

For �xed  , there are   values of  , so: 

Similarly, 
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Substitute back into the Bariance formula. Now divide by  :

See empirical veri�cation in appendix A.

5.1. In the Case Of Mean-centered data

If the data is centered, i.e.,  , then:

We now relate this to the unbiased sample variance:

Therefore, following equality holds for the de�ned “Bariance“:

This result shows that bariance represents twice the unbiased sample variance when the sample is

mean-centered. It provides an elegant pairwise perspective on variance: instead of summing squared

deviations from a central value, we sum squared differences between all pairs and average, despite the

one we are currently looking from.
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Subsequent, Numerical Veri�cation of Theoretical Relationships:

Let  . From   with  : 

Main Findings:

: unbiased, lower MSE, standard estimator.

Bariance: biased (by  ), higher MSE due to both variance in�ation and squared bias.

Useful relation:   in the mean-centered data case.

Numerically (for  , standard normal, 1000 trials):

Estimator Point Estimate Bias Variance MSE

1.00091 0.00091 0.02156 0.02151

2.00181 1.00181 0.08625 1.08968

5.2. A Short Numerical Example with Five Numbers

Let  , so the sample mean is: 
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Ŝ
2

+θ

Bariance = 2 ⋅ Ŝ
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X = {2, 4, 6, 8, 10}
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The sum of squared deviations: 

Unbiased sample variance: 

Biased sample variance: 

The sum of all pairwise squared differences: 

Bariance: 

Summary Table of Point Estimators

Metric Value

Sample Mean  6

Variance (biased)  8

Variance (unbiased)  10

Bariance 20
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5.3. Graph-Theoretic View of Bariance

Figure 2. Complete graph of sample values — each edge contributes as a

component to the “bariance”.

5.4. Deviation from Mean (Variance) vs. Pairwise Differences (Bariance)

Figure 3. Blue: variance (mean-deviation, n-1 degrees of freedom adjustment). Green: pairwisedistance = a

bariance component.
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5.5. The Pairwise Difference Grid

Figure 4. Symmetric Grid of  , 0.0 for  , for 

5.6. On the Performance of the ’Bariance’ Point Estimator using  -distributed Data

Let  , Using  ,   we obtain:

Summary Table of Empirical ’Bariance’ Point Estimator Performance

Estimator Mean Bias Variance MSE

8.00087 0.00087 2.92574 2.92281

16.00174 8.00174 11.70295 75.71907

Numerical Veri�cation of Theoretical Relationships

Let  :

( −Xi Xj )2 i = j

X = {2, 4, 6, 8, 10}

Γ

X ∼ Γ(k = 2, θ = 2) ⇒ E[X] = 4,  Var(X) = 8 n = 100 τ = 1000

Ŝ
2

Bariance

= 8 ⇒ = 64σ2 σ4

Var( ) = 2.92574, Var(Bariance) = 11.70295Ŝ
2

Empirical MSE(Bariance) = 75.71907

qeios.com doi.org/10.32388/3GJGNA.2 11

https://www.qeios.com/
https://doi.org/10.32388/3GJGNA.2


We numerically verify:

6. Discussion: Should We Just Divide by  ?

In Rosenthal[1] argues that using   instead of   may lead to a smaller mean squared error (MSE) —

especially when teaching or in practical settings.

He shows that while dividing by   yields an unbiased estimator, this might come at the cost of higher

variance. In some cases, a biased but lower-MSE estimator using   is preferable:

“...a smaller, shrunken, biased estimator actually reduces the MSE...” —[1]

This introduces another viewpoint: unbiasedness isn’t always the ultimate goal — minimizing error in

practice often is.

Numerical Example: Bias vs. MSE

Suppose we have   observations drawn from a population with true variance  . Then:

The biased estimator divides by  : 

The unbiased estimator divides by  : 

Now compute Mean Squared Error (MSE):

It turns out (and Rosenthal notes this explicitly) that:

So in some cases, even though   is biased, its total MSE is still smaller!

Var(Bariance) ≈ 4 ⋅ Var( ) ⇒ 11.70295 ≈ 4 ⋅ 2.92574 = 11.70296Ŝ
2

MSE(Bariance) ≈ 4 ⋅ Var( ) + ⇒ 75.71907 ≈ 4 ⋅ 2.92574 + 64 = 75.70295Ŝ
2
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7. A Simulation Study: Bias , Variance, and MSE Across Denominator

Values

We consider the family of estimators for the population variance  :

The simulation is carried out with the following parameters:

Sample size: 

True variance: 

Distribution: 

Number of simulations: 

For each value of   (in increments of 0.5), we compute the following empirically: 

2

σ2

:= ( − for varying a > 0σ̂
2
a

1

a
∑
i=1

n

Xi X̄)2

n = 5

= 10σ2

∼ N (0, )Xi σ2

100,000

a ∈ [3.5, 8.5]

Bias( )σ̂
2
a

Bias2

Variance

MSE

= E[ ] −σ̂
2
a σ2

= (E[ ] − )σ̂
2
a σ2

2

= Var[ ]σ̂
2
a

= + VarianceBias2
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Empirical Results

a (denominator) Bias Variance MSE

3.5 2.1044 65.8077 67.9122

4.0 0.0004 50.3840 50.3844

4.5 1.1967 39.8096 41.0063

5.0 3.9384 32.2458 36.1842

5.5 7.3615 26.6494 34.0109

6.0 11.0254 22.3929 33.4183

6.5 14.7015 19.0803 33.7819

7.0 18.2728 16.4519 34.7247

7.5 21.6817 14.3315 36.0131

8.0 24.9034 12.5960 37.4994

8.5 27.9314 11.1577 39.0891

Table 1. Empirical results averaged from 100,000 simulations for variance estimator using   and 

 in 0.5 increments. The bold rows highlight  ,   and  , respectively.

2

n = 5

a ∈ [3.5, 8.5] a ∈ n − 1 n n + 1
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Figure 5. Empirical MSE, Bias , and Variance of the sample variance estimator for   and  .

Minimum MSE occurs between   and  . (  in the case of  )

8. Computational Complexity of Variance Bariance Estimators and

Optimization

Let   be a sample of size  . De�ne:

Biased sample variance:

Unbiased sample variance (Bessel corrected):

2 a ∈ [3.5, 8.5] n = 5

a = 5.5 a = 6.5 6 = n + 1 N

X = { , , … , } ⊂ RX1 X2 Xn n

:=S 2 1

n
∑
i=1

n

( − )Xi X̄
2
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Bariance (pairwise variance):

Bariance (Optimized):

Estimator Operations Complexity

Biased Variance

1 pass to compute mean 

1 pass to compute squared deviations

Total: 2 linear scans

For  : 5 additions, 5 subtractions, 5 squarings

Unbiased Variance Same steps as biased estimator; only the divisor differs. No added

computation.

Bariance (Naïve)

All   ordered pairs evaluated

Each requires subtraction + squaring

For  :   pairs

Cost grows quadratically with sample size

Bariance (Optimized) Uses 2 scalar sums:  , 

Each computed in 1 pass

For  : 5 additions, 5 squarings

Table 2. Computational complexity of variance and bariance estimators with explanation

8.1. Computational Complexity Comparison with Numerical Illustration

We compare the computational cost of the biased variance, unbiased variance, and bariance estimators

using both theoretical analysis and a numerical example for  .

:=Ŝ
2 1

n − 1
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n

( − )Xi X̄
2

Bariance(X) :=
1

n(n − 1)
∑
i≠j

( − )Xi Xj
2

∑ −
2n

n(n − 1)
X 2

i

2

n(n − 1)
(∑ )Xi

2

= ∑( −S 2 1
n Xi X̄)2
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n = 5

O(n)

= ∑( −Ŝ
2 1

n−1
Xi X̄)2

O(n)

( −1

n(n−1)
∑i≠j Xi Xj )2

n(n − 1)

n = 5 5 × 4 = 20
O( )n2

∑2n

n(n−1)
X2

i

− 2

n(n−1)
(∑ )Xi

2

∑Xi ∑X2
i

n = 5
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n = 5
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Example:

Biased Variance:

Unbiased Variance:

Naïve Bariance:

Optimized Bariance:

Thus, all estimators yield consistent results, but the number of operations differs signi�cantly with

growing  .

While the pairwise form of the bariance appears quadratic, algebraic reduction allows it to be computed

in linear time, just like classical variance. This makes it a viable alternative even in large-scale statistical

computations.

8.2. Empirical Runtime

To evaluate the practical performance of variance and bariance estimators, we conducted an empirical

benchmark based on simulated data. The goal was to measure actual computation time across increasing

sample sizes for the four as above de�ned estimators.

8.2.1. Parameters of the Normal-Based Simulation

Number of simulations per sample size: 1000

Sample sizes tested:

Distribution:

Timing measurement: Wall-clock time per estimator (summed over 1000 replications)

Hardware environment: CPU timing measured in Python on a standard workstation

X = {2, 4, 6, 8, 10}

= 6, = ∑( − 6 = = 8X̄ S 2 1

5
Xi )2 40

5

= ∑( − 6 = = 10Ŝ
2 1

4
Xi )2 40

4

( − = 200, (10 unordered pairs) ⇒ Bariance = = 20∑
i<j

Xi Xj)2 2 ⋅ 200
20

∑ = 30, ∑ = 220Xi X 2
i

Bariance = ⋅ 220 − ⋅ 900 = 110 − 90 = 20
2 ⋅ 5

5 ⋅ 4

2

5 ⋅ 4

n

n ∈ {10, 20, … , 100}

∼ N (0, 1)Xi
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All implementations were naïvely vectorized using broadcasting or looped to mimic real computational

effort and make the comparison fair between estimator types.

n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

10 0.0131 0.0142 0.0601 0.0119

20 0.0208 0.0143 0.2191 0.0092

30 0.0115 0.0115 0.4872 0.0091

40 0.0121 0.0123 0.8767 0.0104

50 0.0134 0.0132 1.5155 0.0092

60 0.0124 0.0122 2.1050 0.0090

70 0.0186 0.0176 2.7712 0.0087

80 0.0126 0.0205 3.6592 0.0155

90 0.0139 0.0135 5.0322 0.0095

100 0.0127 0.0125 5.6617 0.0098

Table 3. Empirical runtime (in seconds) for 1000 simulations per estimator at different sample sizes
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Figure 6. Empirical runtime comparison of variance and bariance estimators over 1000 simulations per

sample size.

8.2.2. Gamma-Distributed Data

To examine runtime behavior under non-Gaussian conditions, we conducted a second simulation study

using data generated from a Gamma distribution. The  -distribution is positively skewed, making it a

useful alternative to test estimator performance beyond the symmetric   case.

Parameters of the Gamma-Based Simulation

Number of simulations per sample size: 500

Sample sizes tested:

Distribution:

Timing measurement: Wall-clock time per estimator (summed over 500 replications)

Hardware environment: Standard workstation with vectorized Python implementation

Γ

N

n ∈ {100, 200, 300, 400, 500}

∼ Γ(2, 2)Xi
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n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

100 0.0073 0.0105 0.0149 0.0065

200 0.0083 0.0101 0.0430 0.0084

300 0.0080 0.0102 0.1075 0.0073

400 0.0077 0.0101 0.1937 0.0074

500 0.0128 0.0164 0.3266 0.0095

Table 4. Empirical runtime (in seconds) for 500 simulations per estimator using Gamma-distributed data

8.2.3. Highly Dispersed Gamma-Distributed Data

To further assess runtime robustness under high skew and dispersion, we generated data from a 

 distribution with increased variance. This setup simulates conditions with greater variability, which are

common in skewed real-world datasets.

Parameters of the Highly Dispersed Gamma-Based Simulation

Number of simulations per sample size: 1000

Sample sizes tested:

Distribution:

Timing measurement: Wall-clock time per estimator (summed over 1000 replications)

Hardware environment: Standard workstation with vectorized Python implementation

Γ

n ∈ {50, 100, 150, 200, 250}

∼ Γ(1.5, 4.0)Xi
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n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

50 0.0134 0.0171 0.0173 0.0141

100 0.0132 0.0171 0.0284 0.0121

150 0.0139 0.0184 0.0507 0.0128

200 0.0156 0.0183 0.0831 0.0127

250 0.0161 0.0179 0.1284 0.0129

Table 5. Empirical runtime (in seconds) for 1000 simulations using a highly dispersed Gamma distribution

9. Conclusion

Bessel’s correction is a foundational concept that ensures unbiased estimates of variance. We explored its

necessity through algebraic, geometric, and pairwise differences reasoning (“Bariance”), building both

intuition and understanding. Additionally, we considered a pedagogical and practical perspective, such as

Rosenthal’s  -based view for estimating variance.

Although the unbiased estimator is mathematically correct in expectation, the biased version can

sometimes be more intuitive and, in certain contexts, statistically preferable—for many sampling

distributions. Furthermore, empirical results revealed a faster runtime in our simulation example using

the average pairwise differences de�nition as an unbiased variance estimator, particularly when

employing the algebraically optimized formula using scalar sums.

To sum up, the main �nding—the run-time optimized estimator for the Bariance formula—emerged as a

coincidental yet signi�cant observation: that this unbiased estimator can be computed in linear time and

statistically outperforms the conventional unbiased sample variance estimator in all tested scenarios.

Naturally, many other estimators exist for sample variance, including those designed to trade off bias for

computational gains. A complexity theorist or mathematician could potentially derive theoretical bounds

on the time complexity of such estimators. Thus, the optimized Bariance formula stands as a viable

alternative with promising practical implications for real-time multivariate big data applications,

including forecasting (especially with shrunken variance-covariance estimators), computational biology,

chemistry, and �nance.

MSE
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Appendix A. Proof of Equivalence: Naïve vs Optimized Bariance

Estimators

To verify the theoretical equivalence between the naïve and optimized formulations of the bariance

estimator, we conducted a simulation study using the exact formulas de�ned in Table 2. The data were

drawn from a highly dispersed  - distribution.

Estimator Formulas

Naïve Bariance:

Optimized Bariance:

Simulation Parameters

Distribution: ( ,  )

Sample sizes:

Number of simulations per  : 1000

Language: Python (NumPy)

Precision check:  with  , 

Γ

= ( −Bariancenaïve
1

n(n − 1)
∑
i≠j

Xi Xj)2

= ∑ −Barianceopt
2n

n(n − 1)
X 2

i

2

n(n − 1)
(∑ )Xi

2

Γ 1.5 4.0

n ∈ {50, 100, 150, 200, 250}

n

numpy.allclose rtol = 10−9 atol = 10−9
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Results

Mean Naïve Bariance Mean Optimized Bariance Max Absolute Difference

50 47.0330 47.0330

100 48.4181 48.4181

150 47.9282 47.9282

200 47.8339 47.8339

250 47.6121 47.6121

Table 6. Bariance estimator comparison using formula-based de�nitions

Conclusion

Across all sample sizes tested, the values of the bariance computed using both the naïve and optimized

formulas were numerically equivalent within machine precision. This empirically con�rms the algebraic

identity: 

Notes

This paper is in an early draft stage; suggestions for improvement are welcome and greatly appreciated.

This research has bene�ted from 3 open access commentators on https://www.qeios.com/read/3GJGNA.

JEL Codes: C10, C80
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