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Bessel’s correction adjusts the denominator in the sample variance formula from   to   to produce

an unbiased estimator for the population variance. This paper includes rigorous derivations, geometric

interpretations, and visualizations. We then introduce the concept of “bariance,” an alternative

pairwise interpretation of sample dispersion. Finally, we address practical concerns raised in

Rosenthal’s article advocating the use of  -based estimates from a MSE-based viewpoint for practical

reasons and in certain contexts. Finally the empirical part using simulation reveals a shorter runtime

for estimating population variance can be shortened using an optimized “bariance“ approach using

scalar sums.

1. De�nitions and Setup

Let   be i.i.d. random variables with:

De�ne the sample mean and biased/unbiased variance estimates:

2. Derivation of Bias and Bessel’s Correction

An estimator   for a parameter   is called unbiased if its expected value equals the true value:

The sample variance with denominator   is de�ned as:
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We aim to compute  , the expected value of this estimator, and show that it is biased.

Use the identity for variance in terms of raw moments.

We start by expanding the squared deviations:

Thus:

Take expectation of  .

We use linearity of expectation:

We now compute each part individually.

Compute .

Using the identity:

So:

Compute .

Recall that:

Thus:

Final result.
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Putting everything together:

This shows that the estimator   is biased, underestimating the population variance  .

Bessel’s Correction.

To correct the bias, we de�ne the unbiased sample variance as:

This is known as Bessel’s correction — using   instead of   in the denominator compensates for the

loss of one degree of freedom from estimating the mean   with  .

3. Geometric Interpretation of Variance

3.1. Orthogonal Projection

Figure 1. Projection of data vector onto mean direction.

E[ ] = ( + ) − ( + ) = − = ( )S 2 μ2 σ2 μ2 σ2

n
σ2 σ2

n

n − 1

n
σ2

E[ ] =S 2 n − 1

n
σ2

S 2 σ2

:= ⇒ E[ ] =Ŝ
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3.2. The Dimension Argument

Projection onto  : 1-dimensional mean component

Residual lives in 

Hence, degrees of freedom = 

4. Introducing the “Bariance”

De�nition and Expansion of the Bariance.

We de�ne the bariance of a sample   as the average squared difference over all unordered

pairs:

This can be interpreted as the average squared length of all edges in the complete graph on the sample

points.

Expand the square.

We expand the inner squared difference:

Summing over all distinct  :

We split this into three terms:

Note the following observations: - For �xed  , there are   values of  , so:

Similarly, 

So the �rst two terms become:
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Now consider the double sum:

Putting it all together:

Substitute into the Bariance formula

Now divide by  :

4.1. Special case — The Case Of Mean-centered data

If the data is centered, i.e.,  , then:

We now relate this to the unbiased sample variance:

Therefore, following equality holds for the de�ned sum of pairwise differences:

This result shows that bariance represents twice the unbiased sample variance when the sample is mean-

centered. It provides an elegant pairwise perspective on variance: instead of summing squared deviations

from a central value, we sum squared differences between all pairs and average.
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4.2. A Short Numerical Example with Five Numbers

Let 

Metric Value

Sample Mean  6

Variance (biased) 8

Variance (unbiased) 10

Bariance 20

4.3. Graph-Theoretic View of Bariance

Figure 2. Complete graph of sample values — each edge

contributes to the “bariance”.
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4.4. Deviation from Mean vs. Pairwise Differences

Figure 3. Blue: variance (mean-deviation). Green: pairwise distance = a bariance component.

4.5. The Pairwise Difference Grid

Figure 4. Grid of   for 

5. Discussion: Should Just We Divide by  ?

In Rosenthal [1] argues that using   instead of   may lead to a smaller mean squared error (MSE) —

especially when teaching or in practical settings.

He shows that while dividing by   yields an unbiased estimator, this might come at the cost of higher

variance. In some cases, a biased but lower-MSE estimator using   is preferable:
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“…a smaller, shrunken, biased estimator actually reduces the MSE…” — [1]

This introduces another viewpoint: unbiasedness isn’t always the ultimate goal — minimizing error in

practice often is.

Numerical Example: Bias vs. MSE

Suppose we have   observations drawn from a population with true variance  . Then:

The biased estimator divides by  : 

The unbiased estimator divides by  : 

Now compute Mean Squared Error (MSE):

It turns out (and Rosenthal notes this explicitly) that: -    - So in some cases, even

though   is biased, its total MSE is smaller!

6. A Simulation Study: Bias2, Variance, and MSE Across Denominator

Values

Simulation Setup: Estimator Behavior for   and 

We consider the family of estimators for the population variance  :

The simulation is carried out with the following parameters:

Sample size: 

True variance: 

Distribution: 

Number of simulations: 

For each value of   (in increments of 0.5), we compute the following empirically:
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Empirical Results

a (denominator) Bias2 Variance MSE

3.5 2.1044 65.8077 67.9122

4.0 0.0004 50.3840 50.3844

4.5 1.1967 39.8096 41.0063

5.0 3.9384 32.2458 36.1842

5.5 7.3615 26.6494 34.0109

6.0 11.0254 22.3929 33.4183

6.5 14.7015 19.0803 33.7819

7.0 18.2728 16.4519 34.7247

7.5 21.6817 14.3315 36.0131

8.0 24.9034 12.5960 37.4994

8.5 27.9314 11.1577 39.0891

Table 1. Empirical results averaged from 100,000 simulations for variance estimator using   and 

 in 0.5 increments
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Figure 5. Empirical MSE, Bias2, and Variance of the sample variance estimator for   and  .

Minimum MSE occurs between   and  .

7. Computational Complexity of Variance and Bariance Estimators

and Optimization using Scalar Sums

Let   be a sample of size  . De�ne:

Biased sample variance:

Unbiased sample variance (Bessel corrected):

Bariance (pairwise variance):
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Estimator Operations Complexity

Biased Variance

1 pass to compute mean 

1 pass to compute squared deviations

Total: 2 linear scans

For  : 5 additions, 5 subtractions, 5 squarings

Unbiased Variance

Same steps as biased estimator; only the divisor differs.

No added computation.

Bariance (Naïve)

All   ordered pairs evaluated

Each requires subtraction + squaring

For  :   pairs

Cost grows quadratically with sample size

Bariance (Optimized)

Uses 2 scalar sums:  , 

Each computed in 1 pass

For  : 5 additions, 5 squarings 

Table 2. Computational complexity of variance and bariance estimators with explanation

7.1. Computational Complexity Comparison with Numerical Illustration

We compare the computational cost of the biased variance, unbiased variance, and bariance estimators

using both theoretical analysis and a numerical example for  .

Example: 

Biased Variance:

S 2

= ∑1
n ( − )Xi X

¯ ¯¯̄ 2

X
¯ ¯¯̄

n = 5

O(n)

Ŝ
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Unbiased Variance:

Naïve Bariance:

Optimized Bariance:

Thus, all estimators yield consistent results, but the number of operations differs signi�cantly with

growing  .

While the pairwise form of the bariance appears quadratic, algebraic reduction allows it to be computed in

linear time, just like classical variance. This makes it a viable alternative even in large-scale statistical

computations.

7.2. Empirical Runtime Simulation

To evaluate the practical performance of variance and bariance estimators, we conducted an empirical

benchmark based on simulated data. The goal was to measure actual computation time across increasing

sample sizes for the above de�ned estimators.

Parameters of the Simulation Study

Number of simulations per sample size: 1000

Sample sizes tested: 

Distribution: 

Timing measurement: Wall-clock time per estimator (summed over 1000 replications)

Hardware environment: CPU timing measured in Python on a standard workstation

All implementations were naïvely vectorized using broadcasting or looped to re�ect real computational

effort and make the comparison fair between estimator types.
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n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

10 0.0131 0.0142 0.0601 0.0119

20 0.0208 0.0143 0.2191 0.0092

30 0.0115 0.0115 0.4872 0.0091

40 0.0121 0.0123 0.8767 0.0104

50 0.0134 0.0132 1.5155 0.0092

60 0.0124 0.0122 2.1050 0.0090

70 0.0186 0.0176 2.7712 0.0087

80 0.0126 0.0205 3.6592 0.0155

90 0.0139 0.0135 5.0322 0.0095

100 0.0127 0.0125 5.6617 0.0098

Table 3. Empirical runtime (in seconds) for 1000 simulations per estimator at different sample sizes

Figure 6. Empirical runtime comparison of variance and bariance estimators over 1000 simulations per

sample size.
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8. Conclusion

Bessel’s correction is a foundational concept that ensures unbiased estimates of variance. We explored its

necessity through algebraic, geometric, and pairwise differences reasoning (sum of pairwise differences),

building both intuition and understanding. Additionally, we considered a pedagocial and practical

perspective, such as Rosenthal’s MSE-based view.

Although the unbiased estimator is mathematically correct in expectation, the biased version can

sometimes be more intuitive, and, in certain contexts, is statistically preferable in practice. Furthermore,

the empirical results reveal a faster runtime in our simulationon example using the average pairwise

differences de�nition as variance estimator when using the algebraic optimized de�nition with scalar

sums.

References

�. a, bRosenthal JS (2015). The kids are alright: Divide by n when estimating variance [Internet]. Institute of Ma

thematical Statistics. Available from: https://imstat.org/2015/11/17/the-kids-are-alright-divide-by-n-when-e

stimating-variance/

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/3GJGNA 14

https://www.qeios.com/
https://doi.org/10.32388/3GJGNA

