
18 December 2024, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Convolutional Neural Networks Do Work
with Pre-Defined Filters

Christoph Linse1, Erhardt Barth1, Thomas Martinetz1

1. Institute for Neuro- and Bioinformatics, University of Lübeck, Lübeck, Germany

We present a novel class of Convolutional Neural Networks called Pre-defined Filter Convolutional

Neural Networks (PFCNNs), where all convolution kernels with are pre-defined and

constant during training. It involves a special form of depthwise convolution operation called a Pre-

defined Filter Module (PFM). In the channel-wise convolution part, the kernels are drawn

from a fixed pool of only a few (16) different pre-defined kernels. In the convolution part linear

combinations of the pre-defined filter outputs are learned. Despite this harsh restriction, complex

and discriminative features are learned. These findings provide a novel perspective on the way how

information is processed within deep CNNs. We discuss various properties of PFCNNs and prove

their effectiveness using the popular datasets Caltech101, CIFAR10, CUB-200-2011, FGVC-Aircraft,

Flowers102, and Stanford Cars. Our implementation of PFCNNs is provided on Github

https://github.com/Criscraft/PredefinedFilterNetworks.

1. Introduction

Over the years the computer vision community has been shifting its focus from using pre-defined

features towards training end-to-end systems such as Convolutional Neural Networks (CNNs), which

have become state-of-the-art in many visual applications for several reasons. CNNs have empirically

proven their good generalization abilities[1], state-of-the-art performance in image recognition[2],

especially in domains of unconstrained image data (taken in the wild)[3]. The features learned by CNNs

can be generic, such that they can be used for a number of different applications[4].

However, CNNs typically have millions of weights and usually operate in the over-parameterized

regime, which is also called the modern interpolating regime[5]. Pruning experiments show that many

of these weights serve no particular function and could be omitted without any loss in performance. It

Qeios

n × n n > 1

1 × n × n

1 × 1

qeios.com doi.org/10.32388/3J4ODP 1

https://github.com/Criscraft/PredefinedFilterNetworks
https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

seems that the superiority of CNNs over traditional image recognition techniques comes with the cost

of having an enormous pool of superfluous weights that makes the networks inefficient and less

transparent.

In this work, we try to significantly reduce the number of trainable weights in a CNN by applying

certain restrictions on the convolutional weights. We apply only a few different pre-defined kernels

and do not adjust them during training to save time, computational resources, and energy.

We mold this idea into a Pre-defined Filter Module (PFM), essentially a depthwise convolution layer

consisting of a channel-wise convolution and a subsequent convolution that

convolves over all input channels C. In the following, we will abbreviate the latter layer with

 convolution. The former layer utilizes a pool of 16 different edge filter kernels, each of

which is applied to a single input channel individually. As the pre-defined filters are frozen we only

adjust the convolution weights according to the training data. Learning in this context means

finding linear combinations of the pre-defined filter outputs. Training is done end-to-end by finding

linear combinations of the outputs of these pre-defined filters using gradient descent.

We construct the novel architecture PFNet18 (Pre-defined Filter Network 18) by replacing all

convolution layers with of ResNet18 by our PFMs. This eliminates many adjustable weights and

PFNet18 requires only of the training parameters of a ResNet18. Please note, that we use the PFMs

in the entire network, not only in the first layer. We give empirical evidence that PFNet18 with edge

filters can outperform ResNet18 on some fine-grained image datasets. Furthermore, we show that the

choice of filters matters, i.e. that edge filters lead to better recognition rates than random filters.

The concept of PFCNNs is fundamentally different from fine-tuning, where network weights are

initialized with pre-trained weights. Our pre-defined Filter Convolutional Neural Networks (PFCNNs)

apply pre-defined filters for all convolution kernels with , which are not changed during

training. In our approach, we keep the pre-defined convolution kernels and do not alter

them during training. There are only a few different kernels (16 in our experiments) that are reused

within each layer.

The paper is structured as follows: Section 2 gives a short overview of the related work. Section 3

provides all details about the pre-defined filters and our architecture PFNet18. Section 4 presents the

training details and the image classification datasets. The results are presented in Section 5 and

subsequently discussed in Section 6. The paper completes with our conclusions in Section 7.

1 × 3 × 3 C × 1 × 1

1 × 1 1 × 3 × 3

1 × 1

n > 1

13%

n × n n > 1

1 × n × n

qeios.com doi.org/10.32388/3J4ODP 2

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

2. Related work

The concept of pre-defined filters has a long history in vision. However, the limitation to fixed, pre-

defined spatial filters seems to be novel in the intermediate layers of neural networks. In 1980

Fukushima[6] used pre-defined filters in self-organizing neural networks. In today’s era of deep

networks, pre-defined filters are sometimes used as a pre-processing step to boost recognition

performance. Ma et al.[7] used pre-defined filters to incorporate domain knowledge into their training.

They, however, replaced only the first convolutional layer of CNNs with trainable traditional image

filters (Gabor filters).

Gavrikov and Keuper[8] showed that learning linear combinations of fixed, random filters is a

successful strategy to solve image classification problems, especially with wide CNNs (many

channels). They also showed that the random filters can be shared across layers to further reduce the

number of weights. In our study, we also learn linear combinations of filter outputs. However, we

reduce the number of random filters to only 16 hand-picked kernels, that are applied in each depth-

wise convolution operation. We show that the choice of these kernels matters, i.e. that edge filters

outperform random kernels.

3. Pre-defined Filter Networks

3.1. Pre-defined Filter Module

The Pre-defined Filter Module (PFM) is illustrated in Figure 1. It is structured like a depthwise

convolutional layer. In the first part of the module, each input channel is convolved independently

with exactly one filter kernel from a pool of pre-defined kernels. In our experiments, we

use different edge kernels. The order in which the kernels are distributed over the input

channels is fixed. The input channel with index is convolved with the kernel with index .

The width of the intermediate part of the module can be chosen with the parameter f, as can be seen in

Figure 1. Conceptually, f determines the number of copies of the input channels prior to

convolution. The number of intermediate channels after applying the pre-defined filter kernels is

. Our implementation requires with the number of pre-defined kernels .

Another requirement is .

1 × 3 × 3 k

k = 16

i i mod k

nin

= ⋅ fnint nin mod k = 0nint k

≥nint nin

qeios.com doi.org/10.32388/3J4ODP 3

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

In the second part of the module, an convolution creates an arbitrary number of linear

combinations of the channels. By default, the first part of the PFM is frozen during training and only

the weights in the convolution are adjusted to the training set.

Figure 1. Pre-defined Filter Module (PFM). kernels are taken from a small pool of kernels

and are applied channel-wise as known from depthwise convolution. The order in which the

kernels are distributed over the input channels is fixed.

3.2. Choice of the parameter f

The order in how the pre-defined filters are applied to the input channels should have no effect on the

set of functions that can be learned by the network. The same should apply to a permutation of the

channels in the input image, i.e., the order of kernels should not be part of the architecture. This has

implications for the choice of the parameter .

First, we discuss the first PFM that is applied to the RGB input image. For , each kernel is applied

once to each RGB input channel. In this case, the order of the input channels or the pre-defined filters

is irrelevant. If we permute the input channels or the pre-defined filters we can always permute the

weights in the consecutive layer to get the same result as before.

× 1 × 1nint

1 × 1

1 × n × n

F

f

f = k

1 × 1

qeios.com doi.org/10.32388/3J4ODP 4

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Second, we discuss the second and following PFMs. Here, we choose . Again, the order of the

pre-defined filters has no effect on the set of functions that can be learned by the network. If two

input kernels at positions A and B are swapped, this operation can be undone in two steps. First, the

preceding layer swaps its output channels A and B by permuting its weights. If skip connections

exist, all preceding PFMs have to adjust their layer. Second, one needs to swap the inputs of the

consecutive layer, which can also be done by permuting the corresponding weights.

The order of kernels would matter for , which we avoid. This can easily be seen with some

combinatorics. Please remember, that the input channel with index is convolved with the kernel

. As shown in Figure 1, the input channels are copied prior to convolution. Thus, each input

channel receives a set of different pre-defined kernels. However, if the order would be arbitrary we

had filter combinations that could occur for a single input channel. This is larger than for

. Therefore, if two pre-defined filters are swapped this could introduce new filter

combinations, and the set of functions could change.

3.3. PFNet18 architecture

The PFNet18 architecture is described in Table 1. For comparison, ResNet18 architecture is presented

in Table 2. Starting from ResNet18, we replace the convolution layers with Pre-defined Filter Modules.

The first module has , which is also the number of pre-defined kernels. Thus, the first layer

has intermediate channels. To be consistent with ResNet18, we choose

 output channels for the convolution. After the first PFM, we stack 8 residually

connected Basic Blocks and replace the convolution operations with PFMs with . The residual

connections are kept. After the last block, there is an adaptive average pooling layer and a fully

connected layer just like in ResNet18. PFNet18 has 1.46 million parameters, which is only of the

11.23 million parameters of the ResNet18.

f = 1

F

1 × 1

1 × 1

1 × 1

f ∈ [2, k − 1]

i

i mod k

f

()k
f

k

f ∈ [2, k − 1]

F

f = 16

= 3 ⋅ 16 = 48nint

= 64nout 1 × 1

f = 1

13%

qeios.com doi.org/10.32388/3J4ODP 5

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Layers Output size Kernel

Pre-defined Filter Module

MaxPooling , 64, stride 2

Double HF Residual Module

Double HF Residual Module

Double HF Residual Module

Double HF Residual Module

Double HF Residual Module

Double HF Residual Module

Double HF Residual Module

Classification layer

Adaptive average pool

 fully connected, softmax

Table 1. Details of the PFNet18 architecture.

⎡

⎣
⎢

3 × 224 × 224

48 × 112 × 112

64 × 112 × 112

⎤

⎦
⎥

⎡

⎣
⎢

input,

1 × 3 × 3, depthwise

48 × 1 × 1, pixelwise

⎤

⎦
⎥

64 × 56 × 56 3 × 3

64 × 56 × 56 [] × 2
1 × 3 × 3, depthwise

64 × 1 × 1, pixelwise

128 × 28 × 28 []
1 × 3 × 3, depthwise

64 × 1 × 1, pixelwise

128 × 28 × 28 []
1 × 3 × 3, depthwise

128 × 1 × 1, pixelwise

256 × 14 × 14 []
1 × 3 × 3, depthwise

128 × 1 × 1, pixelwise

256 × 14 × 14 []
1 × 3 × 3, depthwise

256 × 1 × 1, pixelwise

512 × 7 × 7 []
1 × 3 × 3, depthwise

256 × 1 × 1, pixelwise

512 × 7 × 7 []
1 × 3 × 3, depthwise

512 × 1 × 1, pixelwise

512 × 1 × 1

qeios.com doi.org/10.32388/3J4ODP 6

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Layers Output size Kernel

Convolution , 64, stride 2

MaxPooling , 64, stride 2

Basic Block

Basic Block

Basic Block

Basic Block

Basic Block

Basic Block

Basic Block

Classification layer
Adaptive average pool

 fully connected, softmax

Table 2. Details of the ResNet18 architecture.

3.4. Choice of pre-defined filters

In our experiments, we employ only 16 different pre-defined filters. We choose edge filters

because they provide gradient information and are often found in rudimentary forms in trained

CNNs[9][10]. Figure 2 presents 8 uneven and 8 even edge filters in different orientations including

horizontal, vertical, and diagonal. We suppose that employing edge filters in PFCNNs will lead to an

appropriate bias that will help the network to learn robust features. The kernel elements are

normalized such that and . The constant component is missing in the

convolution kernels, which should bias the network toward the processing of edges and shapes. As

there are only 8 linearly independent kernels (some of the kernels have a flipped sign) the kernels

span an 8-dimensional space.

64 × 112 × 112 7 × 7

64 × 56 × 56 3 × 3

64 × 56 × 56 [] × 2
64 × 3 × 3

64 × 3 × 3

128 × 28 × 28 []
64 × 3 × 3

128 × 3 × 3

128 × 28 × 28 []
128 × 3 × 3

128 × 3 × 3

256 × 14 × 14 []
128 × 3 × 3

256 × 3 × 3

256 × 14 × 14 []
256 × 3 × 3

256 × 3 × 3

512 × 7 × 7 []
256 × 3 × 3

512 × 3 × 3

512 × 7 × 7 []
512 × 3 × 3

512 × 3 × 3

512 × 1 × 1

1 × 3 × 3

wi

= 0∑i wi | | = 1∑i wi

qeios.com doi.org/10.32388/3J4ODP 7

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Figure 2. 8 uneven and 8 even convolution kernels used in PFNet18.

4. Experimental setup

We train and test PFNet18 on several image classification datasets and compare its performance with

ResNet18. The following sections present the benchmark datasets and all training details.

1 × 3 × 3

qeios.com doi.org/10.32388/3J4ODP 8

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

4.1. Datasets

Example images for each dataset are presented in Table 3. The Caltech101 dataset[11] has a total of 8677

images, which were collected from the internet. They are scaled to be about 300 pixels wide. The

dataset contains 101 categories, as well as a background class, which is ignored in the experiments.

The categories are quite diverse and reach from animals and plants to electronic products and

vehicles. The objects are shown in cluttered environments or in front of realistic or white

backgrounds. As no official split is available, we randomly pick 20 training images and 10 test images

per class.

The Caltech-UCSD Birds-200-2011 dataset (CUB-200-2011)[12] originated from the Caltech-UCSD

Birds 200 dataset[13] from 2010. We use the official split with 5994 training and 5794 test images. The

average width of the images is about 470 pixels. There are 200 challenging bird categories (classes),

which have plenty of inter-class variation due to deformations, plumage color, lighting, perspective,

and pose.

The Fine-Grained Visual Classification of Aircraft dataset (FGVC-Aircraft)[14] provides 6667 images

for training and 3333 images for testing. It contains large images with an average width of 1100 pixels.

We use the 100 categories of airplane models. The airplanes are rigid and do not deform. However, the

same airplane model can appear quite different depending on the advertisement, airlines, perspective,

and cropping.

The images from the 102 Category Flower dataset (Flowers102)[15] show one or several blossoms of

102 flower types. As the other datasets in our study have training and test sets only, we merge the

official training and validation set of Flowers102 to our training set and we test on the official test set.

Accordingly, the training set contains 2040 images, and the test set 6149 images. The images have a

mean width of 630 pixels. While some flower types can have subtle differences in their appearance,

there are large intra-class variations due to scaling, perspective, lighting, and color variants. We only

use categorical information within the dataset.

The StanfordCars dataset[16] from Stanford University provides 8144 training and 8041 test images.

The average width of an image is 700 pixels. The dataset covers 196 different car models. Usually, one

car is shown per image. The cars can be on the road or indoors, shown from the front, side, or back,

introducing many variations to the dataset.

qeios.com doi.org/10.32388/3J4ODP 9

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

CIFAR10[17] contains 50000 training images and 10000 test images of the size pixels. The

dataset provides the 10 classes plane, car, bird, cat, deer, dog, frog, horse, ship, and truck. For our

experiments on the CIFAR10 dataset, we adjusted the architectures to be compatible with small image

shapes by removing the max pool layer and having a stride of 1 in the first convolutional layer and a

kernel size of 3. These adjustments apply for both, PFNet18 and ResNet18.

Table 3. Images from the benchmark datasets showing each two instances of four classes.

4.2. Training details

The network weights are initialized using Kaiming normal initialization[18]. We apply the Lamb

optimizer[19] to minimize the cross-entropy loss of our models. The batch size is 64. We train for 300

epochs. The initial learning rate of is step-wise reduced to . The weight decay

is 1. We use the Pytorch framework[20] to implement the models and to perform the training on an

NVidia GTX 1080 Ti. The experiments are repeated 5 times with random seeds. Each seed affects the

weight initialization of the networks, the mini-batch aggregation, and random effects during data

augmentation. For image augmentation, we apply random cropping and random horizontal flipping.

32 × 32

= 0.003lrinit ⋅lrinit 10−2

qeios.com doi.org/10.32388/3J4ODP 10

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

5. Results

5.1. Benchmarks

The average test performance of the PFNet18 and ResNet18 models is presented in Table 4. PFNet18

outperforms ResNet18 on the Caltech101, FGVC-Aircraft, and Flowers102 datasets. On Caltech101,

PFNet18 has an almost higher test accuracy than ResNet18 and on Flowers102 the improvement

is . On the Stanford Cars dataset, both architectures perform very similarly. ResNet18 achieves

higher accuracies on the CIFAR10 and the CUB-200-2011 datasets. The experiments show that the

restriction to employ only 16 different pre-defined filters is sufficient to learn complex

relationships in image data. The PFNet18 models reached high accuracy by simply finding linear

combinations of pre-defined filter outputs. This is intriguing because it demonstrates that the spatial

kernels do not have to be learned at all in many cases.

Dataset PFNet18 ResNet18

Caltech101 65.60 0.66 57.19 0.78

CIFAR10 92.15 0.18 94.33 0.11

CUB-200-2011 53.00 0.55 58.51 0.53

FGVC-Aircraft 75.49 0.29 73.32 1.06

Flowers102 80.66 0.35 73.40 0.34

Stanford Cars 77.06 0.42 77.90 0.37

Table 4. Test accuracy on benchmark datasets for training from scratch and 5 different seeds.

5.2. Feature visualization

The promising results indicate that our choice of pre-defined filters introduces a good bias for at least

half of the datasets. In an ablation study in Section 5.5 we study the choice of filters quantitatively. In

this section, we study the learned filters of PFNet18 qualitatively using the feature visualization

10%

7%

1 × 3 × 3

± ±

± ±

± ±

± ±

± ±

± ±

qeios.com doi.org/10.32388/3J4ODP 11

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

technique[21]. Feature visualization reveals specific input patterns that maximize the activation of

specific network units. The outputs of this technique are input images that show characteristics of the

features processed within the network. The idea is to initialize an input image with Gaussian noise and

to modify the image such that it maximizes the activation of a specific neuron using gradient ascent.

Hence, this procedure is also called activation maximization. Let be the network weights and let

 be the jth feature map in layer i given and some input image : for activation maximization,

the input image with

is determined[21]. We perform the optimization using gradient ascent on a fixed . Such generated

images often look unnatural and regularization approaches have been used in the literature to

improve the visual quality[22]. Between the update steps with learning rate we

apply random image transformations to support the gradient ascent to find robust maxima. Our

transformations include random rotation, scaling, blurring, cropping, pixel rolling, and

shifting/scaling the image tensor distribution toward the normal distribution. Similar

transformations have been applied in the works[23][24][25].

Table 5 shows feature visualizations of PFNet18 and ResNet18 trained on the Caltech101 and

Flowers102 datasets. Table 5 is best viewed digitally with zoom. The images were picked by hand to

illustrate the variation and the characteristics of the features in different layers.

The results indicate that both PFNet18 and ResNet18 are able to learn complex visual features. One

observes that the features processed at the end of the first block consist of simple, repetitive textures.

At the end of the second block, more details are added to these textures and it is possible to see a

difference between the datasets. The models that were trained on the Flowers102 dataset produce leaf

and flower prototypes. The models that were trained on Caltech101 also include rectangular shapes

and more variety in general. Similar observations apply for the third and fourth blocks, where the first

object instances appear. The feature visualization of the classification layer reveals what the networks

expect to look like cougar face, face, motorbike, and saxophone (Caltech101) and Mexican aster,

primula, tree mallow, and water lily (Flowers102).

Feature visualization reveals that both PFNet18 and ResNet18 learned object-specific features. On the

Caltech101 and Flowers102 datasets, the PFNets18’s feature visualizations look more convincing. On

Caltech101, exactly one instance of the target class is generated with a plausible shape. The cougar’s

θ

(θ, x)fij θ x

x∗

= arg (θ, x)x∗ max
x∈RC×H×W

fij

θ

x ← x + μ (θ, x)∇xfij μ

qeios.com doi.org/10.32388/3J4ODP 12

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

face consists of a head with two eyes and ears. The human face has a nose, two eyes (the second one is

difficult to see), hair, and a flat chin. The motorbike has two wheels, a saddle, and a handle. The

saxophone is a long stick with buttons and a shimmering surface. ResNet18 does not generate such

clear shapes and seems to focus more on textures. Among many feature visualizations and also the

other classes, no examples could be found that look as convincing as those of PFNet18. The results

show that PFCNNs are able to learn complex, object-specific features from only 20 training images per

class.

qeios.com doi.org/10.32388/3J4ODP 13

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Table 5. Feature visualization for models trained on the Caltech101 and Flowers102 dataset. Each image

is an input that maximizes the activation of a specific channel in a specific layer. The visualized classes

are cougar face (top left), face (top right), motorbike (bottom left), and saxophone (bottom right) for

qeios.com doi.org/10.32388/3J4ODP 14

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

the Caltech101 dataset and Mexican aster (top left), primula (top right), tree mallow (bottom left) and

water lily (bottom right) for the Flowers102 dataset. Best viewed with zoom.

5.3. Computational efficiency

Computational efficiency and model size are important factors for training and deploying deep

networks, especially on limited hardware with harsh energy and memory requirements. Table 6

summarizes relevant computational aspects of the models. PFNet18 has only 1.46 million parameters

and requires only 6 MB space on the disk, whereas ResNet18 needs 45 MB and has 11.23 million

parameters. The reduction of parameters does not lead to a significant change in training time, as the

duration of a backward pass is around 65-70 ms for a batch size of on an NVidia

GTX 1080 Ti. PFNet18 needs an additional time of 10 ms per batch. This is interesting because the

number of mult-adds of PFNet18 is only while ResNet18 has mult-adds. Counting

Mult-Add operations means counting the FLOPs of a model and to divide the result by 2. Although

PFNet18 requires much fewer computations in total, its implementation requires more nodes in the

computational graph and more distinct GPU calls. Our implementation seems to be not very efficient

on current GPU hardware, which is optimized for a few but large tensor operations. Therefore, we

assume that there is still much room for optimizations in the implementation of PFMs.

Model
Parameters

()
Size (MB) FP (ms) BP (ms) GPU Memory FP (GB)

Mult-Adds

()

PFNet18 1.46 6 37 70 3.9 0.26

ResNet18 11.23 45 27 65 3.0 1.81

Table 6. Computational efficiency of PFNet18 and ResNet18 considering model size and speed. FP

denotes forward pass and BP denotes backward pass. During BP the hyperparameters described above

are used. The input tensors have the shape .

64 × 3 × 224 × 224

0.26 ⋅ 109 1.81 ⋅ 109

106 109

64 × 3 × 224 × 224

qeios.com doi.org/10.32388/3J4ODP 15

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

5.4. Aliasing effects

Aliasing may occur in CNNs due to spatial sub-sampling. In PFNet18 and ResNet18 there are 3 skip

connections with a convolution and a stride of 2 where information is lost. The aliasing effects

do not always seem to affect the classification performance. To test this, we blur the input data of

these 3 convolution operations with a Gaussian filter and train the models again. For ResNet18,

there is no significant change in the test accuracy on the Flowers102 dataset. For PFNet18, however,

there was a great improvement in test accuracy from to .

The aliasing issue is studied in Figure 3 where different convolution operations with stride 2 are

applied to an input image. The input image contains two white lines on a black background. The

 convolution does only capture one of the lines because of spatial sampling. With stride 2, our

 pre-defined filters do not always capture both lines, either. This is a problem for PFNet18

because each input channel is convolved with exactly one pre-defined filter. The

architecture lacks other convolution steps on the same input channel that could add redundancy. This

means that information can be irrevocably lost. Thus, PFNet18 relies on the skip connections to

compensate for aliasing effects and additional aliasing within the skip connections must be avoided.

Our results suggest that ResNet18 is more robust against aliasing in the skip connections. In Figure 3

we see that random filters often capture both lines, which illustrates that ResNet18 has a lower

risk of losing image information by aliasing. In addition, each convolution layer from ResNet18

convolves each input channel as many times as there are output channels. This gives more

opportunities to propagate information from each input channel to the next layer.

1 × 1

3 × 3

72.40 ± 0.59 80.66 ± 0.35

1 × 1

1 × 3 × 3

1 × 3 × 3

3 × 3

qeios.com doi.org/10.32388/3J4ODP 16

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

Figure 3. Aliasing effects. Various stride 2 convolutional operations are applied on

the input image showing two horizontal lines. Orange color denotes positive

kernel weights, black denotes zero, and blue negative weights.

5.5. Ablation study

An ablation study is conducted to study the relevance of single elements in the PFM as well as the

importance of the choice of pre-defined filters. Table 7 presents the results of the ablation study. The

experiments are conducted on the Flowers102 dataset with the same hyperparameters as in the

previous experiments. Similar to Table 4 the results show average values for five different seeds.

First, we show that the choice of pre-defined kernels matters. We pick 16 random pre-defined kernels

from a uniform distribution. These kernels are frozen during training. Only the convolutions are

adjusted to the Flowers102 dataset. In this setting, the performance drops to . However,

interestingly, it is still as good as ResNet18.

1 × 1

73.98 ± 1.24%

qeios.com doi.org/10.32388/3J4ODP 17

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

In another experiment, the random pre-defined kernels are unfrozen, such that the model can

determine the 16 kernels during training. Note that we give each PFM its own 16 kernels to optimize.

This model gave a test accuracy of , which is a small improvement. When the pre-

defined filters are initialized with the edge filters and allowed to be optimized during training, the test

accuracy is , which is similar to the default experiment. Our findings indicate that the

proposed set of filter kernels provides a beneficial bias for the Flowers102 dataset.

Second, we study the importance of the first ReLU in the PFMs. The first ReLU is removed from all

PFMs. This means that the convolution with the pre-defined kernels and the subsequent

 convolution form one linear operation. The resulting filter will have a kernel that is differently

organized than the convolution kernels in ResNet18. The performance drops to . The ReLU

seems to be important, possibly due to the increased amount of non-linearity.

Model Description Accuracy

PFNet18 No aliasing, default 80.66 0.35

PFNet18 Aliasing 72.40 0.59

PFNet18 First ReLU removed, no aliasing 75.21 0.23

PFNet18 16 Trainable filters, edge init., no aliasing 80.11 0.62

PFNet18 16 Trainable filters, random init., no aliasing 74.54 0.88

PFNet18 16 frozen filters, random init., no aliasing 73.98 1.24

ResNet18 Default 73.40 0.34

ResNet18 No aliasing 74.36 0.57

Table 7. Test accuracy of variants of PFNet18 and ResNet18 on the Flowers102 dataset for training from

scratch.

74.54 ± 0.88%

80.11 ± 0.62

1 × 1

75.21 ± 0.23

±

±

±

±

±

±

±

±

qeios.com doi.org/10.32388/3J4ODP 18

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

6. Discussion

Pre-defined filter kernels lead to significant performance improvements on half of the datasets that

we evaluated. This improvement is achieved with only 16 different spatial filter kernels and

only of the trainable weights of ResNet18. Despite the restriction of PFCNNs to only learn

combinations of pre-defined filter outputs, discriminative features emerge during training. For

PFCNNs, the ability to perform visual recognition is based on the appropriate combination of filter

outputs. These findings provide a new perspective on the information processing within deep CNNs

and they show once again, that many weights in conventional CNNs are redundant.

We found that aliasing can significantly reduce the performance of PFCNNs. Since this effect is much

lower in CNNs, one can assume that the CNNs learn how to deal with aliasing; which, however, implies

that resources need to be spent to deal with the problem.

Feature visualization shows that the combinations of the pre-defined filter outputs yield complex,

object-specific features. Note that these features emerged from only 20 training images per class.

Compared to ResNet18, our PFCNNs seem to also consider the shape of the recognized objects, while

ResNet18 seems to focus on textures.

We discovered that the choice of pre-defined filters matters. When using random kernels instead of

edge filters, the test accuracy on the Flowers102 dataset drops to , which, however, is

still as good as ResNet18, which is remarkable. We conclude that edge filters add a suitable bias to the

image recognition problem.

7. Conclusion

We introduced a novel class of CNNs called Pre-defined Filter Convolutional Neural Networks

(PFCNNs), which utilizes fixed pre-defined filters in all convolution kernels with while

keeping the end-to-end training paradigm. In our implementation, the PFNet18 architecture is a

ResNet18 where we replaced the convolution operations with so-called Pre-defined Filter Modules

(PFMs). These modules consist of a depthwise convolution with pre-defined weights that are not

changed during training; only the weights of the subsequent convolution are adjusted. PFNet18

has only 13% of the weights of ResNet18 but outperforms ResNet18 on the Caltech101, FGVC-Aircraft,

and Flowers102 datasets with an absolute increase of . On the CIFAR10, CUB-200-2011, and

Stanford Cars datasets, PFNet18 does not reach higher performances than ResNet18 but still performs

1 × 3 × 3

13%

73.98 ± 1.24%

n × n n > 1

1 × 1

10%

qeios.com doi.org/10.32388/3J4ODP 19

https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

well with much fewer parameters. The results demonstrate that our choice of taking edge filters as

pre-defined filter kernels is a useful bias for image data. Interestingly, the pre-defined edge filters are

useful biases not only in the first but also in the higher layers of the CNN. Our results imply that it is

unnecessary to train the spatial kernels of a CNN to reach reasonable test accuracies on image data,

which saves most trainable weights. In contrast to pruning, where weights are eliminated, we save

weights by excessive weight sharing using a small pool of 16 pre-defined kernels. Our approach uses

only of the parameters of ResNet18, which may be useful for mobile devices and other

applications where model size is critical.

Many questions regarding PFCNNs arise, e.g., the reduction of weights by the PFMs could be combined

with more recent, efficient architectures to get very light models with much fewer parameters. These

models are in stark contrast to the usual over-parameterized approaches but still achieve reasonable

results. We hope that PFCNNs will lead to interesting comparative studies and a better understanding

of the way information is processed internally by CNNs. It is left to future research to explore how

PFCNNs perform on large-scale datasets such as ImageNet[26], and how PFCNNs perform in transfer-

learning scenarios. Another question involves how the choice (and number) of filters affect the

performance of PFCNNs as well as the robustness against input perturbations and adversarial attacks.

In addition, the width of the networks could be increased to allow for more filters to be linearly

combined in each layer. This might boost the performance of the PFCNNs according to Gavrikov and

Keuper[8] who found that increasing the width of networks with fixed, random spatial kernels leads to

an improvement of the test accuracy on CIFAR10. Also, the question remains to what extent the results

can be transferred to other domains, for instance, audio processing. Overall it seems that the power of

deep networks mainly lies in their ability to learn how to combine filters, rather than in the learning of

spatial convolution kernels.

Acknowledgments

The work of Christoph Linse was supported by the Bundesministerium für Wirtschaft und

Klimaschutz through the Mittelstand-Digital Zentrum Schleswig-Holstein Project. The Version of

Record of this contribution was presented at the 2023 International Joint Conference on Neural

Networks (IJCNN), and is available online at https://doi.org/10.1109/IJCNN54540.2023.10191449

13%

qeios.com doi.org/10.32388/3J4ODP 20

https://doi.org/10.1109/IJCNN54540.2023.10191449
https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

References

1. ^Linse C, Martinetz T (2022). "Large Neural Networks Learning from Scratch with Very Few Data and

without Regularization." arXiv. doi:10.48550/ARXIV.2205.08836.

2. ^He K, Zhang X, Ren S, Sun J. "Deep Residual Learning for Image Recognition." In: 2016 IEEE Conferenc

e on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE; 2016. p. 770–778. doi:

10.1109/CVPR.2016.90.

3. ^Alshazly H, Linse C, Barth E, Martinetz T (2019). "Handcrafted versus CNN Features for Ear Recognitio

n". Symmetry. 11 (12): 1493. doi:10.3390/sym11121493.

4. ^Hertel L, Barth E, Käster T, Martinetz T (2017). "Deep Convolutional Neural Networks as Generic Featu

re Extractors." arXiv:1710.02286 [cs]. arXiv: 1710.02286.

5. ^Belkin M, Hsu D, Ma S, Mandal S (2019). "Reconciling modern machine-learning practice and the clas

sical bias–variance trade-off". Proceedings of the National Academy of Sciences. 116 (32): 15849–1585

4. doi:10.1073/pnas.1903070116.

6. ^Fukushima K. "Neocognitron: A self-organizing neural network model for a mechanism of pattern rec

ognition unaffected by shift in position." Biological Cybernetics. 36(4): 193--202. doi:10.1007/BF00344

251. Apr. 1980.

7. ^Ma Y, Luo Y, Yang Z (2020). "PCFNet: Deep neural network with predefined convolutional filters". Neu

rocomputing. 382: 32--39. doi:10.1016/j.neucom.2019.11.075.

8. a, bGavrikov P, Keuper J. "Rethinking 1x1 Convolutions: Can we train CNNs with Frozen Random Filter

s?" arXiv. Jan 2023. Available from: arXiv:2301.11360.

9. ^Krizhevsky A, Sutskever I, Hinton GE. "ImageNet Classification with Deep Convolutional Neural Netwo

rks." In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processi

ng Systems. Vol. 25. Curran Associates, Inc.; 2012.

10. ^Gavrikov P, Keuper J. "CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters." In:

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA:

IEEE; 2022. p. 19044-19054. doi:10.1109/CVPR52688.2022.01848.

11. ^Li F-F, Fergus R, Perona P. "Learning Generative Visual Models from Few Training Examples: An Incre

mental Bayesian Approach Tested on 101 Object Categories." In: 2004 Conference on Computer Vision a

nd Pattern Recognition Workshop. Washington, DC, USA: IEEE; 2004. p. 178-178. doi:10.1109/CVPR.200

4.383.

qeios.com doi.org/10.32388/3J4ODP 21

https://doi.org/10.48550/ARXIV.2205.08836
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/sym11121493
https://arxiv.org/abs/1710.02286
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/j.neucom.2019.11.075
https://arxiv.org/abs/2301.11360
https://doi.org/10.1109/CVPR52688.2022.01848
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

12. ^Wah C, Branson S, Welinder P, Perona P, Belongie S. "The Caltech-UCSD Birds-200-2011 Dataset." Cal

ifornia Institute of Technology; 2011. Report No.: CNS-TR-2011-001.

13. ^Welinder P, Branson S, Mita T, Wah C, Schroff F, Belongie S, Perona P. Caltech-UCSD Birds 200. Califor

nia Institute of Technology; 2010. Report No.: CNS-TR-2010-001.

14. ^Maji S, Rahtu E, Kannala J, Blaschko M, Vedaldi A. "Fine-Grained Visual Classification of Aircraft." arX

iv:1306.5151 [cs]. 2013 Jun. arXiv: 1306.5151.

15. ^Nilsback M-E, Zisserman A. "Automated Flower Classification over a Large Number of Classes." In: 20

08 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Bhubaneswar, India: IEE

E; 2008. p. 722-729. doi:10.1109/ICVGIP.2008.47.

16. ^Krause J, Stark M, Deng J, Fei-Fei L. "3D Object Representations for Fine-Grained Categorization." In:

2013 IEEE International Conference on Computer Vision Workshops. Sydney, Australia: IEEE; 2013. p. 55

4-561. doi:10.1109/ICCVW.2013.77.

17. ^Krizhevsky A. (2009). "Learning multiple layers of features from tiny images."

18. ^He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on Im

ageNet Classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chil

e: IEEE; 2015. p. 1026-1034. doi:10.1109/ICCV.2015.123.

19. ^You Y, Li J, Reddi S, Hseu J, Kumar S, Bhojanapalli S, Song X, Demmel J, Hsieh C-J (2020). "Large batc

h optimization for deep learning: Training BERT in 76 minutes." In: International Conference on Learni

ng Representations.

20. ^Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Des

maison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintal

a S. "PyTorch: An Imperative Style, High-Performance Deep Learning Library." In: Wallach H, Larochell

e H, Beygelzimer A, d'Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing

Systems 32. Curran Associates, Inc.; 2019. p. 8024-8035.

21. a, bErhan D, Bengio Y, Courville A, Vincent P (2009). "Visualizing higher-layer features of a deep netwo

rk". University of Montreal. 1341 (3): 1–13.

22. ^Mahendran A, Vedaldi A. "Understanding deep image representations by inverting them." In: 2015 IEE

E Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE; 2015. p. 5188

–5196. doi:10.1109/CVPR.2015.7299155.

23. ^Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. "Understanding Neural Networks Through Deep Visua

lization." arXiv. 2015. Number: arXiv:1506.06579. Available from: arXiv:1506.06579.

qeios.com doi.org/10.32388/3J4ODP 22

https://arxiv.org/abs/1306.5151
https://doi.org/10.1109/ICVGIP.2008.47
https://doi.org/10.1109/ICCVW.2013.77
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2015.7299155
https://arxiv.org/abs/1506.06579
https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

24. ^Mordvintsev A, Olah C, Tyka M (2015). "Inceptionism: Going deeper into neural networks."

25. ^Nguyen A, Yosinski J, Clune J. "Deep neural networks are easily fooled: High confidence predictions for

unrecognizable images." In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Boston, MA, USA: IEEE; 2015. p. 427-436. doi:10.1109/CVPR.2015.7298640.

26. ^Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M,

Berg AC, Fei-Fei L (2015). "ImageNet Large Scale Visual Recognition Challenge". International Journal

of Computer Vision. 115 (3): 211–252. doi:10.1007/s11263-015-0816-y.

Declarations

Funding: The work of Christoph Linse was supported by the Bundesministerium für Wirtschaft und

Klimaschutz through the Mittelstand-Digital Zentrum Schleswig-Holstein Project.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/3J4ODP 23

https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1007/s11263-015-0816-y
https://www.qeios.com/
https://doi.org/10.32388/3J4ODP

