
Adrian David Cheok and Emma Yann Zhang

From Turing to Transformers: A Comprehensive Review and
Tutorial on the Evolution and Capabilities of Generative

Models

Copyright: 2023 © the Author(s). Text is available under a Creative Commons Attribution 4.0 International license. More information in our Publishing Policy.

https://doi.org/10.32388/3NTOLQ.2

Oct 30, 2023

Preprint v2

From Turing to Transformers: A Comprehensive

Review and Tutorial on the Evolution and

Applications of Generative Transformer Models

Adrian David Cheok and Emma Yann Zhang

October 30, 2023

Abstract

Generative transformers have revolutionized the realm of artificial in-
telligence, particularly in the domain of natural language processing. This
paper embarks on a historical journey, tracing the roots of computational
theory with Alan Turing and culminating in the sophisticated generative
transformer architectures of today. Through a blend of review, history,
and tutorial, we aim to provide a holistic understanding of these models,
emphasizing their significance, underlying mechanisms, and vast applica-
tions. The tutorial segment offers a hands-on approach, guiding readers
through the intricacies of building a basic generative transformer model.
As we navigate this transformative landscape, we also shed light on chal-
lenges, ethical considerations, and future prospects in the world of gener-
ative models.

Keywords: generative transformers; large language models; genera-
tive models; Alan Turing; artificial intelligence; machine learning; neural
network; natural language processing

1 Introduction

1.1 Background and significance of generative models in
AI

Generative models have emerged as a cornerstone in the realm of artificial in-
telligence (AI). At their core, these models are designed to generate new data
samples that are similar to the input data they have been trained on. This
capability has profound implications, enabling machines to create, imagine, and
replicate complex patterns observed in the real world.

The inception of generative models can be traced back to the early days of
AI, where the foundational work of Alan Turing laid the groundwork for the
evolution of generative models and the broader field of AI. Following Turing’s
pioneering contributions, the field witnessed the emergence of simple algorithms

1

designed to mimic and reproduce sequential data. An exemplar of this era is
the Hidden Markov Models (HMM) proposed by Leonard Baum in a series of
seminal papers published in the late 1960s [6, 7, 8]. These models were ground-
breaking for their time, providing a probabilistic framework to understand and
predict sequences. The most notable application of HMMs was in the realm of
speech recognition [10], where they became a foundational component, enabling
systems to decode and understand human speech with increasing accuracy.

The introduction of Recurrent Neural Networks (RNNs) in 1982 by John
Hopfield [9] and Long Short-Term Memory (LSTM) networks in 1997 by Hochre-
iter and Schmidhuber [12] marked significant advancements in the field. RNNs
brought the ability to remember previous inputs in handling sequential data,
while LSTMs addressed the challenges of long-term dependencies, making them
pivotal for tasks like time series prediction, speech recognition, and natural
language processing. Together, they set foundational standards for modern
generative AI models handling sequences.

However, with the advent of deep learning and the proliferation of neural
networks, the potential and capabilities of generative models have expanded
exponentially. Neural-based generative models, such as Variational Autoen-
coders (VAEs) [34, 15] introduced in 2013 and Generative Adversarial Networks
(GANs) [28, 17] introduced in the following year, have showcased the ability to
generate high-fidelity new data samples based on training data, ranging from
images to text and even music.

The significance of generative models in AI is multifaceted. Firstly, they
play a pivotal role in unsupervised learning, where labeled data is scarce or
unavailable. By learning the underlying distribution of the data, generative
models can produce new samples, aiding in tasks like data augmentation [23,
38], anomaly detection [33], and image denoising [32, 42]. Secondly, the creative
potential of these models has been harnessed in various domains, from image [22,
57, 46, 60], video and music generation to drug discovery [51, 40] and virtual
reality [66, 27]. The ability of machines to generate novel and coherent content
has opened up avenues previously deemed exclusive to human creativity.

Furthermore, generative models serve as powerful tools for understanding
and interpreting complex data distributions. They provide insights into the
structure and relationships within the data, enabling researchers and practition-
ers to uncover hidden patterns, correlations, and features [19]. This interpreta-
tive power is especially valuable in domains like biology [31], finance [39], and
climate science [36], where understanding data intricacies can lead to ground-
breaking discoveries.

Generative models stand as a testament to the advancements and possibil-
ities within AI. Their ability to create, interpret, and innovate has not only
broadened the horizons of machine learning but has also reshaped our under-
standing of intelligence and creativity.

2

1.2 The rise of transformer architectures

While Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs) have significantly advanced the field of generative AI, another monu-
mental shift in the deep learning landscape emerged with the introduction of
the transformer architecture. Presented in the seminal paper ”Attention is All
You Need” by a team of Google researchers led by Vaswani in 2017 [26], trans-
formers have redefined the benchmarks in a multitude of tasks, particularly in
natural language processing (NLP).

The transformer’s innovation lies in its self-attention mechanism, which al-
lows it to weigh the significance of different parts of an input sequence, be it
words in a sentence or pixels in an image. This mechanism enables the model to
capture long-range dependencies and intricate relationships in the data, over-
coming the limitations of previous architectures like Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks. RNNs and LSTMs,
while effective in handling sequential data, often struggled with long sequences
due to issues like vanishing and exploding gradients [16]. Transformers, with
their parallel processing capabilities and attention mechanisms, alleviated these
challenges.

The success of the transformer architecture was not immediate but became
evident with the introduction of large language models like BERT (Bidirectional
Encoder Representations from Transformers) and GPT (Generative Pre-trained
Transformer). BERT, developed by researchers at Google, demonstrated the
power of transformers in understanding the context of words in a sentence by
considering both left and right contexts in all layers [29]. This bidirectional
approach led to state-of-the-art results in several NLP tasks, from question
answering to sentiment analysis [58]. On the other hand, OpenAI’s GPT show-
cased the generative capabilities of transformers [74], producing human-like text
and achieving remarkable performance in tasks like machine translation [78] and
text summarization [75] without task-specific training data.

The transformer’s versatility extends beyond NLP. Vision Transformer (ViT)
[48], an adaptation of the architecture for image classification tasks, has shown
that transformers can rival, if not surpass, the performance of traditional con-
volutional neural networks (CNNs) in computer vision tasks[56, 68]. This cross-
domain applicability underscores the transformer’s potential and its founda-
tional role in modern AI.

Another driving factor behind the rise of transformers is the ever-growing
computational power and the availability of large-scale datasets. Training trans-
former models, especially large ones, requires significant computational resources.
The feasibility of training such models has been made possible due to advance-
ments in GPU and TPU technologies [67], coupled with the availability of vast
amounts of data to train on. The combination of innovative architecture and
computational prowess has led to the development of models with billions or
even trillions of parameters, pushing the boundaries of what machines can gen-
erate to new heights.

Generative AI models have undergone significant transformations since their

3

1936: Turing machines
A theoretical framework that
provided the foundation for un-
derstanding computation and
algorithmic processes.

1950: Turing test
The first practical measure for
machine intelligence.

1964: ELIZA
The first chatbot that simulates
conversations with a human.1966: Hidden Markov

Model
An early statistical model that
predicts sequential data.

1982: Recurrent neural net-
work
A popular model for handling
sequential data with memory
retaining capabilities.

1997: LSTM
Solves vanishing gradient prob-
lem of RNN, allowing it to pro-
cess longer sequences of data. 2014: Generative adversar-

ial network
A framework that can gener-
ate new data based on training
dataset.

2017: Transformers
Based on the attention mech-
anism, a scalable and efficient
architecture that sets the stan-
dard for large language models.

2018: GPT-1, BERT
OpenAI introduces GPT-1 with
117 million parameters. Google
introduces BERT.2019: GPT-2

Improved text generation with
1.5 billion parameters. 2020: GPT-3

An updated model with 175
billion parameters and abilities
to translate languages, write
essays and generate codes.

2021: DALL-E
A model that generates high-
quality images from textual de-
scriptions. 2022: ChatGPT

A conversational interface that
set new standards for natural,
coherent, and context-aware in-
teractions in generative models.

2023: GPT-4, LLaMA
OpenAI releases GPT-4 with
1.76 trillion parameters. Meta
introduces the LLaMA and
LLaMA 2 models.

Figure 1: A timeline illustrating key milestones in the development of generative
AI, from Turing Machines to GPT-4.

4

inception, with each milestone contributing to the capabilities we see today.
From the foundational Turing machines to the latest GPT-4 and LLaMA mod-
els, the journey of generative AI has been marked by groundbreaking advance-
ments. A detailed timeline capturing these key milestones is presented to offer
a comprehensive overview of the field’s evolution (Figure 1).”

1.3 Purpose and structure of the paper

The fast growth in artificial intelligence, especially with recent technologies like
generative models and transformers, highlights the need for a comprehensive
study that spans both their historical development and current applications.
The primary objective of this paper is to provide readers with a holistic under-
standing of the evolution, significance, architecture, and capabilities of genera-
tive transformers, contextualized within the broader landscape of AI.

Our motivation for this paper is informed by the existing body of work on
transformer-based models and generative AI. While there are several compre-
hensive reviews, each focuses on specific aspects of the topic. For example,
Gozalo-Brizuela and Garrido-Merchan [76] concentrate on the taxonomy and
industrial implications of large generative models, providing a compilation of
popular generative models organized into various categories such as text-to-text,
text-to-image, and text-to-audio. Lin et al.[65] present an exhaustive review of
various transformer variants, their architectural modifications, and applications.
Additionally, there are survey papers that focus on the use of transformers for
specific tasks such as natural language processing [55, 50], computer vision [62,
64, 80, 73], time series analysis and forecasting [70, 72], among others. These
existing reviews are invaluable, but our paper aims to provide a more compre-
hensive overview that bridges these specialized areas.

While these papers offer valuable insights, there is a gap in the literature
for a resource that combines a historical review, a hands-on tutorial, and a
forward-looking perspective on generative transformer models. Our paper aims
to fill this void, serving as a comprehensive guide for newcomers and seasoned
researchers alike. The historical review section helps readers understand how
generative AI has developed and progressed in the wider context of AI. Mean-
while, our practical tutorial guides readers through the foundational concepts
and practical implementations, equipping them to build their own generative
transformer models. We offer a unique blend of theoretical understanding and
practical know-how, setting our work apart from existing reviews. Addition-
ally, we strive to provide a unique balance between explaining the historical
evolution, technical aspects, and applications of transformers. This makes our
paper a go-to source for researchers and professionals seeking a wholesome un-
derstanding and knowledge of transformers.

The structure of the paper, which is designed to guide the reader through a
logical progression, is as follows:

• Historical Evolution: We embark on a journey tracing the roots of
computational theory, starting with the foundational concepts introduced

5

by Alan Turing. This section provides a backdrop, setting the stage for the
emergence of neural networks, the challenges they faced, and the eventual
rise of transformer architectures.

• Tutorial on Generative Transformers: Transitioning from theory to
practice, this section offers a practical approach to understanding the in-
tricacies of generative transformers. Readers will gain insights into the
architecture, training methodologies, and best practices, supplemented
with code snippets and practical examples.

• Applications and Challenges: Building upon the foundational knowl-
edge, we delve into the myriad applications of generative transformers,
highlighting their impact across various domains. Concurrently, we ad-
dress the challenges and ethical considerations associated with their use,
fostering a balanced perspective.

• Conclusion and Future Directions: The paper concludes with a re-
flection on the current state of generative transformers, their potential
trajectory, and the exciting possibilities they hold for the future of AI.

In essence, this paper endeavors to be more than just a review or a tutorial,
it aspires to be a comprehensive guide, weaving together history, theory, prac-
tice, and prospects, providing readers with a panoramic view of the world of
generative transformers.

2 Historical Evolution

The development of computational theory and artificial intelligence has been
shaped by pioneering figures, innovative ideas, and transformative discoveries.
Central to this narrative is Alan Turing, whose unparalleled contributions laid
the foundations for modern computation and the subsequent emergence of AI.
This section delves deeper into Turing’s groundbreaking work, and the lasting
legacy that continues to shape the digital age.

2.1 Turing Machines and the Foundations of Computation

One of Turing’s major contributions was the idea of the Turing machine pro-
posed in his 1936 paper titled ”On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem.” [2] This abstract machine was a simple but
powerful theoretical construct that was designed to perform computations by
manipulating symbols on an infinite tape based on a set of rules. The infinite
tape is divided into discrete cells, each cell can contain a symbol from a finite
alphabet, and the machine itself has a ”head” that can read and write symbols
on the tape and move left or right. The machine’s behavior is dictated by a set
of transition rules, which determine its actions based on the current state and
the symbol being read. In essence, the Turing machine is a rule-based system

6

that manipulates symbols on a tape, embodying the fundamental operations of
reading, writing, and transitioning between states.

While the concept might seem rudimentary, the implications of the Turing
machine are profound. Turing demonstrated that this simple device, with its set
of rules and operations, could compute any function that is computable, given
enough time and tape. This assertion, known as the Church-Turing thesis [11]
(independently proposed by Alonzo Church in his paper titled ”An Unsolvable
Problem of Elementary Number Theory” also published in 1936 [1]), posits that
any function computable by an algorithm can be computed by a Turing machine.
This thesis, though not proven, has stood the test of time, with no evidence to
the contrary. It serves as a foundational pillar in computer science, defining the
boundaries of what is computable.

World War II saw Turing’s theoretical concept manifest in tangible, real-
world applications. Stationed at Bletchley Park, Britain’s cryptographic hub,
Turing played a key role in deciphering the Enigma code used by the German
military. Turing helped develop a machine called the Bombe, which expedited
the decryption process of Enigma-encrypted messages [18]. This secret work
was crucial for the Allies’ success and showed how computer science could have
a major impact on real-world events.

After World War II, Turing turned his attention to the development of elec-
tronic computers. He was instrumental in the design of the Automatic Com-
puting Engine (ACE) [3], one of the earliest computer models capable of storing
programs. This showed Turing’s forward-thinking approach to the digital age.
Beyond computing, he also delved into the nature of intelligence and how it
could be replicated in machines.

The Turing machine’s significance transcended its immediate mathematical
implications. The true brilliance of Turing’s insight, however, lies in the con-
cept of universal computation. Turing’s subsequent proposition of a Universal
Turing Machine (UTM)—a machine capable of simulating any other Turing ma-
chine given the right input and rules—was a revolutionary idea [2]. Given a
description of a Turing machine and its input encoded on the tape, the UTM
could replicate the behavior of that machine. This meta-level of computation
was groundbreaking. It suggested that a single, general-purpose machine could
be designed to perform any computational task, eliminating the need for task-
specific machines. The UTM was a harbinger of modern computers, devices
that can be reprogrammed to execute a wide array of tasks.

The implications of universal computation extend beyond mere hardware.
It challenges our understanding of intelligence and consciousness. If the human
brain, with its intricate neural networks and synaptic connections, operates on
computational principles, then could it be simulated by a Turing machine? This
question, which blurs the lines between philosophy, neuroscience, and computer
science, remains one of the most intriguing and debated topics in the field of
artificial intelligence.

7

2.1.1 Turing’s impact on artificial intelligence and machine learning

Alan Turing’s influence on the fields of artificial intelligence (AI) and machine
learning (ML) is both profound and pervasive. While Turing is often lauded for
his foundational contributions to computational theory, his vision and insights
into the realm of machine intelligence have played a pivotal role in shaping the
trajectory of AI and ML.

His 1950 paper, ”Computing Machinery and Intelligence,” [4] introduced the
famous Turing Test as a practical measure of machine intelligence. Alan Turing
introduced the Turing Test within the context of an ”Imitation Game,” involving
a man, a woman, and a judge as players. They communicate electronically from
separate rooms, and the goal of the judge is to identify who is the woman.
The man aims to deceive the judge into thinking he is the woman, while the
woman assists the judge. Turing then adapts this game into his famous test by
replacing the man with a machine, aiming to deceive the questioner in the same
way. Although the original game focused on gender identification, this aspect
is often overlooked in later discussions of the Turing Test.

In this work, Turing posed the provocative question: ”Can machines think?”
Rather than delving into the philosophical intricacies of defining ”thinking,”
Turing proposed a pragmatic criterion for machine intelligence: if a machine
could engage in a conversation with a human, indistinguishably from another
human, it would be deemed intelligent. This criterion, while straightforward,
sparked widespread debate and research, laying the foundation for the field of
artificial intelligence.

The Turing Test, in many ways, encapsulated the essence of AI — the quest
to create machines that can mimic, replicate, or even surpass human cognitive
abilities. It set a benchmark, a gold standard for machine intelligence, challeng-
ing researchers and scientists to build systems that could ”think” and ”reason”
like humans. While the test itself has been critiqued and refined over the years,
its underlying philosophy remains central to AI: the aspiration to understand
and emulate human intelligence.

Beyond the Turing Test, Turing’s insights into neural networks and the po-
tential of machine learning were visionary. In a lesser-known report written
in 1948, titled ”Intelligent Machinery,” [13] Turing delved into the idea of ma-
chines learning from experience. He envisioned a scenario where machines could
be trained, much like a human child, through a process of education. Turing
postulated the use of what he termed ”B-type unorganized machines,” which
bear a striking resemblance to modern neural networks. These machines, as
Turing described, would be trained, rather than explicitly programmed, to per-
form tasks. Although in its infancy at the time, this idea signaled the rise of
machine learning, where algorithms learn from data rather than being explicitly
programmed.

Turing’s exploration of morphogenesis, the biological process that causes
organisms to develop their shape, further showcased his interdisciplinary ge-
nius [5]. In his work on reaction-diffusion systems, Turing demonstrated how
simple mathematical models could give rise to complex patterns observed in

8

nature. This work, while primarily biological in its focus, has profound im-
plications for AI and ML. It underscores the potential of simple algorithms to
generate complex, emergent behavior, a principle central to neural networks and
deep learning.

Alan Turing’s impact on artificial intelligence and machine learning is im-
measurable. His vision of machine intelligence, his pioneering insights into neu-
ral networks, and his interdisciplinary approach to problem-solving have left an
indelible mark on the field. As we navigate the intricate landscape of modern
AI, with its deep neural networks, generative models, and transformers, it is
imperative to recognize and honor Turing’s legacy. His work serves as a beacon,
illuminating the path forward, reminding us of the possibilities, challenges, and
the profound potential of machines that can ”think.”

2.1.2 From Turing’s Foundations to Generative Transformers

The journey from Alan Turing’s foundational concepts to the sophisticated
realm of generative transformers is a testament to the evolution of computa-
tional theory and its application in artificial intelligence. While at first glance
Turing’s work and generative transformers might seem worlds apart, a closer
examination reveals a direct lineage and influence.

Alan Turing’s conceptualization of the Turing machine provided the bedrock
for understanding computation. His idea of a machine that could simulate
any algorithm, given the right set of instructions, laid the groundwork for the
concept of universal computation. This idea, that a single machine could be
reprogrammed to perform a myriad of tasks, is the precursor to the modern
notion of general-purpose computing systems.

Fast forward to the advent of neural networks, which Turing had touched
upon in his lesser-known works. These networks, inspired by the human brain’s
interconnected neurons, were designed to learn from data. The foundational
idea was that, rather than being explicitly programmed to perform a task, these
networks would ”learn” by adjusting their internal parameters based on the data
they were exposed to. Turing’s vision of machines learning from experience
resonates deeply with the principles of neural networks.

Generative transformers, a cutting-edge development in the AI landscape,
are an extension of these neural networks. Transformers, with their self-attention
mechanisms, are designed to weigh the significance of different parts of an input
sequence, capturing intricate relationships within the data. The ”generative”
aspect of these models allows them to produce new, previously unseen data
samples based on their training.

Drawing a direct link, Turing’s Universal Turing Machine can be seen as an
early, abstract representation of what generative transformers aim to achieve in
a more specialized domain. Just as the Universal Turing Machine could simu-
late any other Turing machine, given the right input and set of rules, generative
transformers aim to generate any plausible data sample, given the right train-
ing and context. The universality of Turing’s machine finds its parallel in the
versatility of generative transformers.

9

Furthermore, Turing’s exploration into machine learning, the idea of ma-
chines learning from data rather than explicit programming, is the very essence
of generative transformers. These models are trained on vast datasets, learning
patterns, structures, and nuances, which they then use to generate new content.
The bridge between Turing’s early insights into machine learning and the capa-
bilities of generative transformers is a direct one, showcasing the evolution of a
concept from its theoretical inception to its practical application.

While Alan Turing might not have directly worked on generative transform-
ers, his foundational concepts, vision of machine learning, and the principles he
laid down have directly influenced and shaped their development. The journey
from Turing machines to generative transformers is a testament to the enduring
legacy of Turing’s genius and the continual evolution of artificial intelligence.

2.2 Early Neural Networks and Language Models

The realm of artificial intelligence has witnessed a plethora of innovations and
advancements, with neural networks standing at the forefront of this revolu-
tion. These computational models, inspired by the intricate web of neurons in
the human brain, have paved the way for sophisticated language models that
can understand, generate, and manipulate human language with unprecedented
accuracy.

2.2.1 Introduction to Neural Networks

Neural networks [21, 14], at their core, are a set of algorithms designed to
recognize patterns. They interpret sensory data through a kind of machine per-
ception, labeling, and clustering of raw input. These algorithms loosely mirror
the way a human brain operates, thus the nomenclature ”neural networks.”

A basic neural network consists of layers of interconnected nodes or ”neu-
rons.” Each connection between neurons has an associated weight, which is
adjusted during training. The fundamental equation governing the output y of
a neuron is given by:

y = f

(∑
i

wixi + b

)
(1)

where xi are the input values, wi are the weights, b is a bias term, and f is
an activation function.

The activation function introduces non-linearity into the model, allowing
it to learn from error and make adjustments, which is essential for learning
complex patterns. One of the commonly used activation functions is the sigmoid
function, defined as:

f(z) =
1

1 + e−z
(2)

10

Neural networks typically consist of an input layer, one or more hidden
layers, and an output layer. The depth and complexity of a network, often
referred to as its ”architecture,” determine its capacity to learn from data.

2.2.2 Evolution of Recurrent Neural Networks (RNNs)

While traditional neural networks have proven effective for a wide range of tasks,
they possess inherent limitations when dealing with sequential data. This is
where Recurrent Neural Networks (RNNs) come into play. RNNs are designed to
recognize patterns in sequences of data, such as time series or natural language.

The fundamental difference between RNNs and traditional neural networks
lies in the former’s ability to retain memory of previous inputs in its internal
state. This is achieved by introducing loops in the network, allowing information
to persist.

The output of an RNN at time t, denoted ht, is computed as:

ht = f (Whhht−1 +Wxhxt + b) (3)

where Whh and Wxh are weight matrices, xt is the input at time t, and ht−1

is the output from the previous timestep.
While RNNs are powerful, they suffer from challenges like the vanishing and

exploding gradient problems, especially when dealing with long sequences [16].
This makes them less effective in capturing long-term dependencies in the data.

2.2.3 Long Short-Term Memory (LSTM) Networks

To address the vanishing gradient problem of RNNs, Long Short-Term Memory
(LSTM) networks were introduced. LSTMs, a special kind of RNN, are designed
to remember information for extended periods [41].

The core idea behind LSTMs is the cell state, a horizontal line running
through the entire chain of repeating modules in the LSTM. The cell state can
carry information from earlier time steps to later ones, mitigating the memory
issues faced by traditional RNNs.

LSTMs introduce three gates:
1. **Forget Gate**: It decides what information from the cell state should

be thrown away or kept. Mathematically, the forget gate ft is given by:

ft = σ(Wf · [ht−1, xt] + bf) (4)

2. **Input Gate**: It updates the cell state with new information. The
input gate it and the candidate values C̃t are computed as:

it = σ(Wi · [ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

3. **Output Gate**: It determines the output based on the cell state and
the input. The output ht is given by:

11

ht = ot × tanh(Ct) (7)

where ot is the output gate, defined as:

ot = σ(Wo · [ht−1, xt] + bo) (8)

LSTMs, with their ability to capture long-term dependencies and mitigate
the challenges faced by traditional RNNs, have paved the way for advancements
in sequence modeling, particularly in the domain of natural language processing.

2.3 The Advent of Transformers

In the ever-evolving landscape of artificial intelligence and machine learning,
the transformer architecture stands out as a significant leap forward, especially
in the domain of natural language processing. Introduced in the seminal paper
”Attention Is All You Need” by Vaswani et al. [26], transformers have revolu-
tionized the way we approach sequence-to-sequence tasks. This section aims to
demystify the transformer architecture, breaking it down into its core compo-
nents and principles.

2.3.1 Introduction to the Transformer Architecture

At a high level, the transformer is a type of neural network architecture de-
signed to handle sequential data, making it particularly well-suited for tasks
like language translation, text generation, and more. Unlike its predecessors,
such as RNNs and LSTMs, which process data in order, transformers leverage
a mechanism called ”attention” to draw global dependencies between input and
output.

The Attention Mechanism:
The heart of the transformer architecture is the attention mechanism. In

essence, attention allows the model to focus on different parts of the input
sequence when producing an output sequence, much like how humans pay at-
tention to specific words when understanding a sentence.

Mathematically, the attention score for a given query q and key k is computed
as:

Attention(q, k) =
exp(score(q, k))∑
k′ exp(score(q, k′))

(9)

where score is a function that calculates the relevance of the key k to the
query q. The output of the attention mechanism is a weighted sum of values,
where the weights are the attention scores.

The Transformer Architecture:
The transformer model consists of an encoder and a decoder. Each of these

is composed of multiple layers of attention and feed-forward neural networks.

12

The encoder takes in a sequence of embeddings (representations of input
tokens) and processes them through its layers. The decoder then generates the
output sequence, leveraging both its internal layers and the encoder’s output.

One of the distinguishing features of transformers is the use of ”multi-head
attention,” which allows the model to focus on different parts of the input
simultaneously, capturing various aspects of the information.

Why Transformers?

• Parallelization: Unlike RNNs, which process sequences step-by-step,
transformers can process all tokens in parallel, leading to faster training
times.

• Long-range Dependencies: The attention mechanism enables trans-
formers to capture relationships between tokens, regardless of their dis-
tance in the sequence.

• Scalability: Transformers are highly scalable, making them suitable for
large datasets and complex tasks.

The transformer architecture, with its innovative attention mechanism and
parallel processing capabilities, has set new benchmarks in the field of machine
learning. Its ability to capture intricate patterns and relationships in sequen-
tial data has paved the way for state-of-the-art models in natural language
processing, making tasks like real-time translation, text summarization, and
question-answering more accurate and efficient.

2.4 Attention Mechanism: The Heart of Transformers

The attention mechanism, a pivotal innovation in the realm of deep learning,
has transformed the way we approach sequence-to-sequence tasks in natural
language processing. Serving as the cornerstone of the transformer architecture,
attention allows models to dynamically focus on different parts of the input
data, capturing intricate relationships and dependencies. This section aims
to elucidate the principles and mathematics behind the attention mechanism,
shedding light on its significance in the transformer architecture.

2.4.1 Conceptual Overview of Attention

In traditional sequence-to-sequence models, such as RNNs and LSTMs, infor-
mation from the entire input sequence is compressed into a fixed-size context
vector, which is then used to generate the output sequence. This approach,
while effective for short sequences, struggles with longer sequences as the con-
text vector becomes a bottleneck, unable to capture all the nuances of the input
data.

The attention mechanism addresses this challenge by allowing the model to
”attend” to different parts of the input sequence dynamically, based on the cur-
rent context. Instead of relying on a single context vector, the model computes

13

a weighted sum of all input vectors, where the weights represent the ”attention
scores.”

2.4.2 Mathematics of Attention

The core of the attention mechanism is the computation of attention scores.
Given a query q and a set of key-value pairs (k, v), the attention score for a
specific key k is computed as:

score(q, k) = qT k (10)

The attention weights, which determine how much focus should be given to
each key-value pair, are computed using a softmax function:

Attention(q, k) =
exp(score(q, k))∑
k′ exp(score(q, k′))

(11)

The output of the attention mechanism is a weighted sum of the values:

output =
∑
i

Attention(q, ki)vi (12)

Query

Key

Value

score Attention weights

Weighted sum

Output

Figure 2: Schematic representation of the attention mechanism.

As depicted in Figure 2, the attention mechanism computes scores based on
the query and keys, derives attention weights, and produces an output based on
a weighted sum of values.

2.4.3 Significance in Transformers

In the transformer architecture, attention is not just a supplementary feature;
it’s the core component. Transformers employ a variant called ”multi-head

14

attention,” which runs multiple attention mechanisms in parallel, capturing dif-
ferent types of relationships in the data.

The attention mechanism’s ability to focus on different parts of the input
sequence, irrespective of their position, empowers transformers to handle long-
range dependencies, making them particularly effective for tasks like language
translation, text summarization, and more.

Furthermore, the self-attention mechanism, a special case where the query,
key, and value are all derived from the same input, enables transformers to weigh
the significance of different parts of the input relative to a specific position.
This is crucial for understanding context and semantics in natural language
processing tasks.

2.5 Generative Transformers and Their Significance

Generative transformers have emerged as a groundbreaking advancement in the
domain of artificial intelligence, particularly in natural language processing and
generation. These models, characterized by their ability to generate coherent
and contextually relevant sequences of text, have set new benchmarks in var-
ious tasks, from text completion to story generation. This section introduces
the notable generative models available, including the GPT series and other
significant contributions in this domain.

2.5.1 GPT (Generative Pre-trained Transformer) Series

The GPT series, developed by OpenAI, fully demonstrates the power and po-
tential of generative transformers. Built upon the transformer architecture,
the GPT models leverage the attention mechanism to understand and generate
human-like text. The GPT series has seen rapid evolution, with each iteration
bringing enhanced capabilities and performance.

GPT-1: The first in the series, GPT-1 [30], was released in 2018. It laid the
foundation for subsequent models. With 117 million parameters, it showcased
the potential of transformers in generating coherent paragraphs of text.

GPT-2: Released in 2019, GPT-2 [35] increased its parameters to 1.5 billion.
Its ability to generate entire articles, answer questions, and even write poetry
garnered significant attention from the research community and the public alike.

GPT-3: GPT-3 [45] has 175 billion parameters. Its capabilities extend
beyond mere text generation; it can translate languages, write essays, create
poetry, and even generate code.

GPT-4: The most recent model from OpenAI, GPT-4 [79], consists a stag-
gering 1.76 trillion parameters, positioning it among the most advanced language
models currently available. Leveraging advanced deep learning methodologies,
it surpasses the capabilities of its forerunner, GPT-3. Remarkably, GPT-4 can
handle up to 25,000 words simultaneously, a capacity eightfold greater than
GPT-3. Furthermore, GPT-4 is versatile in accepting both text and image
prompts, allowing users to define tasks across vision and language domains.

15

A notable improvement in GPT-4 is its reduced propensity for hallucinations
compared to earlier versions.

2.5.2 Other Notable Generative Transformer Models

Beyond the GPT series, the landscape of generative transformers is rich and
diverse, with several models making significant contributions to the field.

BERT (Bidirectional Encoder Representations from Transform-
ers): Developed by Google, BERT [29] revolutionized the way we approach
natural language understanding tasks. Unlike GPT, which is generative, BERT
is discriminative, designed to predict missing words in a sentence. Its bidirec-
tional nature allows it to capture context from both the left and the right of
a word, leading to superior performance in tasks like question-answering and
sentiment analysis.

LLaMA: LLaMA [81] is an auto-regressive language model built on the
transformer architecture, introduced by Meta. In February 2023, Meta unveiled
the initial version of LLaMA, boasting 65 billion parameters and adept at nu-
merous generative AI functions. By July 2023, LLaMA 2 was launched with
three distinct model sizes: 7, 13, and 70 billion parameters.

LaMDA: LaMDA [69] is a specialized family of transformer-based neural
language models for dialog applications developed by Google in 2022. With
up to 137 billion parameters and pre-training on 1.56 trillion words of public
dialog and web text, LaMDA aims to address two key challenges: safety and
factual grounding. The model incorporates fine-tuning and external knowledge
consultation to improve its safety metrics, ensuring responses align with human
values and avoid harmful or biased suggestions. For factual grounding, LaMDA
employs external knowledge sources like information retrieval systems and cal-
culators to generate responses that are not just plausible but also factually
accurate. The model shows promise in various domains, including education
and content recommendations, offering a balanced blend of quality, safety, and
factual integrity.

3 Tutorial on Generative Transformers

In this section, we delve into a hands-on tutorial on generative transformers,
guiding readers through the foundational concepts and practical implementa-
tions. By the end of this tutorial, readers should have a clear understanding
of the transformer architecture and be equipped to build their own generative
transformer models.

3.1 Basics of the Transformer Architecture

The transformer architecture, introduced by Vaswani et al. in their seminal
paper ”Attention Is All You Need” [26], has become the backbone of many
state-of-the-art models in natural language processing. Let’s break down its
core components.

16

3.1.1 Overview

As depicted in Fig. 3, the transformer consists of an encoder and a decoder. The
encoder processes the input sequence, and the decoder generates the output
sequence. Both the encoder and decoder are composed of multiple layers of
attention mechanisms and feed-forward neural networks.

Encoder DecoderFeatures
Input Output

Figure 3: Expanded schematic representation of the transformer architecture
with a smaller Features block.

3.1.2 Attention Mechanism

As previously discussed, the attention mechanism allows the model to focus on
different parts of the input sequence when producing an output. The mechanism
computes attention scores based on queries, keys, and values.

Mathematical Representation:
Given a query q, key k, and value v, the attention output is computed as:

Attention(q, k, v) = softmax

(
q · kT√

dk

)
v (13)

where dk is the dimension of the key.
Code Snippet:
The following Python code snippet demonstrates how to implement this

attention mechanism using PyTorch:

import torch

import torch.nn.functional as F

def scaled_dot_product_attention(q, k, v):

matmul_qk = torch.matmul(q, k.transpose(-2, -1))

d_k = q.size(-1) ** 0.5

scaled_attention_logits = matmul_qk / d_k

attention_weights = F.softmax(scaled_attention_logits, dim=-1)

output = torch.matmul(attention_weights, v)

return output, attention_weights

In this code snippet, q, k, and v are the query, key, and value tensors,
respectively. The function scaled dot product attention computes the attention
output according to Equation 13.

17

3.1.3 Multi-Head Attention

Instead of using a single set of attention weights, the transformer uses multiple
sets, allowing it to focus on different parts of the input simultaneously. This is
known as multi-head attention.

Code Snippet:

class MultiHeadAttention(nn.Module):

def __init__(self, d_model, num_heads):

super(MultiHeadAttention, self).__init__()

self.num_heads = num_heads

Dimension of the model

self.d_model = d_model

Depth of each attention head

self.depth = d_model

Linear layer for creating query, key and value matrix

self.wq = nn.Linear(d_model, d_model)

self.wk = nn.Linear(d_model, d_model)

self.wv = nn.Linear(d_model, d_model)

Final linear layer to produce the output

self.dense = nn.Linear(d_model, d_model)

Figure 4: PyTorch implementation of multi-head attention.

3.1.4 Feed-Forward Neural Networks

Each transformer layer contains a feed-forward neural network, applied inde-
pendently to each position.

Code Snippet:

class PointWiseFeedForwardNetwork(nn.Module):

def __init__(self, d_model, dff):

super(PointWiseFeedForwardNetwork, self).__init__()

self.fc1 = nn.Linear(d_model, dff)

self.fc2 = nn.Linear(dff, d_model)

...

Figure 5: PyTorch implementation of point-wise feed-forward network.

Each method and its body are indented with a tab or four spaces, which
is the standard Python indentation. This makes the code easier to read and
understand.

18

3.1.5 Self-attention Mechanism

The self-attention mechanism is a variant of the attention mechanism where the
input sequence itself serves as the queries, keys, and values. This allows the
transformer to weigh the significance of different parts of the input relative to
a specific position, crucial for understanding context and semantics.

Mathematical Representation:
Given an input sequence X, the queries Q, keys K, and values V are derived

as:

Q = XWQ, K = XWK , V = XWV (14)

where WQ,WK , and WV are weight matrices. The self-attention output is
then computed using the attention formula:

SelfAttention(Q,K, V) = softmax

(
QKT

√
dk

)
V (15)

3.1.6 Positional Encoding

Transformers, by design, do not have a built-in notion of sequence order. To
provide the model with positional information, we inject positional encodings to
the input embeddings. These encodings are added to the embeddings to ensure
the model can make use of the sequence’s order.

Mathematical Representation:
The positional encodings are computed using sine and cosine functions:

PE(pos,2i) = sin
(pos

100002i/dmodel

)
(16)

PE(pos,2i+1) = cos
(pos

100002i/dmodel

)
(17)

where pos is the position and i is the dimension.

3.1.7 Multi-head Attention

Multi-head attention is an extension of the attention mechanism, allowing the
model to focus on different parts of the input simultaneously. By running mul-
tiple attention mechanisms in parallel, the model can capture various types of
relationships in the data.

Mathematical Representation:
Given queries Q, keys K, and values V , the multi-head attention output is

computed as:

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO (18)

where each head is computed as:

headi = Attention(QWQi,KWKi, V WV i) (19)

19

and WQi,WKi,WV i, and WO are weight matrices.

Head 1

Head 2

Head h

Concat
Dense Layer

Output

Figure 6: Schematic representation of multi-head attention.

Figure 6 showcases the multi-head attention mechanism, where multiple at-
tention heads operate in parallel, and their outputs are concatenated and passed
through a dense layer to produce the final output.

Understanding the intricacies of the transformer architecture, from the self-
attention mechanism to multi-head attention, is crucial for harnessing its full
potential. By delving into the mathematical foundations and practical imple-
mentations, one can build powerful models capable of handling a wide range of
tasks in natural language processing.

3.1.8 Encoder and Decoder modules

The Transformer architecture consists of an encoder and a decoder, each made
up of multiple layers. Here, we’ll walk through the implementation of these
modules.

Encoder Module:
The encoder module consists of multiple encoder layers, each containing

multi-head attention and feed-forward neural networks.
Code Snippet for Encoder:

import torch.nn as nn

class EncoderLayer(nn.Module):

20

def __init__(self, d_model, num_heads):

super(EncoderLayer, self).__init__()

self.mha = MultiHeadAttention(d_model, num_heads)

self.ffn = PointWiseFeedForwardNetwork(d_model, dff)

Layer normalization and dropout layers can be added here

def forward(self, x):

attn_output = self.mha(x, x, x)

out1 = x + attn_output # Add & Norm

ffn_output = self.ffn(out1)

out2 = out1 + ffn_output # Add & Norm

return out2

Decoder Module:
The decoder module is similar to the encoder but has an additional multi-

head attention layer to attend to the encoder’s output.
Code Snippet for Decoder:

class DecoderLayer(nn.Module):

def __init__(self, d_model, num_heads):

super(DecoderLayer, self).__init__()

self.mha1 = MultiHeadAttention(d_model, num_heads)

self.mha2 = MultiHeadAttention(d_model, num_heads)

self.ffn = PointWiseFeedForwardNetwork(d_model, dff)

Layer normalization and dropout layers can be added here

def forward(self, x, enc_output):

attn1 = self.mha1(x, x, x)

out1 = x + attn1 # Add & Norm

attn2 = self.mha2(out1, enc_output, enc_output)

out2 = out1 + attn2 # Add & Norm

ffn_output = self.ffn(out2)

out3 = out2 + ffn_output # Add & Norm

return out3

In these code snippets, ‘MultiHeadAttention‘ and ‘PointWiseFeedForward-
Network‘ are custom classes that you would define based on your specific needs
for multi-head attention and point-wise feed-forward networks, respectively.

3.2 Building a Simple Generative Transformer

Building a generative transformer from scratch involves several steps, from data
preprocessing to model training and text generation. In this section, we’ll walk
through each of these steps, providing a comprehensive guide to constructing
your own generative transformer.

21

3.2.1 Data Preprocessing and Tokenization

Before feeding data into the model, it’s essential to preprocess and tokenize it.
Tokenization involves converting raw text into a sequence of tokens, which can
be words, subwords, or characters.

Tokenization:
Using popular libraries like the HuggingFace’s ‘transformers‘, tokenization

can be achieved as:

from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained(’gpt2-medium’)

tokens = tokenizer.encode("Hello, world!")

Figure 7: Tokenizing text using GPT-2 tokenizer.

3.2.2 Defining the Transformer Model

Assuming you’ve already defined the EncoderLayer and DecoderLayer classes,
you can define the complete Transformer model as follows:

class Transformer(nn.Module):

def __init__(self, d_model, num_heads, num_layers):

super(Transformer, self).__init__()

self.encoder = nn.ModuleList([EncoderLayer(d_model, num_heads) for _ in range(num_layers)])

self.decoder = nn.ModuleList([DecoderLayer(d_model, num_heads) for _ in range(num_layers)])

def forward(self, src, tgt):

enc_output = src

for layer in self.encoder:

enc_output = layer(enc_output)

dec_output = tgt

for layer in self.decoder:

dec_output = layer(dec_output, enc_output)

return dec_output

Building a generative transformer, while complex, is made accessible with
modern libraries and tools. By understanding the steps involved, from data
preprocessing to model training and generation, one can harness the power of
transformers for a wide range of applications.

3.3 Advanced Techniques and Best Practices

While the foundational concepts and basic implementations provide a solid
starting point, mastering generative transformers requires a deeper understand-
ing of advanced techniques and best practices. This section offers insights

22

into improving generation quality, handling long sequences, memory issues, and
leveraging fine-tuning and transfer learning [82].

3.3.1 Techniques for Improving Generation Quality

Achieving high-quality text generation necessitates a combination of model ar-
chitecture tweaks, training strategies, and post-processing methods.

Temperature Sampling:
By adjusting the temperature during sampling, one can control the random-

ness of the generated text [71]. A lower temperature makes the output more
deterministic, while a higher value introduces randomness.

pi =
e

zi
T∑

j e
zj
T

(20)

where pi is the adjusted probability, zi is the original probability, and T is
the temperature.

Top-k and Top-p Sampling:
Instead of sampling from the entire distribution, one can restrict the sam-

pling pool to the top-k tokens or those tokens that have a cumulative probability
greater than a threshold p [63].

Gradient Clipping:
To prevent exploding gradients during training, gradient clipping can be

employed, ensuring the gradients remain within a defined range [43].

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

Figure 8: Gradient clipping in PyTorch.

3.3.2 Handling Long Sequences and Memory Issues

Transformers, by design, have quadratic complexity with respect to sequence
length. This can lead to memory issues for long sequences.

Gradient Accumulation:
Instead of updating the model weights after every batch, gradients can be

accumulated over multiple batches, effectively simulating a larger batch size
without the memory overhead [25].

Model Parallelism:
For models with billions of parameters, distributing the model across multi-

ple GPUs can alleviate memory constraints [37].
Gradient Checkpointing:
This technique involves storing intermediate activations during the forward

pass and recomputing them during the backward pass, reducing memory usage
at the cost of increased computation.

23

3.3.3 Fine-tuning and Transfer Learning

Transfer learning, the practice of leveraging pre-trained models on new tasks,
has proven highly effective in the NLP domain.

Fine-tuning:
Once a model is pre-trained on a large corpus, it can be fine-tuned on a

smaller, task-specific dataset. This approach often yields superior results com-
pared to training from scratch [44, 47].

from transformers import GPT2ForSequenceClassification

model = GPT2ForSequenceClassification.from_pretrained(’gpt2-medium’)

Fine-tuning code here

Figure 9: Fine-tuning a pre-trained GPT-2 model.

Adapters:
Instead of fine-tuning the entire model, adapters allow for training only a

small portion of the model, introducing task-specific parameters without altering
the pre-trained weights [54].

Mastering generative transformers goes beyond understanding the basics. By
incorporating advanced techniques and best practices, one can achieve state-of-
the-art performance, handle large models and sequences efficiently, and adapt
pre-trained models to new tasks with ease. As the field of NLP continues to
evolve, staying abreast of these practices ensures robust and high-quality model
deployments.

4 Applications and Use Cases

Generative transformers, with their unparalleled capability to understand and
generate human-like text, have found applications across a myriad of domains [76].
This section provides an in-depth exploration of some of the most prominent
applications, shedding light on the transformative impact of these models on
various industries.

4.1 Text Generation for Creative Writing

The realm of creative writing, traditionally seen as the bastion of human cre-
ativity, has witnessed significant advancements with the advent of generative
transformers. These models, trained on vast corpora of literature, can produce
text that mirrors the style, tone, and complexity of human authors.

Novel and Short Story Generation: GPT-3 and its successors have been
employed to generate entire novels or assist authors by suggesting plot twists,
character developments, and dialogues. The generated content, while sometimes
requiring human oversight, exhibits creativity and coherence.

24

Poetry and Song Lyrics: The nuanced and abstract nature of poetry and
song lyrics poses a challenge for traditional models. However, generative trans-
formers, with their deep understanding of context, have been used to produce
verses that resonate with human emotions and experiences.

4.2 Chatbots and Conversational Agents

The rise of digital communication has spurred the demand for intelligent chat-
bots and conversational agents. Generative transformers, with their ability to
generate contextually relevant and coherent responses, stand at the forefront of
this revolution. One of the most prominent examples of a conversational agent
built on generative transformer architecture is ChatGPT, developed by Ope-
nAI. ChatGPT reached 100 million monthly active users just two months after
launching, making it the fastest-growing application in history.

Customer Support: Businesses employ transformer-based chatbots to
handle customer queries, complaints, and feedback. These chatbots can un-
derstand the context, provide accurate information, and even escalate issues
when necessary.

Personal Assistants: Digital personal assistants, like Siri and Alexa, are
integrating transformer models to enhance their conversational capabilities,
making interactions more natural and context-aware.

4.3 Code Generation and Programming Assistance

The software development landscape is undergoing a paradigm shift with the
introduction of transformer models capable of understanding and generating
code. These models assist developers by suggesting code snippets, detecting
bugs, and even generating entire functions or modules.

Code Completion: Integrated Development Environments (IDEs) are in-
corporating transformers to provide real-time code completion suggestions, en-
hancing developer productivity.

Bug Detection and Fixing: Transformers can be trained to detect anoma-
lies in code and suggest potential fixes, reducing debugging time and ensuring
more robust software.

4.4 Other Notable Applications

Beyond the aforementioned domains, generative transformers have found appli-
cations in diverse areas:

Translation: While traditional machine translation models have limita-
tions, transformers can produce translations that consider the broader context,
resulting in more accurate and idiomatic outputs.

Summarization: Generative transformers can read lengthy articles or doc-
uments and produce concise summaries, retaining the core information and in-
tent.

25

Gaming: In the gaming industry, transformers are used to generate di-
alogues, plotlines, and even assist in game design by suggesting scenarios or
character backstories.

The applications of generative transformers are vast and continually ex-
panding. As research progresses and models become more sophisticated, it is
anticipated that their integration into various domains will become even more
profound.

5 Challenges and Limitations

While generative transformers have showcased remarkable capabilities, they are
not devoid of challenges and limitations. This section delves into some of the
most pressing concerns surrounding these models, from interpretability issues
to ethical dilemmas and computational constraints.

5.1 Model Interpretability

Deep learning models, especially those with millions or billions of parameters
like generative transformers, are often criticized for being ”black boxes.” Un-
derstanding why a model made a particular decision can be elusive [24].

Attention Maps: One approach to interpretability is visualizing attention
maps [26, 20]. These maps show which parts of the input the model focused
on when producing an output. Attention maps are generated by the attention
mechanism that computes a set of attention scores, which can be visualized as
a heatmap.

Attention maps serve as a tool for interpreting transformer models in NLP
by providing insights into various aspects of text processing. They help in
analyzing the roles of words in sentences, identifying key topics, evaluating text
quality, and detecting errors or biases. However, while attention maps provide
insights, they don’t offer a complete understanding of the model’s decision-
making process.

Mathematical Analysis: Efforts are being made to develop mathematical
tools and frameworks to dissect the inner workings of transformers [52, 53]. Yet,
a comprehensive understanding remains a research frontier.

5.2 Hallucination in Text Generation

Generative transformers are sometimes susceptible to generating text that, while
coherent and grammatically correct, is factually incorrect or nonsensical. This
phenomenon is commonly referred to as hallucination. Ji et al. conducted a
comprehensive survey of the issue of hallucination in natural language genera-
tion (NLG) [77].

The causes of hallucination are multifaceted and can vary. They may include
inadequate training data, which limits the model’s understanding of the subject
matter. Overfitting to the training set is another common issue, where the

26

model learns the noise in the data rather than the actual pattern. Additionally,
high model complexity leading to over-parameterization can also contribute to
hallucination.

Addressing the issue of hallucination involves multiple strategies. One ap-
proach is to fine-tune the model on a more specific dataset that is closely aligned
with the task at hand. Another strategy involves incorporating external knowl-
edge bases that can fact-check the generated text in real-time. Ensemble meth-
ods, which combine the outputs of multiple models, can also be used to validate
the generated text and reduce the likelihood of hallucination.

Efforts are underway to quantify the degree of hallucination in generated
text. Although a standard measure has yet to be established, one simplistic
way to quantify it is through the Hallucination Score, defined as the ratio of
the number of hallucinated tokens to the total number of generated tokens, as
shown in Equation 21.

Hallucination Score =
Number of hallucinated tokens

Total number of generated tokens
(21)

5.3 Ethical Considerations in Text Generation

Generative transformers, with their ability to produce human-like text, raise
several ethical concerns [61].

Misinformation and Fake News: There’s potential for these models to
generate misleading or false information, which can be weaponized to spread
misinformation.

Bias and Fairness: Transformers, being trained on vast internet datasets,
can inherit and perpetuate biases present in the data [59]. Addressing this
requires careful dataset curation and post-hoc bias mitigation techniques.

Bias =

∑n
i=1(Pmodel(xi)− Ptrue(xi))

n
(22)

Where Pmodel is the model’s prediction, Ptrue is the true distribution, and n
is the number of samples.

5.4 Computational Requirements and Environmental Im-
pact

Training a large language model demands significant computational resources.
For example, the GPT-3 model with 175 billion parameters would require 3.14e23

FLOPS for training, translating to 355 GPU-years and a cost of $4.6 million
on a V100 GPU [49]. Memory is another bottleneck; the model’s 175 billion
parameters would need 700GB of memory, far exceeding the capacity of a single
GPU. To manage these challenges, OpenAI used model parallelism techniques
and trained the models on a high-bandwidth cluster. As language models grow
in size, model parallelism is becoming increasingly essential for research.

27

Energy Consumption: The energy required to train state-of-the-art mod-
els can be equivalent to the carbon footprint of multiple car lifetimes. This raises
environmental concerns.

Exclusivity: The computational demands mean that only well-funded or-
ganizations can train the most advanced models, leading to concerns about the
democratization of AI.

While generative transformers offer immense potential, it’s crucial to ad-
dress their challenges and limitations. Balancing the pursuit of state-of-the-art
performance with ethical, environmental, and computational considerations is
paramount for the sustainable and responsible advancement of the field.

6 Future Directions and Conclusion

As we reflect upon the journey of generative transformers, from their founda-
tional roots with Alan Turing to their current state-of-the-art capabilities, it
becomes evident that we stand on the cusp of a transformative era in artificial
intelligence.

6.1 The Future of Generative Transformers

Generative transformers, having already revolutionized numerous domains, are
poised to further push the boundaries of what machines can achieve. With
advancements in model architectures, training techniques, and hardware capa-
bilities, we can anticipate models that not only understand and generate human-
like text but also exhibit creativity, reasoning, and perhaps even a semblance of
consciousness.

Beyond Text: The future might see transformers that seamlessly integrate
multiple modalities – text, image, sound, and more – offering a holistic under-
standing of the world and generating content that transcends the limitations of
current models.

6.2 Potential Areas of Research and Development

The way forward is full of opportunities for exploration and innovation. As the
field of generative transformers continues to evolve, there are numerous avenues
for research and development that remain unexplored or underexplored.

Model Efficiency: As models grow in size, research into making them more
efficient, both in terms of computational requirements and energy consumption,
will be paramount.

Ethical AI: With the power of these models comes the responsibility of
ensuring their ethical use. Research into bias mitigation, fairness, and trans-
parency will play a crucial role in shaping the future of generative transformers.

Interdisciplinary Integration: The fusion of AI with fields like neuro-
science, cognitive science, and even philosophy could lead to breakthroughs
that redefine our understanding of intelligence, both artificial and natural.

28

References

[1] Paul Bernays. “Alonzo Church. An unsolvable problem of elementary
number theory. American journal of mathematics, vol. 58 (1936), pp. 345–
363.” In: The Journal of Symbolic Logic 1.2 (1936), pp. 73–74.

[2] Alan Mathison Turing et al. “On computable numbers, with an application
to the Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

[3] Alan M Turing et al. “Proposed electronic calculator”. In: National Phys-
ical Laboratory (1946).

[4] Computing Machinery. “Computing machinery and intelligence-AM Tur-
ing”. In: Mind 59.236 (1950), p. 433.

[5] Alan Mathison Turing. “The chemical basis of morphogenesis”. In: Philo-
sophical Transactions of the Royal Society of London. Series B, Biological
Sciences 237.641 (1952), pp. 37–72.

[6] Leonard E Baum and Ted Petrie. “Statistical inference for probabilistic
functions of finite state Markov chains”. In: The annals of mathematical
statistics 37.6 (1966), pp. 1554–1563.

[7] Leonard E Baum and John Alonzo Eagon. “An inequality with applica-
tions to statistical estimation for probabilistic functions of Markov pro-
cesses and to a model for ecology”. In: (1967).

[8] Leonard E Baum et al. “A maximization technique occurring in the statis-
tical analysis of probabilistic functions of Markov chains”. In: The annals
of mathematical statistics 41.1 (1970), pp. 164–171.

[9] John J Hopfield. “Neural networks and physical systems with emergent
collective computational abilities.” In: Proceedings of the national academy
of sciences 79.8 (1982), pp. 2554–2558.

[10] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected
applications in speech recognition”. In: Proceedings of the IEEE 77.2
(1989), pp. 257–286.

[11] B Jack Copeland. “The church-turing thesis”. In: (1997).

[12] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[13] Alan Turing. “Intelligent machinery (1948)”. In: B. Jack Copeland (2004),
p. 395.

[14] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning. Vol. 4. 4. Springer, 2006.

[15] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[16] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty
of training recurrent neural networks”. In: International conference on
machine learning. Pmlr. 2013, pp. 1310–1318.

29

[17] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems 27 (2014).

[18] Andrew Hodges. Alan Turing: The Enigma: The Book That Inspired the
Film” The Imitation Game”. Princeton University Press, 2014.

[19] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised represen-
tation learning with deep convolutional generative adversarial networks”.
In: arXiv preprint arXiv:1511.06434 (2015).

[20] Kelvin Xu et al. “Show, attend and tell: Neural image caption generation
with visual attention”. In: International conference on machine learning.
PMLR. 2015, pp. 2048–2057.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[22] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”.
In: arXiv preprint arXiv:1609.03499 (2016).

[23] Antreas Antoniou, Amos Storkey, and Harrison Edwards. “Data augmen-
tation generative adversarial networks”. In: arXiv preprint arXiv:1711.04340
(2017).

[24] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of inter-
pretable machine learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[25] Yujun Lin et al. “Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training”. In: arXiv preprint arXiv:1712.01887
(2017).

[26] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[27] Panos Achlioptas et al. “Learning representations and generative models
for 3d point clouds”. In: International conference on machine learning.
PMLR. 2018, pp. 40–49.

[28] Antonia Creswell et al. “Generative adversarial networks: An overview”.
In: IEEE signal processing magazine 35.1 (2018), pp. 53–65.

[29] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers
for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[30] Alec Radford et al. “Improving language understanding by generative pre-
training”. In: (2018).

[31] Gregory P Way and Casey S Greene. “Extracting a biologically relevant
latent space from cancer transcriptomes with variational autoencoders”.
In: PACIFIC SYMPOSIUM on BIOCOMPUTING 2018: Proceedings of
the Pacific Symposium. World Scientific. 2018, pp. 80–91.

[32] Qingsong Yang et al. “Low-dose CT image denoising using a generative
adversarial network with Wasserstein distance and perceptual loss”. In:
IEEE transactions on medical imaging 37.6 (2018), pp. 1348–1357.

30

[33] Lucas Deecke et al. “Image anomaly detection with generative adversarial
networks”. In: Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2018, Dublin, Ireland, September
10–14, 2018, Proceedings, Part I 18. Springer. 2019, pp. 3–17.

[34] Diederik P Kingma, Max Welling, et al. “An introduction to variational
autoencoders”. In: Foundations and Trends® in Machine Learning 12.4
(2019), pp. 307–392.

[35] Alec Radford et al. “Language models are unsupervised multitask learn-
ers”. In: OpenAI blog 1.8 (2019), p. 9.

[36] Markus Reichstein et al. “Deep learning and process understanding for
data-driven Earth system science”. In: Nature 566.7743 (2019), pp. 195–
204.

[37] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parame-
ter language models using model parallelism”. In: arXiv preprint arXiv:1909.08053
(2019).

[38] Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data
augmentation for deep learning”. In: Journal of big data 6.1 (2019), pp. 1–
48.

[39] Justin Sirignano and Rama Cont. “Universal features of price formation
in financial markets: perspectives from deep learning”. In: Quantitative
Finance 19.9 (2019), pp. 1449–1459.

[40] Natalie Stephenson et al. “Survey of machine learning techniques in drug
discovery”. In: Current drug metabolism 20.3 (2019), pp. 185–193.

[41] Yong Yu et al. “A review of recurrent neural networks: LSTM cells and
network architectures”. In: Neural computation 31.7 (2019), pp. 1235–
1270.

[42] He Zhang, Vishwanath Sindagi, and Vishal M Patel. “Image de-raining
using a conditional generative adversarial network”. In: IEEE transactions
on circuits and systems for video technology 30.11 (2019), pp. 3943–3956.

[43] Jingzhao Zhang et al. “Why gradient clipping accelerates training: A the-
oretical justification for adaptivity”. In: arXiv preprint arXiv:1905.11881
(2019).

[44] Daniel M Ziegler et al. “Fine-tuning language models from human prefer-
ences”. In: arXiv preprint arXiv:1909.08593 (2019).

[45] Tom Brown et al. “Language models are few-shot learners”. In: Advances
in neural information processing systems 33 (2020), pp. 1877–1901.

[46] Prafulla Dhariwal et al. “Jukebox: A generative model for music”. In:
arXiv preprint arXiv:2005.00341 (2020).

[47] Jesse Dodge et al. “Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping”. In: arXiv preprint arXiv:2002.06305
(2020).

31

[48] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transform-
ers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929
(2020).

[49] Chuan Li. “OpenAI’s GPT-3 Language Model: A Technical Overview”.
In: Lambda Labs Blog (2020). Accessed: [Your Access Date Here]. url:
https://lambdalabs.com/blog/demystifying-gpt-3.

[50] Francisca Adoma Acheampong, Henry Nunoo-Mensah, and Wenyu Chen.
“Transformer models for text-based emotion detection: a review of BERT-
based approaches”. In: Artificial Intelligence Review (2021), pp. 1–41.

[51] Yuemin Bian and Xiang-Qun Xie. “Generative chemistry: drug discovery
with deep learning generative models”. In: Journal of Molecular Modeling
27 (2021), pp. 1–18.

[52] Hila Chefer, Shir Gur, and Lior Wolf. “Transformer interpretability be-
yond attention visualization”. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. 2021, pp. 782–791.

[53] Nelson Elhage et al. “A mathematical framework for transformer circuits”.
In: Transformer Circuits Thread 1 (2021).

[54] Ruidan He et al. “On the effectiveness of adapter-based tuning for pre-
trained language model adaptation”. In: arXiv preprint arXiv:2106.03164
(2021).

[55] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha.
“Ammus: A survey of transformer-based pretrained models in natural lan-
guage processing”. In: arXiv preprint arXiv:2108.05542 (2021).

[56] Maithra Raghu et al. “Do Vision Transformers See Like Convolutional
Neural Networks?” In: CoRR abs/2108.08810 (2021). arXiv: 2108.08810.
url: https://arxiv.org/abs/2108.08810.

[57] Aditya Ramesh et al. “Zero-shot text-to-image generation”. In: Interna-
tional Conference on Machine Learning. PMLR. 2021, pp. 8821–8831.

[58] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A primer in BERTol-
ogy: What we know about how BERT works”. In: Transactions of the
Association for Computational Linguistics 8 (2021), pp. 842–866.

[59] Andrew Silva, Pradyumna Tambwekar, and Matthew Gombolay. “To-
wards a comprehensive understanding and accurate evaluation of societal
biases in pre-trained transformers”. In: Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2021, pp. 2383–2389.

[60] Eva Cetinic and James She. “Understanding and creating art with AI:
Review and outlook”. In: ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 18.2 (2022), pp. 1–22.

[61] Deep Ganguli et al. “Predictability and surprise in large generative mod-
els”. In: Proceedings of the 2022 ACM Conference on Fairness, Account-
ability, and Transparency. 2022, pp. 1747–1764.

32

https://lambdalabs.com/blog/demystifying-gpt-3
https://arxiv.org/abs/2108.08810
https://arxiv.org/abs/2108.08810

[62] Kai Han et al. “A survey on vision transformer”. In: IEEE transactions
on pattern analysis and machine intelligence 45.1 (2022), pp. 87–110.

[63] John Hewitt, Christopher D Manning, and Percy Liang. “Truncation sam-
pling as language model desmoothing”. In: arXiv preprint arXiv:2210.15191
(2022).

[64] Salman Khan et al. “Transformers in vision: A survey”. In: ACM comput-
ing surveys (CSUR) 54.10s (2022), pp. 1–41.

[65] Tianyang Lin et al. “A survey of transformers”. In: AI Open (2022).

[66] Daniel Martin et al. “Scangan360: A generative model of realistic scan-
paths for 360 images”. In: IEEE Transactions on Visualization and Com-
puter Graphics 28.5 (2022), pp. 2003–2013.

[67] Goran S Nikolić et al. “A survey of three types of processing units: CPU,
GPU and TPU”. In: 2022 57th International Scientific Conference on In-
formation, Communication and Energy Systems and Technologies (ICEST).
IEEE. 2022, pp. 1–6.

[68] Sayak Paul and Pin-Yu Chen. “Vision transformers are robust learners”.
In: Proceedings of the AAAI conference on Artificial Intelligence. Vol. 36.
2. 2022, pp. 2071–2081.

[69] Romal Thoppilan et al. “Lamda: Language models for dialog applica-
tions”. In: arXiv preprint arXiv:2201.08239 (2022).

[70] Qingsong Wen et al. “Transformers in time series: A survey”. In: arXiv
preprint arXiv:2202.07125 (2022).

[71] Frank F Xu et al. “A systematic evaluation of large language models of
code”. In: Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming. 2022, pp. 1–10.

[72] Sabeen Ahmed et al. “Transformers in time-series analysis: A tutorial”.
In: Circuits, Systems, and Signal Processing (2023), pp. 1–34.

[73] Abdulaziz Amer Aleissaee et al. “Transformers in remote sensing: A sur-
vey”. In: Remote Sensing 15.7 (2023), p. 1860.

[74] Sébastien Bubeck et al. “Sparks of artificial general intelligence: Early
experiments with gpt-4”. In: arXiv preprint arXiv:2303.12712 (2023).

[75] Mingqi Gao et al. “Human-like summarization evaluation with chatgpt”.
In: arXiv preprint arXiv:2304.02554 (2023).

[76] Roberto Gozalo-Brizuela and Eduardo C Garrido-Merchan. “ChatGPT
is not all you need. A State of the Art Review of large Generative AI
models”. In: arXiv preprint arXiv:2301.04655 (2023).

[77] Ziwei Ji et al. “Survey of hallucination in natural language generation”.
In: ACM Computing Surveys 55.12 (2023), pp. 1–38.

[78] Wenxiang Jiao et al. “Is ChatGPT a good translator? A preliminary
study”. In: arXiv preprint arXiv:2301.08745 (2023).

33

[79] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[80] Fahad Shamshad et al. “Transformers in medical imaging: A survey”. In:
Medical Image Analysis (2023), p. 102802.

[81] Hugo Touvron et al. “Llama: Open and efficient foundation language mod-
els”. In: arXiv preprint arXiv:2302.13971 (2023).

[82] Bohan Zhuang et al. “A survey on efficient training of transformers”. In:
arXiv preprint arXiv:2302.01107 (2023).

34

https://arxiv.org/abs/2303.08774

	Introduction
	Background and significance of generative models in AI
	The rise of transformer architectures
	Purpose and structure of the paper

	Historical Evolution
	Turing Machines and the Foundations of Computation
	Turing's impact on artificial intelligence and machine learning
	From Turing's Foundations to Generative Transformers

	Early Neural Networks and Language Models
	Introduction to Neural Networks
	Evolution of Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM) Networks

	The Advent of Transformers
	Introduction to the Transformer Architecture

	Attention Mechanism: The Heart of Transformers
	Conceptual Overview of Attention
	Mathematics of Attention
	Significance in Transformers

	Generative Transformers and Their Significance
	GPT (Generative Pre-trained Transformer) Series
	Other Notable Generative Transformer Models

	Tutorial on Generative Transformers
	Basics of the Transformer Architecture
	Overview
	Attention Mechanism
	Multi-Head Attention
	Feed-Forward Neural Networks
	Self-attention Mechanism
	Positional Encoding
	Multi-head Attention
	Encoder and Decoder modules

	Building a Simple Generative Transformer
	Data Preprocessing and Tokenization
	Defining the Transformer Model

	Advanced Techniques and Best Practices
	Techniques for Improving Generation Quality
	Handling Long Sequences and Memory Issues
	Fine-tuning and Transfer Learning

	Applications and Use Cases
	Text Generation for Creative Writing
	Chatbots and Conversational Agents
	Code Generation and Programming Assistance
	Other Notable Applications

	Challenges and Limitations
	Model Interpretability
	Hallucination in Text Generation
	Ethical Considerations in Text Generation
	Computational Requirements and Environmental Impact

	Future Directions and Conclusion
	The Future of Generative Transformers
	Potential Areas of Research and Development

